Appendices for WHInter

A. Proof of Lemma 3.1

Lemma 3.1. For any X € {0,1}""?, v € R%, 61,02 € R, j € [p], T C [p] and a € R, the
following holds:

max e;(v@Xk)) < |a|max(ef(vexk)) 4 (B — ab1,v), (1)
kel kel

where

V(u,v) € R" xR}, ((u,v)=max < Z wv;, — Z uivi> :

;>0 1:u;<0
Proof. With the notations of Lemma 3.1, we have:

max | 0y (v © X}) } < max ‘ a8 (v o X))+ (62 —ab) (voXy) ‘
keT kel

< T X ‘ - T X’
< |a|max 8, (vOXy) | +max| (62 — ab1) (v O Xy)

(8 — b)) (vox) ’

<|a|max|6] (vOX}) |+ max
kel xe{0,1}"

=|a|max| 6] (v© Xy) | +((8: — a1, v).

B. Computing 7,,i,

In this section we characterise the existence and the possibility to compute, for any fixed (v, 0,0’,m) €

R x R" x R" x R:
i / e . /
Nmin (v,0,0',m) := min 1 (v,0,6',m) , (2)

where 7, is defined in Section 3.2. For that purpose, let us introduce for any o € R the functions:

we) = Y vi(0j—ab),

1:0]—a8;>0
Ym(@) = Z v; (6] — ab;) ,
1:0]—a8; <0
such that:
Mo (v,0,0",m) = |a| m 4 max (v,(a), —ym(a)) . (3)

Let us first characterise the existence and properties of the solution to the minimisation problem

(2).

Theorem S1. For any (v,0,0',m) € R x R" x R® x R, the function
a€eR— 1,y (V,B,O',m)

is continuous, piecewise affine, convexr and nonnegative. It reaches at least a minimum at a value
a* € B where

/

B={0}U {zz : 1 € supp(0) N supp(v)} U{a eR:y(a) =ym(a)}.

Proof. For any i € [n], let

Va €R, ¢i(a) = vimax (0,0 —

0492) .

Since v; > 0, ¢;(a) = v;max (0,0] — af;) is continuous, piecewise affine, convex and nonneg-
ative. It has a single breakpoint at «; = 0; /6; if ; # 0 and v; > 0, and is constant oth-
erwise. Since v,(a) = > i), 7p is also continuous, piecewise affine, convex and nonneg-
ative with breakpoints in {0,/6; : i € supp(@) Usupp(v)}. Taking ¢;(«) = v;max (0,a8; —)
shows similarly that —vm,(a) = Y1 ; ¥(«) has the same properties. Consequently, the function
a — max (Vp(a), —ym()) is also continuous, piecewise affine, convex and nonnegative, with possi-
ble breakpoints in

{6;/6; : i € supp(8) Usupp(v)} U {a € R:yp(a) = ym(a)} -

Since a — | ar| is also continuous, piecewise affine, convex and nonnegative, and has a breakpoint for
a = 0, Theorem S1 follows by observing that a continuous, piecewise affine, convex and nonnegative
function necessarily reaches a minimum at one of its breakpoints. O

Let S = |supp(@) Nsupp(v)|. Theorem S1 shows that it suffices to compute the values of 7,
on at most S + 2 values for a to find the global minimum. However, a naive computation of 7,
using (3) takes O(|supp(v)|) for each «, hence a total complexity O(S x |supp(v)]) to find the
minimum of 7.

This can be improved to O(|supp(v) | +51n S) by first sorting the S + 1 breakpoints b; = 6./6;
for i € supp(€) Nsupp(v) and bg+1 = 0 in increasing order:

br(1) < br2) < oo < br(st) s

which takes O(S1n S) time. Adding by convention b, = —oo we observe that on each interval
(bk—1, b the functions ~y, and ~,, are affine, of the form:
'YP(O‘) = Sk - atk)
Vo € (bg—1,bg], P b
(k—1 k] {—’Ym(a) zsfn—oztf%.

From the properties vp(a) = Y i ¢i(@) and —yp () = D7 ¢i(a), we get the coefficients for
k=1, i.e., the interval (=00, by (1)], in O(|supp(v)) as follows:

Sp = Micsupp(v) :0:50 Vili T Diceupp(v) - 6,0 Vi max(0, 67),

tzlo = Ziésupp(v) :0;>0 vib; (4)
Sy = — D icsupp(v) : 6;<0 vib; + > icsupp(v) : ;=0 Vi max (0, —0;),

tw = Yicsupp(v): <0 Vibi-

This allows in particular to compute v, (bx(1)), Ym(br(1)), and therefore n,_ (1) from (3). We can then
iteratively compute the coefficients for k + 1 from the coefficients for k in O(1) only, by observing
that between the intervals (by_1, bg] and (bg, bg+1], the only change in slope and intercept of 7, is
due to the function ¢,-1(y), when 7=1(k) # S+ 1. Let i = 7~ '(k). When 6; > 0, the slope of
¢; increases by v;0; and its intercept decreases by VZHZ/- at b;. When 0; > 0, its slope increases by
—v;0; and its intercept increases by v;@,. This translates into the following recursive formula for
the coefficients of 7,:

b [sE—vio it 6 >0,
S =
P Sl;—‘rviag ifg; <0,

and
t];—H Zt];—Vi‘ei’ .

A similar analysis on -, leads to the following recursion:

el _ sfn—vieg if 9, >0,
n sk +v.0 if6; <0,

and
thHl — ¢k v, 16;] .

We can thus iteratively compute the coefficients on each interval, and thus the values of 7, on each
breakpoint, with complexity O(1) per breakpoint. Since o — 7, is convex, we stop at the first k
such that ny_) =, - From the equations of v, and vp, on (bx(k)> br(k+1)] We can additionally
check if there is a crossing point & € (by(x), br(k+1)] such that y,(a) = ym (@), in which case we also
compute 75. The global minimum of a + 1, is then min(ny, . 7a)-

The overall algorithm is detailed in Algorithm S1.

C. Alternative solver for working set updates

In this section, we present an alternative solver to the inverted list approach (Algorithm 3 in Section
3.3), which we call MIPS1, to compute the working set updates (defined in Section 3.3). It relies
on a pruning technique and does not require storing extra indices for the data. The main idea
of this alternative approach is to compute inner products on a progressively growing subset of
dimensions, and to maintain an upper-bound on the maximum attainable score on the remaining
dimensions. This allows to discard a probe as soon as its maximum attainable score drops below
the maximum score achieved so far without computing the inner product in its entirety. Algorithm
S2 presents the procedure in details. It takes as input Q which contains the indices that define
the queries of interest and outputs the updated working set YW and m"f. For each query, we
start by precomputing the partial inner product bounds r* € R™ and r~ € R", where r? and r;
are respectively the maximum and minimum attainable inner products between the query and any
probe in the database on the dimensions from i + 1 to n. Formally, r™ and r~ are defined for a
given query j by:

Vie[n],rf = Y Xpnbm (5)
m>1i; 0, >0

Vie[n],r, = Z XmjOm (6)
m>1i; 0, <0

Algorithm S1 Minimise n in «

Input: (v,0,6’,m) € R} xR" xR" xR.
Output: 7, (v,0,60',m)
1: S « indices in supp(v) N supp(O)
2: N length(S)
Ospy O
7Osy’ T O
ind < [none, S[1],...,S[N]]
rank < sort(b) (in increasing order)
b < b[rank|; ind <+ ind[rank]
Initialise sp, Sm, tp, tm via (4)
min < +00
foriinl...N+1do
10: newmin < |b[i]| m + max (s, — b[i]tp, spm — bli]tm)
11: if newmin < min then

3: b« |0

*

12: min < newmin

13: if ind[i] # none then

14: tp < tp — Vinafi) | Oinap) |

15: tm < tm — Ving[i] | Oinajy]

16: if gind[i} > 0 then

17: Sp £ Sp — Vind[q] Olind[i]

18: Sm < Sm — Vind[i]alind[i]

19: else

20: Sp < Sp + Vindli] Olind[i]

21: Sm < Sm + Vingl;] Olind[i]

22: else

23: Check if there exists & € [b[i — 1], b[7]] s.t. yp(@) = ym (@)
24: Return min(newmin, n(qfmiersectiony)

and provide an upper bound on inner products with the query X; © @ as follows:

Vk € [[p]]) (Xj © 0)—'— Xy = Z ijngmk + Z ijamek

m<3 m>1

m<i m>i; 0y, >0

= XX + 77

m<i

The bound involving r~ can be obtained analogously. These bounds simply assume there is a probe
vector which has ones in front of every positive entry of the query and none in front of its negative
entries, or the reverse. Once these bounds have been precomputed, the inner product between
the query and a probe is computed up to a certain dimension, and every n. dimensions we check
whether there is a possibility that the inner product being computed becomes larger than the cur-
rent maximum, or larger than A. If it is impossible, then the probe can be safely discarded and the
algorithm proceeds with the next probe. If not, the inner product is computed on n. more dimen-
sions and a new check is performed. For all our simulations and real data experiments, we set n. to
a default of 20. If a probe cannot be discarded then the algorithm updates when appropriate the
active set W and/or the current maximum absolute inner product obtained mgef . For the pruning
to be effective, we reorder the dimensions 1...n so that queries are sorted in decreasing order in
absolute value. As a consequence, the partial inner product bounds r;“ and r; are computed with
the n — i smallest entries in absolute value of the queries which makes them tighter than with any
other ordering of the dimensions.

Algorithm S2 MIPS1

Input: X € [0,1]™*?, 0 € R", Q C [p], » e R, W C [D]
Param: n.eN
Output: W, m"/.
1: Reorder the dimensions 1...n such that 0 is sorted in descending order in absolute value and
reorder the dimensions of X accordingly.
2: Reorder the columns of X in descending order of vector size.
3: for j € Q dom|” « 0
4: for j € Q do
5. Compute r* € R” and r~ € R” via (5) and (6).

6: for k € [p] do

7: if k € Q and k > j then continue

8: d < 0 (inner product initialization); ¢ = 0 (counter initialization);

9: for i € supp(X;) do

10: d<d—+ Xz]szaz

11: cc+1.

12: if ¢ mod n. =0 then

13: if [(d+1)|< min(mgef, A)and |(d+r1;)| < min(mgef, A) then go to next probe.
14: if mgef< |d| < A then set mgef:|d|

15: if |d| > X and 7(k,j) ¢ W then add 7(k,j) to W
return W, m’"¢/

We now compare MIPS1 to its naive counterpart (which we will call Naive from now on)

1.0 x
K
o | ° 055 .
~4¢ 06
0.8} o s 08 .
2 ° 0.7
g — 055 § ° 075 .
v 0.6} — 06 - 5 8- 08
2 — 0.65 e * 085 o
3 < ¢ 0.9
= 0.7 =3 . 0.95
2 0.4} . IR B
£ 0.75 T 3 °
S 0.8 2
: 3 .
02 0.85 | N
— 0.9 sl ¢
— 0.95 o
00 : : : : I I I I
0 100 200 300 400 500 02 o024 os og

Coordinate ,
1 - pruning rate

Figure S1 — Performances of MIPS1 on simulated data. (a) Cumulative sum of the vector obtained
by sorting the positive entries of 6,; in decreasing order. (b) Speed-up obtained with MIPS1 compared to
Najive for different vectors 6, as a function of the pruning rate. The pruning rate is defined as the average
proportion of coordinates in the queries which are pruned.

on several benchmark datasets in order to assess the speed-up obtained with the pruning. To be
more specific, Naive is implemented similarly to MIPS1 except the lines specific to pruning, i.e.,
lines 5, 12 and 13 in Algorithm S2, are removed. The benchmark datasets we use are designed in
such a way that the pruning rate achievable varies. To do this, we simulate a matrix X € R"*P,
with n = p = 1000, where the features are drawn from a Bernoulli distribution, whose param-
eter is itself drawn from a uniform distribution Ujy ;5. Then 6 € R"™ is built in such a way
that the cumulative sum of the vectors obtained by sorting 69> and |6)g¢| follows the function

f(@) = == (1 —e#*),x € {0,1} for a given parameter 1 € RT. The area under this cumulative
sum, which is k(p) = = — i € [0.5,1], characterises the different vectors 6, obtained with

different values of p. Figure Sla shows how the cumulative sums are modified with p. The interest
of simulating different 6, is that the rate of pruning achievable increases with x: the closer « is to
1, the higher the pruning rate. In the experiments presented hereafter, all p features were taken as
queries, i.e., @ = [p], and we took A = 400 and W = (). The results are presented in Figure S1b.
The pruning rate, which we define as the average number of non-zero coordinates of the queries
which were pruned out of their total number of non-zero coordinates, widely varies from 8% for
k= 0.55 to 84% for k = 0.95. Moreover, the speed-up obtained with MIPS1 compared to Naive
is almost equal to 1 minus the pruning rate. That means MIPS1 is twice as fast as Naive when
it can prune half of the total number of coordinates.

We now compare the performance of Naive, MIPS1 and I L on the benchmark datasets (Figure
S2). M1PS1 is the only method whose speed depends on & since it is the only method to implement
pruning. It has the same performance in terms of speed as Naive for the lowest pruning rate, while
it is as fast as IL for the highest pruning rates. For vectors 6 following classical distributions such
as the gaussian distribution, x ~ 0.7 and M1 P51 is therefore expected to be x1.6 times faster than

1200

° o o o o o ° o o
Sla
o
= A
o A
o -
~—~ © A
é o Naive
@ 84 MIPSL A
() o
= + IL
o A
O_
<
A
8. A
N
A
+ + + + 4+ 4+ + + +
T T

K

Figure S2 — Performance comparisons on simulated data. Time (in ms) taken by Naive, MIPS1
and IL to solve Maximum Inner Product Search problems with responses characterised by different «.

Naive but x11 times slower than IL. An analysis of the complexity of MIPS1 and IL can help to
understand these results. For a given query, M IPS1 requires to compute inner products (although
partially) with all p vectors in the database. In our implementation, the vectors are encoded as
sparse vectors, i.e., the vector X is represented by the list of its non-zero indices. If we assume that
the number of non-zero elements in the query is |g| and that the total number of non-zero elements
of the vectors in X in nnz, then MIPS1 has a O(p|q| + nnz) complexity to compute the p inner
products with the query. By contrast, the inverted index approach has a O(|¢|™**) complexity,
where ™% is the average length of an inverted index. As the number of non-zero elements |q| in the
query will typically be a fraction of the total number of samples n, the inverted index approach is
expected to be faster than MIPS1 even though the pruning in MIPS1 can make it faster. This
however may not be the case with dense data instead of sparse data.

D. SPP: depth-first vs breadth-first

The Safe Pattern Pruning algorithm presented in Nakagawa et al. (2016) deals with pairwise inter-
actions but also higher-order interactions, and relies on a depth-first search scheme to explore the
tree of patterns. However in our setting where we only consider pairwise interactions, we find that
it is more efficient to implement a breadth-first search scheme for SPP. Indeed, the breadth-first
search first identifies all the branches which can be screened. Then with this knowledge, we can
restrict the number of interactions which are visited to those which only involve main effects whose
corresponding branch was not screened. Basically, if we consider a case where ps branches were
screened among p branches, then the total number of nodes visited will be p + w. Fig-
ure S3 illustrates the difference in performance obtained with the original SPP and the breadth-first
search version in the case of pairwise interactions. The speed up obtained with the breadth-first
search version ranges from x1.2 for n = p = 1000 to x1.6 for n = 1000, p = 10000. We therefore
use the breadth-first search version of SPP as a comparison baseline in all our experiments.

time (s) (log scale)

1000 2000

500

100 200

50

—o— SPP (breadth first)
—o— SPP (original)

T T
500 1000

n (log scale)

T
2000

T
5000

T
10000

time (s) (log scale)

1000 2000 5000 10000
1 1

500
!

200

—— SPP (breadth first)
—e— SPP (original)

o
o

T T
1000 2000

T
5000

T
10000

Figure S3 — Safe Pattern Pruning performance on simulated data for an entire regularisation
path. The breadth-first search SPP (which is adapted to order-2 interactions only) is in purple and the
original depth-first search SPP (which is adapted to order-2 interactions and more) is in magenta. (a) Time

in seconds for p = 1000 fixed and n varied. (b) Time in seconds for n = 1000 fixed and p varied.

References

K. Nakagawa, S. Suzumura, M. Karasuyama, K. Tsuda, and I. Takeuchi. Safe Pattern Pruning:
An Efficient Approach for Predictive Pattern Mining. In Proc. 22nd ACM SIGKDD Int. Conf.
Knowl. Discov. Data Min. - KDD ’16, pages 1785-1794, 2016.

