
Rapid Adaptation with Conditionally Shifted Neurons

A. Additional Implementation Details
The hyperparameters for our models are listed in Tables 4
and 5. Key size d was 64 throughout all experiments. A
dropout rate of 0.2 was applied to each layer of adaFFN. For
the other adaptive models, the input dropout rate was set to
0.2 or 0.0. The dropout for the last two layers were varied
as shown in Table 4 and 5. Due to memory constraints, we
used adaLSTM with a smaller number of hidden units (i.e.,
200 vs 300) for deep models when applying to 3-shot tasks.

The neural network weights were initialized using He et al.
(2015)’s method. We set the hard gradient clipping thresh-
old for adaCNN model to 10. No gradient clipping was
performed for the other models. We listed the setup for
optimizers in Table 4 and 5. For Adam optimizer, the rest
of the hyperparameters were set to their default values (i.e.,
β1 = 0.9, β2 = 0.999, and ε = 10−8).

Although different parameterizations for the meta learner
function g may improve the performance, for simplicity
we used a 3-layer MLP with ReLU activation with 20 or
40 units per layer. This MLP acts coordinate-wise and
processes conditioning information for each neuron inde-
pendently.

Empirically, we found that selecting the vector from Vt
corresponding to the key k′i with maximum cosine similarity
to the query kj (hard attention) gave similar performance to
soft attention.

We occasionally observed difficulty in optimizing the
LSTM+adaFFN models, often seeing no improvement in
the training loss from certain initializations. Decreasing
the learning rate and in case of DF information applying
dropouts to adaFFN layers helped training this model.

Models were implemented using the Chainer (Tokui et al.,
2015) framework4.

Table 4. Hyperparameters for few-shot image classification tasks
Model Layers Filters Dropout rate Optimizer

adaCNN (∇) 5 32/64 0.0, 0.3, 0.3 Adam (α=0.001)
adaCNN (DF) 5 32/64 0.2, 0.3, 0.3 Adam (α=0.001)
adaResNet (∇) 4 64, 96, 128, 256 0.2, 0.5, 0.5 SGD with momentum (lr=0.01, m=0.9)
adaResNet (DF) 4 64, 96, 128, 256 0.2, 0.5, 0.5 SGD with momentum (lr=0.01, m=0.9)

Table 5. Hyperparameters for few-shot language modelling tasks
Model Hidden unit size Dropout rate Optimizer

2-layer LSTM + adaFFN (∇) 300 - Adam (α=0.0003)
2-layer LSTM + adaFFN (DF) 300 0.2, 0.2, 0.2 Adam (α=0.0003)
1-layer adaLSTM (∇) 300 - Adam (α=0.001)
1-layer adaLSTM (DF) 300 - Adam (α=0.001)
2-layer adaLSTM (∇) 300, 200 - Adam (α=0.001)
2-layer adaLSTM (DF) 300, 200 - Adam (α=0.001)

4https://chainer.org/



Rapid Adaptation with Conditionally Shifted Neurons

B. Running Time Comparison with MetaNet
We compared the speed of our adaCNN model variants with
MetaNet model on Mini-ImageNet task. We implemented
all models in the Chainer framework (Tokui et al., 2015)
and tested on an Nvidia Titan X GPU. In Figure 4 we see
that adaCNN variants are significantly faster than MetaNet
while being conceptually simpler and easier to implement.

1

10

100

1000

10000

MetaNet adaCNN (DF) adaCNN (∇)

Ti
m

e 
(m

s/
ta

sk
)

Backpropagation

Feedforward

1

10

100

1000

10000

MetaNet adaCNN (DF) adaCNN (∇)

Ti
m

e 
(m

s/
ta

sk
)

Prediction phase

Description phase

Figure 4. Training (top) and inference (bottom) speeds of MetaNet,
adaCNN variants are compared on the 1-shot, 5-way Mini-
ImageNet task. The y-axis shows wall-clock time (ms/task) in
log scale. Training time includes the feedforward computations
and the parameter updates. Inference time includes computations
for the description and prediction phases.


