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Abstract

In this paper, we showcase the interplay be-
tween discrete and continuous optimization in
network-structured settings. We propose the
first fully decentralized optimization method
for a wide class of non-convex objective func-
tions that possess a diminishing returns prop-
erty. More specifically, given an arbitrary con-
nected network and a global continuous submod-
ular function, formed by a sum of local functions,
we develop Decentralized Continuous

Greedy (DCG), a message passing algorithm
that converges to the tight (1 � 1/e) approxima-
tion factor of the optimum global solution using
only local computation and communication. We
also provide strong convergence bounds as a func-
tion of network size and spectral characteristics
of the underlying topology. Interestingly, DCG
readily provides a simple recipe for decentralized
discrete submodular maximization through the
means of continuous relaxations. Formally, we
demonstrate that by lifting the local discrete func-
tions to continuous domains and using DCG as an
interface we can develop a consensus algorithm
that also achieves the tight (1 � 1/e) approxima-
tion guarantee of the global discrete solution once
a proper rounding scheme is applied.

1. Introduction
In recent years, we have reached unprecedented data vol-
umes that are high dimensional and sit over (clouds of)
networked machines. As a result, decentralized collection
of these data sets along with accompanying distributed op-
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timization methods are not only desirable but very often
necessary (Boyd et al., 2011).

The focus of this paper is on decentralized optimization,
the goal of which is to maximize/minimize a global ob-
jective function –distributed over a network of comput-
ing units– through local computation and communications
among nodes. A canonical example in machine learning is
fitting models using M-estimators where given a set of data
points the parameters of the model are estimated through
an empirical risk minimization (Vapnik, 1998). Here, the
global objective function is defined as an average of local
loss functions associated with each data point. Such local
loss functions can be convex (e.g., logistic regression, SVM,
etc) or non-convex (e.g., non-linear square loss, robust re-
gression, mixture of Gaussians, deep neural nets, etc) (Mei
et al., 2016). Due to the sheer volume of data points, these
optimization tasks cannot be fulfilled on a single comput-
ing cluster node. Instead, we need to opt for decentralized
solutions that can efficiently exploit dispersed (and often
distant) computational resources linked through a tightly
connected network. Furthermore, local computations should
be light so that they can be done on single machines. In
particular, when the data is high dimensional, extra care
should be given to any optimization procedure that relies on
projections over the feasibility domain.

In addition to large scale machine learning applications, de-
centralized optimization is a method of choice in many other
domains such as Internet of Things (IoT) (Abu-Elkheir et al.,
2013), remote sensing (Ma et al., 2015), multi-robot systems
(Tanner & Kumar, 2005), and sensor networks (Rabbat &
Nowak, 2004). In such scenarios, individual entities can
communicate over a network and interact with the environ-
ment by exchanging the data generated through sensing. At
the same time they can react to events and trigger actions to
control the physical world. These applications highlight an-
other important aspect of decentralized optimization where
private data is collected by different sensing units (Yang
et al., 2017). Here again, we aim to optimize a global objec-
tive function while avoiding to share the private data among
computing units. Thus, by design, one cannot solve such
private optimization problems in a centralized manner and
should rely on decentralized solutions where local private
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computation is done where the data is collected.

Continuous submodular functions, a broad subclass of non-
convex functions with diminishing returns property, have
recently received considerable attention (Bach, 2015; Bian
et al., 2017). Due to their interesting structures that allow
strong approximation guarantees (Mokhtari et al., 2018a;
Bian et al., 2017), they have found various applications,
including the design of online experiments (Chen et al.,
2018), budget and resource allocations (Eghbali & Fazel,
2016; Staib & Jegelka, 2017), and learning assignments
(Golovin et al., 2014). However, all the existing work suffer
from centralized computing. Given that many information
gathering, data summarization, and non-parametric learning
problems are inherently related to large-scale submodular
maximization, the demand for a fully decentralized solution
is immediate. In this paper, we develop the first decentral-
ized framework for both continuous and discrete submodular
functions. Our contributions are as follows:

• Continuous submodular maximization: For any
global objective function that is monotone and con-
tinuous DR-submodular and subject to any down-
closed and bounded convex body, we develop
Decentralized Continuous Greedy, a de-
centralized and projection-free algorithm that achieves
the tight (1 � 1/e � ✏) approximation guarantee in
O(1/✏2) rounds of local communication.

• Discrete submodular maximization: For any global ob-
jective function that is monotone and submodular and
subject to any matroid constraint, we develop a dis-
crete variant of Decentralized Continuous

Greedy that achieves the tight (1� 1/e� ✏) approxi-
mation ratio in O(1/✏3) rounds of communication.

All proofs are provided in the supplementary material.

2. Related Work
Decentralized optimization is a challenging problem as
nodes only have access to separate components of the global
objective function, while they aim to collectively reach the
global optimum point. Indeed, one naive approach to tackle
this problem is to broadcast local objective functions to all
the nodes in the network and then solve the problem locally.
However, this scheme requires high communication over-
head and disregards the privacy associated with the data
of each node. An alternative approach is the master-slave
setting (Bekkerman et al., 2011; Shamir et al., 2014; Zhang
& Lin, 2015) where at each iteration, nodes use their local
data to compute the information needed by the master node.
Once the master node receives all the local information, it
updates its decision and broadcasts the decision to all the
nodes. Although this scheme protects the privacy of nodes it
is not robust to machine failures and is prone to high overall

communication time. In decentralized methods, these issues
are overcame by removing the master node and considering
each node as an independent unit that is allowed to exchange
information with its neighbors.

Convex decentralized consensus optimization is a relatively
mature area with a myriad of primal and dual algorithms
(Bertsekas & Tsitsiklis, 1989). Among primal methods, de-
centralized (sub)gradient descent is perhaps the most well
known algorithm which is a mix of local gradient descent
and successive averaging (Nedic & Ozdaglar, 2009; Yuan
et al., 2016). It also can be interpreted as a penalty method
that encourages agreement among neighboring nodes. This
latter interpretation has been exploited to solve the pe-
nalized objective function using accelerated gradient de-
scent (Jakovetić et al., 2014; Qu & Li, 2017), Newton’s
method (Mokhtari et al., 2017; Bajovic et al., 2017), or
quasi-Newton algorithms (Eisen et al., 2017). The methods
that operate in the dual domain consider a constraint that
enforces equality between nodes’ variables and solve the
problem by ascending on the dual function to find optimal
Lagrange multipliers. A short list of dual methods are the al-
ternating directions method of multipliers (ADMM) (Boyd
et al., 2011), dual ascent algorithm (Rabbat et al., 2005),
and augmented Lagrangian methods (Jakovetic et al., 2015;
Chatzipanagiotis & Zavlanos, 2015). Recently, there have
been many attempts to extend the tools in decentralized con-
sensus optimization to the case that the objective function is
non-convex (Di Lorenzo & Scutari, 2016; Sun et al., 2016;
Hajinezhad et al., 2016; Tatarenko & Touri, 2017). However,
such works are mainly concerned with reaching a stationary
point and naturally cannot provide any optimality guarantee.

In this paper, our focus is to provide the first decentralized
algorithms for both discrete and continuous submodular
functions. It is known that the centralized greedy approach
of (Nemhauser et al., 1978), and its many variants (Feige
et al., 2011; Buchbinder et al., 2015; 2014; Feldman et al.,
2017; Mirzasoleiman et al., 2016), reach tight approxima-
tion guarantees in various scenarios. As such methods are
sequential in nature, they do not scale to massive datasets.
To partially resolve this issue, MapReduce style methods,
with a master-slave architecture, have been proposed (Mirza-
soleiman et al., 2013; Kumar et al., 2015; da Ponte Barbosa
et al., 2015; Mirrokni & Zadimoghaddam, 2015; Qu et al.,
2015).

One can extend the notion of diminishing returns to contin-
uous domains (Wolsey, 1982; Bach, 2015). Even though
continuous submodular functions are not generally convex
(nor concave) Hassani et al. (2017) showed that in the mono-
tone setting and subject to a general bounded convex body
constraint, stochastic gradient methods can achieve a 1/2
approximation guarantee. The approximation guarantee can
be tightened to (1� 1/e) by using Frank-Wolfe (Bian et al.,
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2017) or stochastic Frank-Wolfe (Mokhtari et al., 2018a).

3. Notation and Background
In this section, we review the notation that we use through-
out the paper. We then give the precise definition of sub-
modularity in discrete and continuous domains.

Notation. Lowercase boldface v denotes a vector and up-
percase boldface W a matrix. The i-th element of v is
written as vi and the element on the i-th row and j-th col-
umn of W is denoted by wi,j . We use kvk to denote the
Euclidean norm of vector v and kWk to denote the spectral
norm of matrix W. The null space of matrix W is denoted
by null(W). The inner product of vectors x,y is indicated
by hx,yi, and the transpose of a vector v or matrix W are
denoted by v

† and W

†, respectively. The vector 1n 2 Rn

is the vector of all ones with n components, and the vector
0p 2 Rp is the vector of all zeros with p components.

Submodulary. A set function f : 2

V ! R+, defined on the
ground set V , is called submodular if for all A,B ✓ V , we
have f(A)+f(B) � f(A\B)+f(A[B). We often need
to maximize submodular functions subject to a down-closed
set family I . In particular, we say I ⇢ 2

V is a matroid if 1)
for any A ⇢ B ⇢ V , if B 2 I, then A 2 I and 2) for any
A,B 2 I if |A| < |B|, then there is an element e 2 B such
that A [ {e} 2 I.

The notion of submodularity goes beyond the discrete do-
main (Wolsey, 1982; Vondrák, 2007; Bach, 2015). Consider
a continuous function F : X ! R+ where the set X ✓ Rp

is of the form X =

Qp
i=1 Xi and each Xi is a compact sub-

set of R+. We call the continuous function F submodular if
for all x,y 2 X we have

F (x) + F (y) � F (x _ y) + F (x ^ y), (1)

where x_y := max(x,y) (component-wise) and x^y :=

min(x,y) (component-wise). In this paper, our focus is on
differentiable continuous submodular functions with two
additional properties: monotonicity and diminishing returns.
Formally, a submodular function F is monotone if

x  y =) F (x)  F (y), (2)

for all x,y 2 X . Note that x  y in (2) means that xi  yi
for all i = 1, . . . , p. Furthermore, a differentiable sub-
modular function F is called DR-submodular (i.e., shows
diminishing returns) if the gradients are antitone, namely,
for all x,y 2 X we have

x  y =) rF (x) � rF (y). (3)

When the function F is twice differentiable, submodularity
implies that all cross-second-derivatives are non-positive
(Bach, 2015), and DR-submodularity implies that all second-
derivatives are non-positive (Bian et al., 2017) In this work,

we consider the maximization of continuous submodular
functions subject to down-closed convex bodies C ⇢ Rp

+

defined as follows. For any two vectors x,y 2 Rp
+, where

x  y, down-closedness means that if y 2 C, then so is
x 2 C. Note that for a down-closed set we have 0p 2 C.

4. Decentralized Submodular Maximization
In this section, we state the problem of decentralized sub-
modular maximization in continuous and discrete settings.

Continuous Case. We consider a set of n computing ma-
chines/sensors that communicate over a graph to maximize
a global objective function. Each machine can be viewed
as a node i 2 N , {1, · · · , n}. We further assume that the
possible communication links among nodes are given by a
bidirectional connected communication graph G = (N , E)
where each node can only communicate with its neighbors
in G. We formally use Ni to denote node i’s neighbors. In
our setting, we assume that each node i 2 N has access
to a local function Fi : X ! R+. The nodes cooperate
in order to maximize the aggregate monotone and contin-
uous DR-submodular function F : X ! R+ subject to a
down-closed convex body C ⇢ X ⇢ Rp

+, i.e.,

max

x2C
F (x) = max

x2C

1

n

nX

i=1

Fi(x). (4)

The goal is to design a message passing algorithm to solve
(4) such that: (i) at each iteration t, the nodes send their
messages (and share their information) to their neighbors in
G, and (ii) as t grows, all the nodes reach to a point x 2 C
that provides a (near-) optimal solution for (4).

Discrete Case. Let us now consider the discrete counterpart
of problem (4). In this setting, each node i 2 N has access
to a local set function fi : 2V ! R+. The nodes cooperate
in maximizing the aggregate monotone submodular function
f : 2

V ! R+ subject to a matroid constraint I, i.e.

max

S2I
f(S) = max

S2I

1

n

nX

i=1

fi(S). (5)

Note that even in the centralized case, and under reasonable
complexity-theoretic assumptions, the best approximation
guarantee we can achieve for Problems (4) and (5) is (1 �
1/e) (Feige, 1998). In the following, we show that it is
possible to achieve the same approximation guarantee in a
decentralized setting.

5. Decentralized Continuous Greedy Method
In this section, we introduce the Decentralized

Continuous Greedy (DCG) algorithm for solving
Problem (4). Recall that in a decentralized setting, the nodes
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have to cooperate (i.e., send messages to their neighbors)
in order to solve the global optimization problem. We will
explain how such messages are designed and communicated
in DCG. Each node i in the network keeps track of two local
variables xi,di 2 Rp which are iteratively updated at each
round t using the information gathered from the neighboring
nodes. The vector xt

i is the local decision variable of node i
at step t whose value we expect to eventually converge to
the (1�1/e) fraction of the optimal solution of Problem (4).
The vector dt

i is the estimate of the gradient of the global
objective function that node i keeps at step t.

To properly incorporate the received information from their
neighbors, nodes should assign nonnegative weights to their
neighbors. Define wij � 0 to be the weight that node
i assigns to node j. These weights indicate the effect of
(variable or gradient) information nodes received from their
neighbors in order to update their local (variable or gradient)
information. Indeed, the weights wij must fulfill some
requirements (later described in Assumption 1), but they are
design parameters of DCG and can be properly chosen by
the nodes prior to the implementation of the algorithm.

The first step at each round t of DCG is updating the local
gradient approximation vectors dt

i using local and neighbor-
ing gradient information. In particular, node i computes its
vector dt

i according to the update rule

d

t
i = (1 � ↵)

X

j2Ni[{i}

wijd
t�1
j + ↵rFi(x

t
i), (6)

where ↵ 2 [0, 1] is an averaging coefficient. Note that the
sum

P
j2Ni[{i} wijd

t�1
j in (6) is a weighted average of

node i’s vector dt�1
i and its neighbors dt�1

j , evaluated at
step t� 1. Hence, node i computes the vector dt

i by evaluat-
ing a weighted average of its current local gradient rFi(x

t
i)

and the local and neighboring gradient information at step
t � 1, i.e.,

P
j2Ni[{i} wijd

t�1
j . Since the vector dt

i is eval-
uated by aggregating gradient information from neighboring
nodes, it is reasonable to expect that dt

i becomes a proper
approximation for the global objective function gradient
(1/n)

Pn
k=1 rfk(x) as time progresses. Note that to imple-

ment the update in (6) nodes should exchange their local
vectors dt

i with their neighbors.

Using the gradient approximation vector dt
i, each node i

evaluates its local ascent direction v

t
i by solving

v

t
i = argmax

v2C
hdt

i,vi. (7)

The update in (7) is also known as conditional gradient
update. Ideally, in a conditional gradient method, we should
choose the feasible direction v 2 C that maximizes the in-
ner product by the full gradient vector 1

n

Pn
k=1 rFk(x

t
i).

However, since in the decentralized setting the exact gradi-
ent 1

n

Pn
k=1 rFk(x

t
i) is not available at the i-th node, we

Algorithm 1 DCG at node i

Require: Stepsize ↵ and weights wij for j 2 Ni [ {i}
1: Initialize local vectors as x0

i = d

0
i = 0p

2: Initialize neighbor’s vectors as x0
j = d

0
j = 0p if j2Ni

3: for t = 1, 2, . . . , T do
4: Compute dt

i = (1 � ↵)
X

j2Ni[{i}

wijd
t�1
j + ↵rFi(x

t
i);

5: Exchange d

t
i with neighboring nodes j 2 Ni

6: Evaluate v

t
i = argmax

v2C hdt
i,vi;

7: Update the variable x

t+1
i =

X

j2Ni[{i}

wijx
t
j +

1

T
v

t
i ;

8: Exchange x

t+1
i with neighboring nodes j 2 Ni

9: end for

replace it by its current approximation d

t
i and hence we

obtain the update rule (7).

After computing the local ascent directions v

t
i , the nodes

update their local variables xt
i by averaging their local and

neighboring iterates and ascend in the direction v

t
i with

stepsize 1/T where T is the total number of iterations, i.e.,

x

t+1
i =

X

j2Ni[{i}

wijx
t
j +

1

T
v

t
i . (8)

The update rule (8) ensures that the neighboring iter-
ates are not far from each other via the averaging termP

j2Ni[{i} wijx
t
j , while the iterates approach the optimal

maximizer of the global objective function by ascending
in the conditional gradient direction v

t
i . The update in (8)

requires a round of local communication among neighbors
to exchange their local variables xt

i. The steps of the DCG
method are summarized in Algorithm 1.

Indeed, the weights wij that nodes assign to each other
cannot be arbitrary. In the following, we formalize the
conditions that they should satisfy (Yuan et al., 2016).

Assumption 1 The weights that nodes assign to each other
are nonegative, i.e., wij � 0 for all i, j 2 N , and if node j
is not a neighbor of node i then the corresponding weight
is zero, i.e., wij = 0 if j /2 Ni. Further, the weight matrix
W 2 Rn⇥n with entries wij satisfies

W

†
= W, W1n = 1n, null(I � W) = span(1n). (9)

The first condition in (9) ensures that the weights are sym-
metric, i.e., wij = wji. The second condition guarantees
the weights that each node assigns to itself and its neighbors
sum up to 1, i.e.,

Pn
j=1 wij = 1 for all i. Note that the

condition W1n = 1n implies that I � W is rank deficient.
Hence, the last condition in (9) ensures that the rank of
I � W is exactly n � 1. Indeed, it is possible to optimally
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design the weight matrix W to accelerate the averaging pro-
cess as discussed in (Boyd et al., 2004), but this is not the
focus of this paper. We emphasize that W is not a problem
parameter, and we design it prior to running DCG.

Notice that the stepsize 1/T and the conditions in Assump-
tion 1 on the weights wij are needed to ensure that the
local variables xt

i are in the feasible set C, as stated in the
following proposition.

Proposition 1 Consider the DCG method outlined in Al-
gorithm 1. If Assumption 1 holds and nodes start from
x

0
i = 0p 2 C, then the local iterates xt

i are always in the
feasible set C, i.e., xt

i 2 C for all i 2 N and t = 1, . . . , T .

Let us now explain how DCG relates to and innovates be-
yond the exisiting work in submodular maximization as well
as decentralized convex optimization. Note that in order to
solve Problem (4) in a centralized fashion (i.e., when every
node has access to all the local functions) we can use the
continuous greedy algorithm (Vondrák, 2008), a variant of
the conditional gradient method. However, in decentralized
settings, nodes have only access to their local gradients, and
therefore, continuous greedy is not implementable. Similar
to the decentralized convex optimization, we can address
this issue via local information aggregation. Our proposed
DCG method incorporates the idea of choosing the ascent
direction according to a conditional gradient update as is
done in the continuous greedy algorithm (i.e., the update
rule (7)), while it aggregates the global objective function in-
formation through local communications with neighboring
nodes (i.e., the update rule (8)). Unlike traditional consen-
sus optimization methods that require exchanging nodes’
local variables only (Nedic & Ozdaglar, 2009; Nedic et al.,
2010), DCG also requires exchanging local gradient vectors
to achieve a (1 � 1/e) fraction of the optimal solution at
each node (i.e., the update rule (6)). This major difference is
due to the fact that in conditional gradient methods, unlike
proximal gradient algorithms, the local gradients can not be
used instead of the global gradient. In other words, in the
update rule (7), we can not use the local gradients rFi(x

t
i)

in lieu of dt
i. Indeed, there are settings for which such a

replacement provides arbitrarily bad solutions. We formally
characterize the convergence of DCG in Theorem 1.

5.1. Extension to the Discrete Setting

In this section we show how DCG can be used for maxi-
mizing a decentralized submodular set function f , namely
Problem (5), through its continuous relaxation. Formally,
in lieu of solving Problem (5), we can form the following
decentralized continuous optimization problem

max

x2C

1

n

nX

i=1

Fi(x), (10)

Algorithm 2 Discrete DCG at node i

Require: ↵,� 2 [0, 1] and weights wij for j 2 Ni [ {i}
1: Initialize local vectors as x0

i = d

0
i = g

0
i = 0

2: Initialize neighbor’s vectors as x0
j = d

0
j = 0 if j 2 Ni

3: for t = 1, 2, . . . , T do
4: Compute g

t
i = (1 � �)gt�1

i + �r ˜Fi(x
t
i);

5: Compute d

t
i = (1 � ↵)

X

j2Ni[{i}

wijd
t�1
j + ↵gt

i ;

6: Exchange d

t
i with neighboring nodes j 2 Ni

7: Evaluate v

t
i = argmax

v2C hdt
i,vi;

8: Update the variable x

t+1
i =

X

j2Ni[{i}

wijx
t
j +

1

T
v

t
i ;

9: Exchange x

t+1
i with neighboring nodes j 2 Ni;

10: end for
11: Apply proper rounding to obtain a solution for (5);

where Fi is the multilinear extension of fi defined as

Fi(x) =

X

S⇢V

fi(S)
Y

i2S

xi

Y

j /2S

(1 � xj), (11)

and the down-closed convex set C = conv{1I : I 2 I} is
the matroid polytope. Note that the discrete and continuous
optimization formulations lead to the same optimal value
(Calinescu et al., 2011).

Based on the expression in (11), computing the full gradient
rFi at each node i will require an exponential computation
in terms of |V |, since the number of summands in (11) is
2

|V |. As a result, in the discrete setting, we will slightly
modify the DCG algorithm and work with unbiased esti-
mates of the gradient that can be computed in time O(|V |)
(see Appendix 9.7 for one such estimator). More precisely,
in the discrete setting, each node i 2 N updates three local
variables x

t
i,d

t
i,g

t
i 2 R|V |. The variables x

t
i,d

t
i play the

same role as in DCG and are updated using the messages
received from the neighboring nodes. The variable g

t
i at

node i is defined to approximate the local gradient rFi(x
t
i).

Consider the vector r ˜Fi(x
t
i) as an unbiased estimator of

the local gradient rFi(x
t
i) at time t, and define the vector

g

t
i as the outcome of the recursion

g

t
i = (1 � �)gt�1

i + �r ˜Fi(x
t
i), (12)

where � 2 [0, 1] is the averaging parameter. We initialize all
vectors as g0

i = 0 2 R|V |. It was shown recently (Mokhtari
et al., 2018a;b) that the averaging technique in (12) reduces
the noise of the gradient approximations. Therefore, the
sequence of gt

i approaches the true local gradient rFi(x
t
i)

as time progresses.

The steps of the Decentralized Continuous

Greedy for the discrete setting is summarized in Algo-
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rithm 2. Note that the major difference between the Dis-
crete DCG method (Algorithm 2) and the continuous DCG
method (Algorithm 1) is in Step 5 in which the exact local
gradient rFi(x

t
i) is replaced by the stochastic approxima-

tion g

t
i which only requires access to the computationally

cheap unbiased gradient estimator r ˜Fi(x
t
i). The commu-

nication complexity of both the discrete and continuous
versions of DCG are the same at each round. However,
since we are using unbiased estimations of the local gra-
dients rFi(xi), the Discrete DCG takes more rounds to
converge to a near-optimal solution compared to continuous
DCG. We characterize the convergence of Discrete DCG in
Theorem 2. Further, the implementation of Discrete DCG
requires rounding the continuous solution to obtain a dis-
crete solution for the original problem without any loss in
terms of the objective function value. The provably lossless
rounding schemes include the pipage rounding (Calinescu
et al., 2011) and contention resolution (Chekuri et al., 2014).

6. Convergence Analysis
In this section, we study the convergence properties of DCG
in both continuous and discrete settings. In this regard, we
assume that the following conditions hold.

Assumption 2 Euclidean distance of the elements in the
set C are uniformly bounded, i.e., for all x,y 2 C we have

kx � yk  D. (13)

Assumption 3 The local objective functions Fi(x) are
monotone and DR-submodular. Further, their gradients are
L-Lipschitz continuous over the set X , i.e., for all x,y 2 X

krFi(x) � rFi(y)k  Lkx � yk. (14)

Assumption 4 The norm of gradients krFi(x)k are
bounded over the convex set C, i.e., for all x 2 C, i 2 N ,

krFi(x)k  G. (15)

The condition in Assumption 2 guarantees that the diameter
of the convex set C is bounded. Assumption 3 is needed
to ensure that the local objective functions Fi are smooth.
Finally, the condition in Assumption 4 enforces the gradi-
ents norm to be bounded over the convex set C. All these
assumptions are customary and necessary in the analysis
of decentralized algorithms. For more details, please check
Section VII-B in Jakovetić et al. (2014).

We proceed to derive a constant factor approximation for
DCG. Our main result is stated in Theorem 1. However,
to better illustrate the main result, we first need to provide
several definitions and technical lemmas. Let us begin by
defining the average variables ¯

x

t as

¯

x

t
=

1

n

nX

i=1

x

t
i. (16)

In the following lemma, we establish an upper bound on the
variation in the sequence of average variables {¯xt}.

Lemma 1 Consider the proposed DCG algorithm defined
in Algorithm 1. Further, recall the definition of ¯xt in (16). If
Assumptions 1 and 2 hold, then the difference between two
consecutive average vectors is upper bounded by

k¯xt+1 � ¯

x

tk  D

T
. (17)

Recall that at every node i, the messages are mixed using
the coefficients wij , i.e., the i-th row of the matrix W. It is
thus not hard to see that the spectral properties of W (e.g.
the spectral gap) play an important role in the the speed of
achieving consensus in decentralized methods.

Definition 1 Consider the eigenvalues of W which can
be sorted in a nonincreasing order as 1 = �1(W) �
�2(W) · · · � �n(W) > �1. Define � as the second
largest magnitude of the eigenvalues of W, i.e.,

� := max{|�2(W)|, |�n(W)|}. (18)

As we will see, a mixing matrix W with smaller � has a
larger spectral gap 1 � � which yields faster convergence
(Boyd et al., 2004; Duchi et al., 2012). In the following
lemma, we derive an upper bound on the sum of the dis-
tances between the local iterates x

t
i and their average ¯

x

t,
where the bound is a function of the graph spectral gap 1��,
size of the network n, and the total number of iterations T .

Lemma 2 Consider the proposed DCG algorithm defined
in Algorithm 1. Further, recall the definition of ¯xt in (16).
If Assumptions 1 and 2 hold, then for all t  T we have

 
nX

i=1

��
x

t
i � ¯

x

t
��2
!1/2


p
nD

T (1 � �)
. (19)

Let us now define ¯

d

t as the average of local gradient approx-
imations dt

i at step t, i.e., ¯dt
=

1
n

Pn
i=1 d

t
i. We will show

in the following that the vectors dt
i also become uniformly

close to ¯

d

t.

Lemma 3 Consider the proposed DCG algorithm defined
in Algorithm 1. If Assumptions 1 and 3 hold, then

 
nX

i=1

kdt
i � ¯

d

tk2
!1/2

 ↵
p
nG

1 � �(1 � ↵)
. (20)

Lemma 3 guarantees that the individual local gradient ap-
proximation vectors dt

i are close to the average vector ¯

d

t

if the parameter ↵ is small. To show that the gradient vec-
tors dt

i, generated by DCG, approximate the gradient of the
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global objective function, we further need to show that the
average vector ¯dt approaches the global objective function
gradient rF . We prove this claim in the following lemma.

Lemma 4 Consider the proposed DCG algorithm defined
in Algorithm 1. If Assumptions 1-4 hold, then

�����
¯

d

t � 1

n

nX

i=1

rFi(¯x
t
)

�����

 (1 � ↵)tG+

✓
(1 � ↵)LD

↵T
+

LD

T (1 � �)

◆
. (21)

By combining Lemmas 3 and 4 and setting ↵ = 1/
p
T we

can conclude that the local gradient approximation vector
d

t
i of each node i is within O(1/

p
T ) distance of the global

objective gradient rF (

¯

x

t
) evaluated at ¯xt. We use this ob-

servation in the following theorem to show that the sequence
of iterates generated by DCG achieves the tight (1 � 1/e)
approximation ratio of the optimum global solution.

Theorem 1 Consider the proposed DCG method outlined
in Algorithm 1. Further, consider x

⇤ as the global maxi-
mizer of Problem (4). If Assumptions 1-4 hold and we set
↵ = 1/

p
T , for all nodes j 2 N , the local variable x

T
j

obtained after T iterations satisfies

F (x

T
j ) � (1 � e�1

)F (x

⇤
) � LD2

+GD

T 1/2
� GD

T 1/2
(1 � �)

� LD2

2T
� GD + LD2

T (1 � �)
. (22)

Theorem 1 shows that the sequence of the local variables
x

t
j , generated by DCG, is able to achieve the optimal ap-

proximation ratio (1 � 1/e), while the error term vanishes
at a sublinear rate of O(1/T 1/2

), i.e.,

F (x

T
j ) � (1 � 1/e)F (x

⇤
) � O

✓
1

(1 � �)T 1/2

◆
, (23)

which implies that the iterate of each node reaches an ob-
jective value larger than (1 � 1/e � ✏)OPT after O(1/✏2)
rounds of communication. It is worth mentioning that the
result in Theorem 1 is consistent with classical results in de-
centralized optimization that the error term vanishes faster
for the graphs with larger spectral gap 1 � �. We proceed
to study the convergence properties of Discrete DCG in
Algorithm 2. To do so, we first assume that the variance of
the stochastic gradients r ˜Fi(x) used in Discrete DCG is
bounded. We justify this assumption in Remark 1.

Assumption 5 The variance of the unbiased estimators
r ˜F (x) is bounded above by �2 over the convex set C, i.e.,
for any i 2 N and any vector x 2 C we can write

E
h
kr ˜Fi(x) � rFi(x)k2

i
 �2, (24)

where the expectation is with respect to the randomness of
the unbiased estimator.

In the following theorem, we show that Discrete DCG
achieves a (1 � 1/e) approximation ration for Problem (5).

Theorem 2 Consider our proposed Discrete DCG algo-
rithm outlined in Algorithm 2. Recall the definition of the
multilinear extension function Fi in (11). If Assumptions
1-5 hold and we set ↵ = T�1/2 and � = T�2/3, then for all
nodes j 2 N the local variables xT

j obtained after running
Discrete DCG for T iterations satisfy

E
⇥
F (x

T
j )
⇤ � (1�e�1

)F (x

⇤
)�O

✓
1

(1��)T 1/3

◆
, (25)

where x

⇤ is the global maximizer of Problem (10).

Theorem 2 states that the sequence of iterates generated by
Discrete DCG achieves the tight (1�1/e�✏) approximation
guarantee for Problem (10) after O(1/✏3) iterations.

Remark 1 For any submodular set function h : 2

V ! R
with associated multilinear extension H , it can be shown
that its Lipschitz constant L and the gradient norm G are
both bounded above by mf

p|V |, where mf is the maxi-
mum marginal value of f , i.e., mf = maxi2V f({i}) (see,
Hassani et al. (2017)). Similarly, it can be shown that for the
unbiased estimator in Appendix 9.7 we have �  mf

p|V |.

7. Numerical Experiments
We will consider a discrete setting for our experiments
and use Algorithm 2 to find a decentralized solution. The
main objective is to demonstrate how consensus is reached
and how the global objective increases depending on the
topology of the network and the parameters of the algorithm.

For our experiments, we have used the MovieLens data set.
It consists of 1 million ratings (from 1 to 5) by M = 6000

users for p = 4000 movies. We consider a network of
n = 100 nodes. The data has been distributed equally
between the nodes of the network, i.e., the set of users has
been partitioned into 100 equally-sized sets and each node
in the network has access to only one chunk (partition) of
the data. The global task is to find a set of k movies that are
most satisfactory to all the users (the precise formulation
will appear shortly). However, as each of the nodes in the
network has access to the data of a small portion of the users,
the nodes have to cooperate to fulfill the global task.

We consider a well motivated objective function for the
experiments. Let r`,j denote the rating of user ` for movie j
(if such a rating does not exist in the data we assign r`,j to
0). We associate to each user ` a “facility location” objective
function g`(S) = maxj2S r`,j , where S is any subset of
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Figure 1. The logarithm of the distance-to-average at final round T
is plotted as a function of T . Note that when the underlying graph
is complete or Erdos-Renyi (ER) with a good average degree, then
consensus will be achieved even for small number of iterations
T . However, for poor connected graphs such as the line graph,
reaching consensus requires a large number of iterations.

the movies (i.e. the ground set V is the set of the movies).
Such a function shows how much user ` will be “satisfied”
by a subset S of the movies. Recall that each node i in the
network has access to the data of a (small) subset of users
which we denote by Ui. The objective function associated
with node i is given by fi(S) =

P
`2Ui

g`(S). With such
a choice of the local functions, our global task is hence
to solve problem (5) when the matroid I is the k-uniform
matroid (a.k.a. the k-cardinality constraint).

We consider three different choices for the underlying com-
munication graph between the 100 nodes: A line graph
(which looks like a simple path from node 1 to node 100),
an Erdos-Renyi random graph (with average degree 5), and a
complete graph. The matrix W is chosen as follows (based
on each of the three graphs). If (i, j) is and edge of the
graph, we let wi,j = 1/(1+max(di, dj)). If (i, j) is not an
edge and i, j are distinct integers, we have wi,j = 0. Finally
we let wi,i = 1 �Pj2N wi,j . It is not hard to show that
the above choice for W satisfies Assumption 1.

Figure 1 shows how consensus is reached w.r.t each of the
three underlying networks. To measure consensus, we plot
the (logarithm of) distance-to-average value 1

n

Pn
i=1 ||xT

i �
¯

x

T || as a function of the total number of iterations T av-
eraged over many trials (see (16) for the definition of ¯xT ).
It is easy to see that the distance to average is small if and
only if all the local decisions x

T
i are close to the average

decision ¯

x

T . As expected, it takes much less time to reach
consensus when the underlying graph is fully connected (i.e.
complete graph). For the line graph, the convergence is very
slow as this graph has the least degree of connectivity.

Figure 2 depicts the obtained objective value of Discrete
DCG (Algorithm 2) for the three networks considered above.
More precisely, we plot the value 1

n

Pn
i=1 f(x

T
i ) obtained
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Figure 2. The average objective value is plotted as a function of the
cardinality constraint k for different choices of the communication
graph as well as number of iterations T . Note that “ER” stands for
the Erdos-Reny graph with average degree 5, “Line” stands for the
line graph and “Complete” is for the complete graph. We have run
Algorithm 2 for T = 50 and T = 1000.

at the end of Algorithm 2 as a function of the cardinal-
ity constraint k. We also compare these values with the
value obtained by the centralized greedy algorithm (i.e. the
centralized solution). A few comments are in order. The
performance of Algorithm 2 is close to the centralized so-
lution when the underlying graph is the Erdos-Renyi (with
average degree 5) graph or the complete graphs. This is
because for both such graphs consensus is achieved from
the early stages of the algorithm. By increasing T , we see
that the performance becomes closer to the centralized solu-
tion. However, when the underlying graph is the line graph,
then consensus will not be achieved unless the number of
iterations is significantly increased. Consequently, for small
number of iterations (e.g. T  1000) the performance of
the algorithm will not be close to the centralized solution.

8. Conclusion
In this paper, we proposed the first fully decentralized op-
timization method for maximizing discrete and continuous
submodular functions. We developed Decentralized
Continuous Greedy (DCG) that achieves a (1�1/e�
✏) approximation guarantee with O(1/✏2) and (1/✏3) local
rounds of communication in the continuous and discrete
settings, respectively.

Acknowledgements
This work was done while A. Mokhtari was visiting the
Simons Institute for the Theory of Computing, and his work
was partially supported by the DIMACS/Simons Collab-
oration on Bridging Continuous and Discrete Optimiza-
tion through NSF grant #CCF-1740425. The work of A.
Karbasi was supported by DARPA Young Faculty Award
(D16AP00046) and AFOSR YIP (FA9550-18-1-0160).



Decentralized Submodular Maximization: Bridging Discrete and Continuous Settings

References
Abu-Elkheir, Mervat, Hayajneh, Mohammad, and Ali, Na-

jah Abu. Data management for the internet of things:
Design primitives and solution. Sensors, 13(11):15582–
15612, 2013.

Bach, F. Submodular functions: from discrete to continuous
domains. arXiv preprint arXiv:1511.00394, 2015.

Bajovic, Dragana, Jakovetic, Dusan, Krejic, Natasa, and
Jerinkic, Natasa Krklec. Newton-like method with diago-
nal correction for distributed optimization. SIAM Journal
on Optimization, 27(2):1171–1203, 2017.

Bekkerman, Ron, Bilenko, Mikhail, and Langford, John.
Scaling up machine learning: Parallel and distributed
approaches. Cambridge University Press, 2011.

Bertsekas, Dimitri P and Tsitsiklis, John N. Parallel and
distributed computation: numerical methods, volume 23.
Prentice hall Englewood Cliffs, NJ, 1989.

Bian, Andrew An, Mirzasoleiman, Baharan, Buhmann,
Joachim M., and Krause, Andreas. Guaranteed non-
convex optimization: Submodular maximization over
continuous domains. In AISTATS, 2017.

Boyd, Stephen, Diaconis, Persi, and Xiao, Lin. Fastest
mixing markov chain on a graph. SIAM review, 46(4):
667–689, 2004.

Boyd, Stephen, Parikh, Neal, Chu, Eric, Peleato, Borja,
and Eckstein, Jonathan. Distributed optimization and
statistical learning via the alternating direction method
of multipliers. Foundations and Trends R� in Machine
Learning, 3(1):1–122, 2011.

Buchbinder, Niv, Feldman, Moran, Naor, Joseph, and
Schwartz, Roy. Submodular maximization with cardi-
nality constraints. In SODA 2014, pp. 1433–1452, 2014.

Buchbinder, Niv, Feldman, Moran, Naor, Joseph, and
Schwartz, Roy. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. SIAM Jour-
nal on Computing, 44(5):1384–1402, 2015.

Calinescu, Gruia, Chekuri, Chandra, Pál, Martin, and
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Chekuri, Chandra, Vondrák, Jan, and Zenklusen, Rico. Sub-
modular function maximization via the multilinear re-
laxation and contention resolution schemes. SIAM J.
Comput., 43(6):1831–1879, 2014.

Chen, Lin, Hassani, Hamed, and Karbasi, Amin. Online
continuous submodular maximization. In AISTATS, 2018.

da Ponte Barbosa, Rafael, Ene, Alina, Nguyen, Huy L., and
Ward, Justin. The power of randomization: Distributed
submodular maximization on massive datasets. In ICML,
2015.

Di Lorenzo, Paolo and Scutari, Gesualdo. Next: In-network
nonconvex optimization. IEEE Trans. on Signal and
Information Process. over Networks, 2(2):120–136, 2016.

Duchi, John C, Agarwal, Alekh, and Wainwright, Martin J.
Dual averaging for distributed optimization: Convergence
analysis and network scaling. IEEE Transactions on
Automatic control, 57(3):592–606, 2012.

Eghbali, Reza and Fazel, Maryam. Designing smoothing
functions for improved worst-case competitive ratio in
online optimization. In NIPS, pp. 3279–3287, 2016.

Eisen, Mark, Mokhtari, Aryan, and Ribeiro, Alejandro. De-
centralized quasi-Newton methods. IEEE Transactions
on Signal Processing, 65(10):2613–2628, 2017.

Feige, Uriel. A threshold of ln n for approximating set cover.
Journal of the ACM (JACM), 1998.

Feige, Uriel, Mirrokni, Vahab S, and Vondrak, Jan. Maxi-
mizing non-monotone submodular functions. SIAM Jour-
nal on Computing, 40(4):1133–1153, 2011.

Feldman, Moran, Harshaw, Christopher, and Karbasi,
Amin. Greed is good: Near-optimal submodular max-
imization via greedy optimization. arXiv preprint
arXiv:1704.01652, 2017.

Golovin, Daniel, Krause, Andreas, and Streeter, Matthew.
Online submodular maximization under a matroid con-
straint with application to learning assignments. arXiv
preprint arXiv:1407.1082, 2014.

Hajinezhad, Davood, Hong, Mingyi, Zhao, Tuo, and Wang,
Zhaoran. NESTT: A nonconvex primal-dual splitting
method for distributed and stochastic optimization. In
NIPS, 2016.

Hassani, S. Hamed, Soltanolkotabi, Mahdi, and Karbasi,
Amin. Gradient methods for submodular maximization.
In NIPS, pp. 5843–5853, 2017.
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