6. Appendix

6.1. Notation

w_0 is the weights after the seed round.

A_{-1} is the matrix without the first row and column. $A_{1,-1}$ is the vector from the first row and all columns except the first column.

Generally, the $O(f(n))$ notation hides constants that only depend on the dataset, such as $\|w^*\|$, s, B, etc.

For the order of things going to zero, we first choose α to be small, then r to be small, then n to be large.

w_0 is weight vector after seed round

$$\epsilon_{\text{active}}(n) = \mathbb{E}_{f \sim \text{active, npoints}}[\text{Err}(f)]$$

$$\epsilon_{\text{passive}}(n) = \mathbb{E}_{f \sim \text{passive, npoints}}[\text{Err}(f)]$$

$$DE(\epsilon) = \max\{n : \epsilon_{\text{passive}}(n) \geq \epsilon\} / \max\{n : \epsilon_{\text{active}}(n) \geq \epsilon\}$$

Without loss of generality, assume $w^* = \|w^*\| e_1$, $w^*_0 = 0$, and $\mathbb{E}[x_2] = 0$.

With an abuse of notation, let $\sigma = \sigma(w^* \cdot x) = \sigma(\|w^*\| x_1)$.

6.2. Losses

Define $\sigma(x) = \frac{1}{1 + \exp(x)}$.

The loss (negative log-likelihood) for a single data point under logistic regression is

$$l_w(x, y) = \log(1 + \exp(-w \cdot yx))$$

and so the gradient is

$$\nabla l_w(x, y) = -\frac{yx \exp(-w \cdot yx)}{1 + \exp(-w \cdot yx)} = -yx \sigma(-w \cdot yx)$$

and the Hessian is

$$\nabla^2 l_w(x, y) = \frac{(yx)(yx)^T \exp(w \cdot yx)}{(1 + \exp(w \cdot yx))^2}$$

$$= \frac{xx^T}{(1 + \exp(w \cdot yx))(1 + \exp(-w \cdot yx))}$$

$$= \sigma(w \cdot yx) \sigma(-w \cdot yx) xx^T$$

Note that $\sigma(-x) = 1 - \sigma(x)$.

6.3. Decision Boundary

Lemma 6.1. For sufficiently small r, if $\|w' - w^*\|_2 \leq 2r$, then

$$|\int_{w' \cdot x = 0} p(x) - \int_{w^* \cdot x = 0} p(x)| = O(r)$$
Proof. Without loss of generality (rotation and translation), let \(w_0^* = 0, w^* = \|w^*\|c_1 \) and let \(w' = w'_1c_1 + w'_2c_2 \).

We sample from places where \(w_0' + w'_1x_1 + w'_2x_2 = 0 \) which occurs when \(x_1 = -w'_12x_2 + \frac{w'_2}{w'_1}x_2 = ax_2 + b \). From the theorem assumption, we know that \(|w_0'|, |w'_2| \leq r \) and \(|w'_1| \geq \|w^*\| - r \geq \frac{1}{2}\|w^*\| \) (for sufficiently small \(r \)) so we know that \(|a|, |b| \leq O(r) \)

Note that

\[
\left| \int_{w':x=0} p(x) - \int_{w^*:x=0} p(x) \right| = \left| \int_x p(x_1 = ax + b, x_2 = x) - p(x_1 = 0) \right|
\]

(Note that the Jacobian of the change of variables has the following matrix which has determinant 1)

\[
\begin{bmatrix}
1 & 0 \\
-a & 1
\end{bmatrix}
\]

\[
\left| \int_{w':x=0} p(x) - \int_{w^*:x=0} p(x) \right| \leq \int_x |p(x_1 = ax + b|x_2 = x)p(x_2 = x) - p(x_1 = 0|x_2 = x)p(x_2 = x)|
\]

With the assumption that the conditional probabilities are Lipschitz,

\[
\leq \int_x |L(ax + b)p(x_2 = x) |
\]

\[
\leq aLB + bL
\]

\[
= O(r)
\]

Lemma 6.2. For sufficiently small \(r \), if \(\|w_0 - w^*\| \leq r \), then with probability going to 1 exponentially fast, all points from two-stage uncertainty sampling are from some hyperplane \(w' \) such that \(\|w' - w^*\| \leq 2r \).

Proof. For small enough \(r \), then \(\int_{w':x=0} p(x) > p_0/2 \) from the above lemma if \(\|w_0 - w^*\| \leq 2r \). Thus, the probability of an unlabeled point within the parallel plane with bias less than \(r \) different from \(w_0 \) such that \(\|w' - w_0\| \leq r \) is at least \(2\frac{r}{\|w_0\|}p_0/2 \geq rP_0 \Theta(r) \) (for sufficiently small \(r \)).

Recall that \(n_{pool} = \omega(n) \) and \(n_{seed} = o(n) \).

For sufficiently large \(n \), the probability of at least \(n \) points from the \(n_{pool} - n_{seed} \) unlabeled points falling in this range is

\[
\Pr[Binomial(n_{pool} - n_{seed}, \text{probability of falling}) \geq n] \geq \Pr[Binomial(n_{pool}/2, C_1r) \geq n]
\]

for some constant \(C_1 \).

We can use a Chernoff bound (standard with \(\delta = 1/2 \)) since \(n_{pool} = \omega(n) \) to bound by \(\exp(-\omega(n)) \). Thus the probability that the planes we choose from are farther than \(r \) away from \(w_0 \) goes to 0 with rate faster than \(\exp(-n) \).

6.4. Convergence

Lemma 4.2. Both two-stage uncertainty sampling and random sampling converge to \(w^* \).

Proof. For passive learning, the Hessian of the population loss is positive definite because the data covariance is non-singular (Assumption 8). Thus, the population loss has a unique optimum. By the definition of \(w^* \), \(w^* \) is the minimizer. Since the sample loss converges to the population loss, the result of passive learning converges to \(w^* \).
By a similar argument, the weight vector w_0 after the seed round converges to w^* since n_{seed} is super-constant (Assumption 2). Thus, for any $r > 0$, with probability converging to 1 as $n \to \infty$, $\|w_0 - w^*\| \leq r \leq \lambda/2$. By Lemma 6.2, with probability going to 1, all points selected are from hyperplanes w where $\|w - w^*\| \leq 2r \leq \lambda$. Thus, by Assumption 5, $E_{w,x \sim 0}(\nabla l_{w^*}(x,y)) = 0$. In the second stage, because of the α proportion of randomly selected points, the loss from the new uncertainty sampling population has a unique optimum. And because the expectation of the gradient of the loss is 0 for the points near the decision boundary (with probability going to 1), the result of two-stage uncertainty sampling converges in probability to w^*.

\[\square \]

6.5. Rates

Lemma. If Σ exists, and for any $\epsilon > 0$, $n \Pr[\|A_n - A\| \geq \epsilon] \to 0$ and $n \Pr[\|w_n - w^*\| \geq \epsilon] \to 0$, then there exist vectors $c_k \neq 0$ that depend only on the data distribution such that,

\[n(\epsilon(n) - \text{Err}) \to \sum_k c_k^T \Sigma_{-1} c_k \]

Proof. The zero-one error is

\[Z(w_n) = \Pr[y x \cdot w_n < 0] \]

Since Z is twice differentiable at w^*, by Taylor’s theorem,

\[Z(w_n) = Z(w^*) + (\nabla Z(w^*))^T (w_n - w^*) + (w_n - w^*)^T (\frac{1}{2} \nabla^2 Z(w^*)) (w_n - w^*) + (w_n - w^*)^T R(w_n - w^*) (w_n - w^*)^T \]

where $R(w) \to 0$ as $w \to 0$.

Since Z has a local optimum at w^*, $\nabla Z(w^*) = 0$. Also $Z(w^*) = \text{Err}$. Additionally, denote $H = \frac{1}{2} \nabla^2 Z(w^*)$,

\[Z(w_n) = \text{Err} + (w_n - w^*)^T (H + R(w_n - w^*)) (w_n - w^*) \]

Choose any $\epsilon > 0$. Since $R(w) \to 0$ as $w \to 0$, there is δ_ϵ such that $\|w\| \leq \delta_\epsilon$ implies $\|R(w)\| \leq \epsilon$. Define $\text{nearn}(n)$ to be the event that $\|A_n - A\| \geq \epsilon \& \|w_n - w^*\| \geq \delta_\epsilon$. Note that from the theorem assumption, $n \Pr[\neg \text{nearn}(n)] \to 0$.

\[\epsilon(n) = \mathbb{E}[Z(w_n)] = \Pr[\neg \text{nearn}(n)] \mathbb{E}[Z(w_n) | \neg \text{nearn}(n)] + \Pr[\text{nearn}(n)] \mathbb{E}[Z(w_n) | \text{nearn}(n)] \]

\[|n\epsilon(n) - n\mathbb{E}[Z(w_n) | \text{nearn}(n)]| \leq n \Pr[\neg \text{nearn}(n)] \mathbb{E}[Z(w_n) | \neg \text{nearn}(n)] - \mathbb{E}[Z(w_n) | \text{nearn}(n)] \]

\[\leq n \Pr[\neg \text{nearn}(n)] \to 0 \]

Thus,

\[n(\epsilon(n) - \text{Err}) \to n(\mathbb{E}[Z(w_n) | \text{nearn}(n)] - \text{Err}) \]

So we need to just worry about the convergence of the right side,

\[\mathbb{E}[Z(w_n) | \text{nearn}(n)] = \text{Err} + \frac{1}{n} \mathbb{E}[(A_n^{-1} b_n)^T (H + R(w_n - w^*)) (A_n^{-1} b_n) | \text{nearn}(n)] \]

\[n(\mathbb{E}[Z(w_n) | \text{nearn}(n)] - \text{Err}) = \mathbb{E}[b_n^T A_n^{-1} (H + R(w_n - w^*)) A_n^{-1} b_n | \text{nearn}(n)] \]
Because we conditioned on $\text{near}(n)$, $\|A_n - A\| \leq \epsilon$ and $\|w_n - w^*\| \leq \delta_n$ and therefore $\|R(w_n - w^*)\| \leq \epsilon$. So $\|A_n^{-1}(H + R(w_n - w^*))A_n^{-1} - A^{-1}HA^{-1}\| = O(\epsilon)$. Using this, we get,

$$
\|n(E[Z(w_n)\mid \text{near}(n)] - \text{Err}) - E[b_n^T A^{-1} H A^{-1} b_n \mid \text{near}(n)]\| \leq O(\epsilon)\|E[\|b_n\|^2 \mid \text{near}(n)]\|
$$

$$
\leq O(\epsilon)\|E[|b_n b_n^T| \mid \text{near}(n)]\|
$$

Note that,

$$
E[b_n b_n^T] = E[b_n b_n^T \mid \text{near}(n)] \Pr[\text{near}(n)] + E[b_n b_n^T \mid \text{not near}(n)] \Pr[\text{not near}(n)]
$$

and the later two expectations exist since the left exists and the matrices are positive semidefinite. Passing through the limit, we see that $E[b_n b_n^T \mid \text{near}(n)] \to B$.

Thus, noting that we can drive $\epsilon \to 0$,

$$
n(E[Z(w_n)\mid \text{near}(n)] - \text{Err}) \to E[b_n^T A^{-1} H A^{-1} b_n \mid \text{near}(n)]
$$

$$
\to \sum_{i,j} [A^{-1}HA^{-1}]_{i,j} E[b_n b_n^T \mid \text{near}(n)]_{i,j}
$$

$$
\to \sum_{i,j} [A^{-1}HA^{-1}]_{i,j} B_{i,j}
$$

Thus, putting this together, we see that

$$
n(\epsilon(n) - \text{Err}) \to \sum_{i,j} [A^{-1}HA^{-1}]_{i,j} B_{i,j}
$$

Doing manipulations on the indices, we find,

$$
\sum_{i,j} [A^{-1}HA^{-1}]_{i,j} B_{i,j} = \sum_{i,j} H_{i,j}(A^{-1}BA^{-1})_{i,j}
$$

$$
= \sum_{i,j} H_{i,j} \Sigma_{i,j}
$$

Therefore,

$$
n(\epsilon(n) - \text{Err}) \to \sum_{i,j} H_{i,j} \Sigma_{i,j}
$$

and we are most of the way there, just need to use some properties to show the final form.

Since w^* is a local optimum, $H \succeq 0$ (and symmetric) and since the Hessian is not identically zero at w^*, $H \neq 0$.

Without loss of generality, let $w^* = \|w^*\|e_1$ and $w_0^* = 0$ as assumed before. Note that $Z(w^* + \alpha e_1) = Z(w^*)$ for $\alpha \in (-\|w^*\|/2, \infty)$. Since it is constant along this line, $(\nabla^2 Z(w^*))_{1,1} = 0$, and so $H_{1,1} = 0$.

So $H \succeq 0$, H is symmetric, $H \neq 0$, and $H_{1,1} = 0$. Since $H \succeq 0$ and $H_{1,1} = 0$, $H_{1,i} = 0$ for all i.

Since $H \succeq 0$ and $H \neq 0$,

$$
H = \sum_k c_k c_k^T
$$

for some vectors c_k (where there is at least one). And further, $(c_k)_1 = 0$.

On the Relationship between Data Efficiency and Error for Uncertainty Sampling
On the Relationship between Data Efficiency and Error for Uncertainty Sampling

\[
\sum_{i,j} H_{i,j} \Sigma_{i,j} = \sum_{i,j} \left(\sum_k c_k e_k^T \right)_{i,j} \Sigma_{i,j} = \sum_k e_k^T \Sigma e_k
\]

We can remove the first elements of \(c_k \) and the first row and column of \(\Sigma \) without changing anything, so

\[
\sum_{i,j} H_{i,j} \Sigma_{i,j} = \sum_k e_k^T \Sigma_{i,j} - 1 c_k
\]

And thus the theorem is proved.

Lemma. If we have two algorithms \(a \) and \(b \) that satisfy the conditions of Lemma 2, and

\[\Sigma_{a,-1} \succ c \Sigma_{b,-1} \]

then there exists \(\epsilon_0 \) such that for \(\text{Err} < \epsilon < \epsilon_0 \),

\[n_a(\epsilon) \geq c n_b(\epsilon) \]

Proof.

\[\Sigma_{a,-1} \succ \alpha \Sigma_{b,-1} \]

\[\sum_k e_k^T \Sigma_{a,-1} c_k > \alpha \sum_k e_k^T \Sigma_{b,-1} c_k \]

so, for \(n > n_0, n' > n_0 \),

\[n(\epsilon_a(n) - \text{Err}) > \alpha n'(\epsilon_b(n') - \text{Err}) \]

setting \(n' = n/\alpha \) and for \(n > \max(n_0, n_0/\alpha) \),

\[n(\epsilon_a(n) - \text{Err}) > n(\epsilon_b(n/\alpha) - \text{Err}) \]

So for sufficiently large \(n \),

\[\epsilon_a(n) > \epsilon_b(n/\alpha) \]

For any \(\epsilon > \text{Err} \) such that \(n_a(\epsilon) \) is sufficiently large, (we know this exists since \(n_a(\epsilon) = \Theta(\frac{1}{\epsilon - \text{Err}}) \))

\[\epsilon_a(n) \leq \epsilon \text{ for } n \geq n_a(\epsilon) \]
\[\epsilon_b(n/\alpha) \leq \epsilon \text{ for } n \geq n_a(\epsilon) \]
\[\epsilon_b(n') \leq \epsilon \text{ for } n' \geq \frac{1}{\alpha} n_a(\epsilon) \]
\[n_b(\epsilon) \leq \frac{1}{\alpha} n_a(\epsilon) \]
\[n_a(\epsilon) \geq \alpha n_b(\epsilon) \]
Lemma 4.1. If we have two algorithms with Σ_a and Σ_b, and for any $\epsilon > 0$ and both estimators, $n \Pr[\|A_n - A\| \geq \epsilon] \rightarrow 0$ and $n \Pr[\|w_n - w^*\| \geq \epsilon] \rightarrow 0$, then

$$\Sigma_{a,-1} > c\Sigma_{b,-1}$$

implies that for some ϵ_0 and any $\text{Err} < \epsilon < \epsilon_0$,

$$n_a(\epsilon) \geq c n_b(\epsilon)$$

Proof. This is a straightforward application of the above lemmas, Lemma 2 and Lemma 3.

6.6. Conditions satisfied

Lemma 4.3. For our active and passive learning algorithms, for any $\epsilon > 0$, $n \Pr[\|A_n - A\| \geq \epsilon] \rightarrow 0$ and $n \Pr[\|w_n - w^*\| \geq \epsilon] \rightarrow 0$

Proof. Recall that

$$A_n = \frac{1}{n} \sum_i \nabla^2 l_w(x_i, y_i)$$

$$b_n = \frac{1}{\sqrt{n}} \sum_i \nabla l_{w^*}(x_i, y_i)$$

where $\|w' - w^*\| \leq \|w_n - w^*\|$.

For passive learning, by CLT, for any ϵ, $\Pr[\|w_n - w^*\| > \epsilon] = O\left(\frac{\epsilon}{\sqrt{n}}\right)$. Thus, we find that $n \Pr[\|w_n - w^*\| \geq \epsilon] \rightarrow 0$. We also need this fact to bound w'. Then, with a Hoeffding bound on the sum of A_n, we can get that $\Pr[\|A_n - A\| \geq \epsilon] = O\left(\frac{\epsilon}{\sqrt{n}}\right)$ and thus $n \Pr[\|A_n - A\| \geq \epsilon] \rightarrow 0$.

For active learning, we need to be careful because if $\|w_0 - w^*\| > \lambda/2$, we are not even guaranteed that the final result converges (see Lemma 6.2). However, by the CLT, we find that $\Pr[\|w_0 - w^*\| > \lambda/2] = O\left(\frac{\epsilon}{\sqrt{n_{\text{seed}}}}\right)$. Because $n_{\text{seed}} = \Omega(n^\alpha)$ (see Assumption 2), this converges exponentially fast and $n \Pr[\|w_0 - w^*\| > \lambda/2] \rightarrow 0$.

Because of the σ random sampling, and conditioned on the probability that $\|w_0 - w^*\| < \lambda/2$, we can get the same results for active learning as for passive learning. Note that from Lemma 6.2, there is exponentially small probability of not sampling all points from w' where $\|w' - w^*\| < \lambda$.

6.7. COV calculation for passive

Lemma 6.3. For passive learning, $\mathbb{E}[\nabla l_{w^*}(x, y)(\nabla l_{w^*}(x, y))^T] = \mathbb{E}[\sigma(1 - \sigma)x x^T]$.

Proof. Since the mean of the derivative of the loss is 0 at w^*,

$$\mathbb{E}[\nabla l_{w^*}(x, y)(\nabla l_{w^*}(x, y))^T]_{i,j} = \mathbb{E}[x_i x_j \sigma(-\|w^*\|y x_1)^2]$$

$$= \mathbb{E}[x_i \mathbb{E}[x_i x_j | x_1] \mathbb{E}[\sigma(\|w^*\|y x_1)^2 | x_1]]$$

$$= \mathbb{E}[x_i | \mathbb{E}[x_i x_j | x_1] \mathbb{E}[P(y = 1 | x_1) \sigma(-\|w^*\|x_1)^2 + P(y = 1 | x_1) \sigma(\|w^*\|x_1)^2]]$$

from the calibrated assumption,
\[
E[x_1]\mathbb{E}[x_i x_j | x_1]|\sigma(\|w^*\| | x_1)\sigma(-\|w^*\| | x_1)^2 + \sigma(\|w^*\| | x_1)^2] \\
= E[x_1]\mathbb{E}[x_i x_j | x_1]|\sigma(\|w^*\| | x_1)\sigma(-\|w^*\| | x_1)\sigma(\|w^*\| | x_1) + \sigma(\|w^*\| | x_1)] \\
= E[x_1]\mathbb{E}[x_i x_j | x_1]|\sigma(\|w^*\| | x_1)(\|w^*\| | x_1)] \\
= E[x_i x_j \sigma(\|w^*\| | x_1)\sigma(-\|w^*\| | x_1)] \\
= E[\sigma(1 - \sigma)xx^T]_{i,j}
\]

Lemma 4.4.
\[\Sigma_{\text{passive}} = [E[\sigma(1 - \sigma)xx^T]]^{-1}\]

Proof. For passive learning, by the convergence of \(w^n \to w^*\) and by the law of large numbers,

\[A_n \to A = E[\sigma(1 - \sigma)xx^T]\]

Further, by independence of draws,

\[E[b_n b_n^T] = E[\nabla l_w^*(x,y)(\nabla l_w^*(x,y))^T]\]

so by Lemma 6.3,

\[E[b_n b_n^T] = E[\sigma(1 - \sigma)xx^T]
B = E[\sigma(1 - \sigma)xx^T]
B = A\]

Thus,

\[\Sigma_{\text{passive}} = A^{-1}BA^{-1}\]

\[= A^{-1}\]

\[= [E[\sigma(1 - \sigma)xx^T]]^{-1}\]

\[\square\]

6.8. COV calculation for active

Lemma 6.4. For sufficiently small \(r\) (small with respect to dataset-only dependent constants), if \(\|w' - w^*\|_2 \leq 2r\), then

\[\|E_{w' \cdot x=0}[\sigma(1 - \sigma)xx^T] - E_{w \cdot x=0}[\sigma(1 - \sigma)xx^T]\| = O(r)\]

and

\[\|E_{w' \cdot x=0}[\sigma(-y x_1\|w^*\|)^2xx^T] - E_{w \cdot x=0}[\sigma(-y x_1\|w^*\|)^2xx^T]\| = O(r)\]

Proof. Without loss of generality (rotation and translation), let \(w_0' = 0, w^* = \|w^*\|e_1\) and let \(\hat{w} = c_1 e_1 + c_2 e_2\).

We sample from places where \(w_0' + w_1' x_1 + w_2' x_2 = 0\) which occurs when \(x_1 = \frac{w_0'}{w_3} x_2 + \frac{w_0'}{w_1} = ax_2 + b\). From the theorem assumption, we know that \(|w'_0|, |w'_1| \leq r\) and \(|w'_2| \geq \|w^*\| - r \geq \frac{1}{2}\|w^*\|\) (for sufficiently small \(r\)) so we know that \(|a|, |b| \leq O(r)\)
Define \(Q(x_1) = \sigma(||w^*||x_1)\sigma(-||w^*||x_1) \) or \(Q(x_1) = \sigma(-yx_1||w^*||)^2 \) (abuse of notation). Both these functions are Lipschitz around \(x_1 = 0 \), and bounded (since support bounded by \(B \)).

First, we compute the joint (not the conditionals) and then we can divide by the marginals from the previous lemma, Let \(i_1, i_2, \ldots, i_d \) be indicators for the indices \(i, j \) that are non-zero. Thus, \(i_1 + i_2 + \ldots + i_d \leq 2 \),

\[
\mathbb{E}_{w',x=0}[\sigma(1-\sigma)x x^T]_{i,j} = \\
= \mathbb{E}_{w',x=0}[Q(x_1)(x_1)^{i_1}(x_2)^{i_2}(x_3)^{i_3} \ldots] =
\]

(As before, the Jacobian of the change of variables has determinant 1)

\[
\int_x p(x_1 = ax + b, x_2 = x)Q(ax + b)(ax + b)^{i_1}(x)^{i_2}\mathbb{E}[x^{i_3} \ldots | x_1 = ax + b, x_2 = x] = \\
= \int_x p(x_2 = x)(x)^{i_2}F(ax + b, x)
\]

where \(F(x_1, x_2) = p(x_1 | x_2)Q(x_1)x^{i_1} \) \(O \left(\mathbb{E}[x^{i_3} \ldots | x_1, x_2] \right) \)

All three components of \(F \) are bounded, since support bounded, Assumption 3. Further, all three components are Lipschitz, because of Assumption 4 and bounded support as well. Therefore, \(F \) is Lipschitz.

\[
| \int_x p(x_2 = x)(x)^{i_2}F(ax + b, x) - \int_x p(x_2 = x)(x)^{i_2}F(0, x) | \\
\leq \int_x p(x_2 = x)|x|^{i_2}L|ax + b| \\
\leq aLB^{i_2+1} + bLB^2 \\
= O(r)
\]

Thus, for any \(i, j \),

\[
\| \mathbb{E}_{w',x=0}[Qxx^T]_{i,j} - \mathbb{E}_{w',x=0}[Qxx^T]_{i,j} \| = O(r)
\]

We can use this to bound the matrix norm,

\[
\| \mathbb{E}_{w',x=0}[Qxx^T] - \mathbb{E}_{w',x=0}[Qxx^T] \| = O(r)
\]

Since the probabilities (see Lemma 6.1) and conditionals are both off by only \(O(r) \) (from above) and since the probabilities are bounded away from 0 (see Lemma 6.1 and Assumption 8), the conditional distribution is off by \(O(r) \). We can plug in both functions of \(Q \) to get the statement of the theorem.

\[\square \]

Lemma 4.5.

\[
\Sigma_{active} = [(1-\alpha)\mathbb{E}_{x_1=0}[\sigma(1-\sigma)x x^T] + \alpha\mathbb{E}[\sigma(1-\sigma)x x^T]]^{-1}
\]

Proof. Because \(w_n \to w^* \), and by the law of large numbers,

\[
A_n \to (1-\alpha)\mathbb{E}_{w'}[\mathbb{E}_{w',x=0}[\sigma(-yx_1||w^*||)^2xx^T]] + \alpha\mathbb{E}[\sigma(-yx_1||w^*||)^2xx^T]
\]

From Lemma 6.4,
On the Relationship between Data Efficiency and Error for Uncertainty Sampling

\[\|E_{w',x=0}\sigma(1-\sigma)xx^T - E_{w^*,x=0}\sigma(1-\sigma)xx^T\| = O(r) \]

and \(\|w' - w^*\| < 2r \) with probability going to 1.

\[A_n \to \frac{n - n_{\text{seed}}}{n}[(1 - \alpha)E_{w^*,x=0}\sigma(1-\sigma)xx^T] + O(r) + \alpha E(\sigma(1-\sigma)xx^T) \]

Since \(w_n \to w^* \), \(r \to 0 \), and since \(n_{\text{seed}} = o(n) \) (see Assumption 2) so

\[A_n \to A = (1 - \alpha)E_{x,=0}\sigma(1-\sigma)xx^T + \alpha E(\sigma(1-\sigma)xx^T) \]

The same line of argument with using Lemma 6.4 and Lemma 6.3 yields

\[B = A \]

So

\[\Sigma_{\text{active}} = A^{-1}BA^{-1} = A^{-1} \]

\[= [(1 - \alpha)E_{x,=0}\sigma(1-\sigma)xx^T + \alpha E(\sigma(1-\sigma)xx^T)]^{-1} \]

\[\square \]

6.9. Inverses Without First Coordinate

Lemma 6.5.

\[\begin{bmatrix} a & \bar{a}^T \\ \bar{a} & A \end{bmatrix}^{-1} = \begin{bmatrix} b & \bar{b}^T \\ \bar{b} & B \end{bmatrix} \]

Where

\[b = \frac{1}{a - \bar{a}^T A^{-1} \bar{a}} \]

\[\bar{b} = -bA^{-1} \bar{a} \]

\[B = A^{-1} + b(A^{-1} \bar{a})(A^{-1} \bar{a})^T \]

Proof. Matrix algebra. \[\square \]

Lemma 6.6.

\[(A^{-1})^{-1} = (A^{-1})^{-1} + \frac{(A^{-1})^{-1}A_{-1,1})(A^{-1})^{-1}A_{-1,1})^T}{A_{1,1} - A_{1,1}^T A_{-1,1}(A^{-1})^{-1}A_{-1,1}} \]

Proof. Use the above theorem and note that \(b > 0 \) so

\[b(A^{-1} \bar{a})(A^{-1} \bar{a})^T \geq 0 \]

\[\square \]
6.10. Relating Err to expectation of sigmoid

Lemma 6.7.

\[\frac{\text{Err}}{2} < \mathbb{E}[\sigma(1 - \sigma)] < \text{Err} \]

Proof.

\[\text{Err} = P(y|x_1\|w^\star\| < 0) \]
\[= P(x_1 < 0 \land y = 1) + P(x_1 > 0 \land y = -1) \]

From Assumption 7,

\[= \int_{-\infty}^{0} p_{x_1}(x_1)\sigma(-w_1^\star x_1) + \int_{0}^{\infty} p_{x_1}(x_1)\sigma(w_1^\star x_1) \]
\[= \int_{0}^{\infty} [p_{x_1}(-x_1) + p_{x_1}(x_1)]\sigma(w_1^\star x_1) \]

Additionally,

\[\mathbb{E}[\sigma(1 - \sigma)] = \mathbb{E}[\sigma(y|x_1\|w^\star\|)\sigma(-y|x_1\|w^\star\|)] \]
\[= \mathbb{E}[\sigma(\|w^\star\| x_1)\sigma(-\|w^\star\| x_1)] \]
\[= \int_{-\infty}^{0} p_{x_1}(x_1)\sigma(\|w^\star\| x_1)\sigma(-\|w^\star\| x_1) + \int_{0}^{\infty} p_{x_1}(x_1)\sigma(\|w^\star\| x_1)\sigma(-\|w^\star\| x_1) \]
\[= \int_{0}^{\infty} [p_{x_1}(-x_1) + p_{x_1}(x_1)]\sigma(\|w^\star\| x_1)\sigma(-\|w^\star\| x_1) \]

Note that for $x_1 > 0$, $\frac{1}{2} < \sigma(-\|w^\star\| x_1) < 1$. Comparing equations, we get,

\[\frac{\text{Err}}{2} < \mathbb{E}[\sigma(1 - \sigma)] < \text{Err} \]

6.11. Main DE bound

Theorem 4.1. For sufficiently small constant α (that depends on the dataset) and for $\text{Err} < \epsilon < \epsilon_0$,

\[\text{DE}(\epsilon) > \frac{s}{4\epsilon \text{Err}} \]

Proof. For convenience, define

\[Q = \mathbb{E}_{x_1 = 0}[\sigma(1 - \sigma)x x^T] \]
\[R = \mathbb{E}[\sigma(1 - \sigma)x x^T] = COV_{\text{passive}} \]
\[S = \alpha R + (1 - \alpha)Q = COV_{\text{active}} \]

By the definition of s,

\[\mathbb{E}_{x_1 = 0}[x_{-1}x_{-1}^T] \geq \frac{s \mathbb{E}[\sigma(1 - \sigma)x_{-1}x_{-1}^T]}{\mathbb{E}[\sigma(1 - \sigma)]]} \]
By Lemma 6.7,

\[4Q_1 \succ \frac{s}{Err} R_1 \]

For small enough \(\alpha \),

\[Q_1 \succ \frac{s / (4Err) - \alpha}{1 - \alpha} R_1 \]

\[\alpha R_1 + (1 - \alpha)Q_1 \succ \frac{s}{4Err} R_1 \]

\[S_1 \succ \frac{s}{4Err} R_1 \]

\[\frac{s}{4Err} (S_1)^{-1} \times (R_1)^{-1} \preceq (R^{-1})_1 \]

The last step comes from noting that the right hand side of Lemma 6.6 positive semidefinite for \(A \) positive semidefinite.

Additionally, note that the first row and column of \(Q \) is 0, so \(S_{-1,1} = \alpha R_{-1,1} \) and \(S_{1,1} = \alpha R_{1,1} \).

An examination yields,

\[\frac{(S_1)^{-1}S_{-1,1}(S_1)^{-1}S_{-1,1}^T}{S_{1,1} - S_{-1,1}^T(S_1)^{-1}S_{-1,1}} = O(\alpha) \]

Using Lemma 6.6, we find that we can make \(\alpha \) small enough so that

\[\frac{s}{4Err} (S^{-1})_1 \prec (R^{-1})_1 \]

\[\frac{s}{4Err} COV_{active, -1} \prec COV_{passive, -1} \]

so by Lemma 4.1, for \(Err < \epsilon \),

\[DE(\epsilon) > \frac{s}{4Err} \]

\[\square \]

6.12. DE Bound Given Decomposition

We actually get a slightly more general result from the following lemma.

Lemma 6.8. If \(p(x) = p(x_1)p(x_{-1}) \), then for sufficiently small constant \(\alpha \) (that depends on the dataset), and for \(Err < \epsilon < \epsilon_0 \),

\[\frac{1}{4Err} < DE(\epsilon) < \frac{1}{2Err}(1 + \frac{E[\tilde{X}]}{Var(X)}) \]

where

\[p(\tilde{X} = x) \propto \sigma(\|w^*\|_x)(1 - \sigma(\|w^*\|_x))p(x_1 = x) \]
Proof. With the decomposition, in the Theorem 4.1, \(s = 1 \). So we get for free that for \(Err \prec \epsilon \prec \epsilon_0 \),

\[
DE(\epsilon) > \frac{1}{4\epsilon r}
\]

As before, for convenience, define

\[
Q = E_{x_1=0}[\sigma(1-\sigma)x x^T]
\]

\[
R = E[\sigma(1-\sigma)x x^T] = COV_{\text{passive}}
\]

\[
S = \alpha R + (1-\alpha)Q = COV_{\text{active}}
\]

Because of the decomposition,

\[
R_{2,2} = E[\sigma(1-\sigma)]E[x_2 x_2^T] \succ \frac{Err}{2} E[x_2 x_2^T]
\]

\[
Q_{2,2} = \frac{1}{4} E[x_2 x_2^T]
\]

\[
Q_{2,2} \prec \frac{1}{2E\epsilon} R_{2,2}
\]

For sufficiently small \(\alpha \),

\[
Q_{2,2} \prec \frac{1/(2Err) - \alpha}{1-\alpha} R_{2,2}
\]

\[
\alpha R_{2,2} + (1-\alpha)Q_{2,2} \prec \frac{1}{2E\epsilon} R_{2,2}
\]

\[
S_{2,2} \prec \frac{1}{2E\epsilon} R_{2,2}
\]

Because of the decomposition, and because \(E[x_2] = 0 \) (without loss of generality by translation),

\[
R_{0:1,2} = 0
\]

\[
Q_{0:1,2} = 0
\]

\[
\frac{1}{2E\epsilon} (A^{-1})_{2,2} \succ (R^{-1})_{2,2}
\]

Now, let us examine the upper left corners,

\[
R_{0:1,0:1} = \begin{bmatrix}
E[\sigma(1-\sigma)] & E[\sigma(1-\sigma)x_1] \\
E[\sigma(1-\sigma)x_1] & E[\sigma(1-\sigma)x_1^2]
\end{bmatrix}
\]

\[
S_{0:1,0:1} = \begin{bmatrix}
(1-\alpha)/4 + \alpha E[\sigma(1-\sigma)] & \alpha E[\sigma(1-\sigma)x_1] \\
\alpha E[\sigma(1-\sigma)x_1] & \alpha E[\sigma(1-\sigma)x_1^2]
\end{bmatrix}
\]

Denote

\[
D = E[\sigma(1-\sigma)]E[\sigma(1-\sigma)x_1^2] - E[\sigma(1-\sigma)x_1]^2
\]

Then,
\[
\begin{align*}
(R^{-1})_{0,0} &= \frac{\mathbb{E}[\sigma(1-\sigma)x_1^2]}{D} \\
(S^{-1})_{0,0} &= \frac{\alpha\mathbb{E}[\sigma(1-\sigma)x_1^2]}{\alpha(1-\alpha)(1/4)\mathbb{E}[\sigma(1-\sigma)x_1^2] + \alpha^2D} \\
(R^{-1})_{0,0}/(S^{-1})_{0,0} &= \frac{1-\alpha}{4\mathbb{E}[\sigma(1-\sigma)]}(1 + \frac{\mathbb{E}[\sigma(1-\sigma)x_1^2]}{D}) + \alpha
\end{align*}
\]

For small enough \(\alpha\),

\[
(R^{-1})_{0,0}/(S^{-1})_{0,0} < \frac{1}{2\text{Err}}(1 + \frac{\mathbb{E}[\sigma(1-\sigma)x_1^2]}{D})
\]

Combining the bounds on the two blocks of the matrices, we get that

\[
\frac{1}{2\text{Err}}(1 + \frac{\mathbb{E}[\sigma(1-\sigma)x_1^2]}{D})(S^{-1})_{-1} \succ (R^{-1})_{-1}
\]

\[
\frac{1}{2\text{Err}}(1 + \frac{\mathbb{E}[\sigma(1-\sigma)x_1^2]}{D})\text{COV}_{active,-1} \succ \text{COV}_{passive,-1}
\]

So for \(\epsilon < \epsilon_0\),

\[
\text{DE}(\epsilon) < \frac{1}{2\text{Err}}(1 + \frac{\mathbb{E}[\sigma(1-\sigma)x_1^2]}{D})
\]

if we define \(\tilde{X}\) such that \(p_{\tilde{X}}(x) \propto \sigma(1-\sigma)p_{x_1}(x)\),

\[
\text{DE}(\epsilon) < \frac{1}{2\text{Err}}(1 + \frac{\mathbb{E}[\tilde{X}]^2}{\text{Var}(\tilde{X})})
\]

Theorem 4.2. If \(p(x) = p(x_1)p(x_{-1})\) and \(p(x_1) = p(-x_1)\), then for sufficiently small constant \(\alpha\) (that depends on the dataset), and for \(\text{Err} < \epsilon < \epsilon_0\),

\[
\frac{1}{4\text{Err}} < \text{DE}(\epsilon) < \frac{1}{2\text{Err}}
\]

Proof. If \(p(x_1) = p(-x_1)\), then \(p(\tilde{X}) = p(-\tilde{X})\) and so \(\mathbb{E}[\tilde{X}] = 0\).

Using Lemma 6.8, we arrive at the conclusion. \(\square\)