
Supplementary to Kernelized Synaptic Weight Matrices

Lorenz K. Muller Julien N.P. Martel Giacomo Indiveri

Details on Network Architectures and
Training Procedures
All models were implemented in Tensorflow (Abadi et al.,
2015) or Theano (Theano Development Team, 2016) and
(Dieleman et al., 2015).

Effective Dimensionality

The networks trained for figure 3 are Multilayer Perceptrons
with layer-structure [784-500-500-10] with relu activation
functions in the hidden layers and a softmax in the last
layer. The cost function is the categorical cross-entropy.
The learning rule is ADAM with exponential learning rate
decay (factor 0.5 every 10000 steps) initialized at various
levels andL2 regularization (as described in the main paper).
We use mini-batch gradient-descent with a batch size of 512.
The code for this simulation is included in the supplement.

Channel Relationships

The networks trained for the results in table 1 are described
here in some more detail. The two hidden layers of this
network consist of 32 concatenated kernelNet layers with
28×28 and 14×14 neurons each respectively. The network
structure is [28 × 28 − BatcℎNormalization −Dropout −
KL32×28×28−KL32×14×14−10]. Batch Normalization
was introduced in (Ioffe & Szegedy, 2015). All hidden units
have selu activation functions, the output layers softmax.
The selu activation function was introduced in (Klambauer
et al., 2017). The cost function is categorical cross-entropy.
The learning rule is ADAM with exponentially decaying
learning rate with factor 0.95 every 2000 steps initialized at
0.01. We use mini-batch gradient descent with a batch size
of 512.

MNIST Visualization

The networks trained to produce Figures 5 and 6 are an
AutoEncoder and a Multilayer Perceptron that only differ
in the last layer with layer structure [784 - Batch Normal-
ization - 2000 (selu)- 2000 (selu)- 1600 (relu) - Dropout -
KL2500(levelshift) - 2000(selu)- 2000 (selu)- 784/10 (sig-
moid/softmax)]. In the kernelized layer we fix �i > 0 and
the vectors v⃗i are not trained but fixed on a grid. The output
of the Kernelized layer is scaled by a learned global fac-

tor. The cost function is the categorical cross-entropy. The
learning rule is RMSProp (Tieleman & Hinton, 2012) with
an exponentially decaying learning rate (factor 0.9 every
1000 steps) initialized at 0.001 / 0.0001 for the AutoEn-
coder / MLP. We use mini-batch gradient-descent with a
batch size of 512. The code for this simulation is included
in the supplement.

Pretrained Network Visualization

We pretrained a network using a standard implementation1

of a ResNet. We cripple / augment the network as described
in the main text and learn the parameters of the added layers
with the same training procedure while fixing the previously
learned parameters.

MovieLens Modelling

The network is fully described in the main paper. We trained
the KernelNets with RPROP and the Sparse FC networks
with L-BFGS-B (which respectively performed slightly bet-
ter). An exception are the results on MovieLens-10M for
which all results were obtained using RPROP (due to GPU
memory limitations). In the L-BFGS-B training the algo-
rithm was re-initialized every 50 parameter updates. Hy-
perparameter �2 lay in [20, 160], �0 in [0.004, 0.04]. The
code is available in this supplement. Note that in the code
for MovieLens-10M (for comparability with the AutoRec
paper) the squared error cost is scaled by 0.5 and the regu-
larization parameters need to be scaled accordingly when
training with those scripts.

1https://github.com/Lasagne/Recipes/blob/
master/papers/deep_residual_learning/Deep_
Residual_Learning_CIFAR-10.py

https://github.com/Lasagne/Recipes/blob/master/papers/deep_residual_learning/Deep_Residual_Learning_CIFAR-10.py
https://github.com/Lasagne/Recipes/blob/master/papers/deep_residual_learning/Deep_Residual_Learning_CIFAR-10.py
https://github.com/Lasagne/Recipes/blob/master/papers/deep_residual_learning/Deep_Residual_Learning_CIFAR-10.py


Kernelized Synaptic Weight Matrices

References
Abadi, Martín, Agarwal, Ashish, Barham, Paul, Brevdo,

Eugene, Chen, Zhifeng, Citro, Craig, Corrado, Greg S.,
Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat,
Sanjay, Goodfellow, Ian, Harp, Andrew, Irving, Geoffrey,
Isard, Michael, Jia, Yangqing, Jozefowicz, Rafal, Kaiser,
Lukasz, Kudlur, Manjunath, Levenberg, Josh, Mané,
Dan, Monga, Rajat, Moore, Sherry, Murray, Derek, Olah,
Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit,
Sutskever, Ilya, Talwar, Kunal, Tucker, Paul, Vanhoucke,
Vincent, Vasudevan, Vijay, Viégas, Fernanda, Vinyals,
Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin,
Yu, Yuan, and Zheng, Xiaoqiang. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Dieleman, Sander, Schlüter, Jan, Raffel, Colin, Olson, Eben,
Sønderby, Søren Kaae, Nouri, Daniel, Maturana, Daniel,
Thoma, Martin, Battenberg, Eric, Kelly, Jack, Fauw, Jef-
frey De, Heilman, Michael, de Almeida, Diogo Moit-
inho, McFee, Brian, Weideman, Hendrik, Takács, Gá-
bor, de Rivaz, Peter, Crall, Jon, Sanders, Gregory, Ra-
sul, Kashif, Liu, Cong, French, Geoffrey, and Degrave,
Jonas. Lasagne: First release., August 2015. URL http:
//dx.doi.org/10.5281/zenodo.27878.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine
Learning, pp. 448–456, 2015.

Klambauer, Günter, Unterthiner, Thomas, Mayr, Andreas,
and Hochreiter, Sepp. Self-normalizing neural networks.
In Advances in Neural Information Processing Systems,
pp. 972–981, 2017.

Theano Development Team. Theano: A Python framework
for fast computation of mathematical expressions. arXiv
e-prints, abs/1605.02688, May 2016. URL http://
arxiv.org/abs/1605.02688.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31, 2012.

https://www.tensorflow.org/
http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

