6. Appendix

6.1. Notation

w_{0} is the weights after the seed round.
A_{-1} is the matrix without the first row and column. $A_{1,-1}$ is the vector from the first row and all columns except the first column.

Generally, the $O(f(n))$ notation hides constants that only depend on the dataset, such as $\left\|w^{*}\right\|, s, B$, etc.
For the order of things going to zero, we first choose α to be small, then r to be small, then n to be large.
w_{0} is weight vector after seed round

$$
\begin{gathered}
\epsilon_{\text {active }}(n)=\mathbb{E}_{f \sim \text { active }, n \text { points }}[\operatorname{Err}(f)] \\
\epsilon_{\text {passive }}(n)=\mathbb{E}_{f \sim \text { passive }, n \text { points }}[\operatorname{Err}(f)] \\
D E(\epsilon)=\frac{\max \left\{n: \epsilon_{\text {passive }}(n) \geq \epsilon\right\}}{\max \left\{n: \epsilon_{\text {active }}(n) \geq \epsilon\right\}}=\frac{n_{\text {passive }}(\epsilon)}{n_{\text {active }}(\epsilon)}
\end{gathered}
$$

Without loss of generality, assume $w^{*}=\left\|w^{*}\right\| e_{1}, w_{0}^{*}=0$, and $\mathbb{E}\left[x_{2:}\right]=0$.
With an abuse of notation, let $\sigma=\sigma\left(w^{*} \cdot x\right)=\sigma\left(\left\|w^{*}\right\| x_{1}\right)$.

6.2. Losses

Define $\sigma(x)=\frac{1}{1+-\exp (x)}$.
The loss (negative log-likelihood) for a single data point under logistic regression is

$$
l_{w}(x, y)=\log (1+\exp (-w \cdot y x))
$$

and so the gradient is

$$
\nabla l_{w}(x, y)=-\frac{y x \exp (-w \cdot y x)}{1+\exp (-w \cdot y x)}=-y x \sigma(-w \cdot y x)
$$

and the Hessian is

$$
\begin{gathered}
\nabla^{2} l_{w}(x, y)=\frac{(y x)(y x)^{T} \exp (w \cdot y x)}{(1+\exp (w \cdot y x))^{2}} \\
=\frac{x x^{T}}{(1+\exp (w \cdot y x))(1+\exp (-w \cdot y x))} \\
=\sigma(w \cdot y x) \sigma(-w \cdot y x) x x^{T}
\end{gathered}
$$

Note that $\sigma(-x)=1-\sigma(x)$.

6.3. Decision Boundary

Lemma 6.1. For sufficiently small r, if $\left\|w^{\prime}-w^{*}\right\|_{2} \leq 2 r$, then

$$
\mid \int_{w^{\prime} \cdot x=0} p(x)-\int_{w^{*} \cdot x=0} p(x) \|=O(r)
$$

Proof. Without loss of generality (rotation and translation), let $w_{0}^{*}=0, w^{*}=\left\|w^{*}\right\| e_{1}$ and let $w^{\prime}=w_{1}^{\prime} e_{1}+w_{2}^{\prime} e_{2}$.
We sample from places where $w_{0}^{\prime}+w_{1}^{\prime} x_{1}+w_{2}^{\prime} x_{2}=0$ which occurs when $x_{1}=\frac{w_{2}^{\prime}}{w_{1}^{\prime}} x_{2}+\frac{w_{0}^{\prime}}{w_{1}^{\prime}}=a x_{2}+b$. From the theorem assumption, we know that $\left|w_{0}^{\prime}\right|,\left|w_{2}^{\prime}\right| \leq r$ and $\left|w_{1}^{\prime}\right| \geq\left\|w^{*}\right\|-r \geq \frac{1}{2}\left\|w^{*}\right\|$ (for sufficiently small r) so we know that $|a|,|b| \leq O(r)$
Note that

$$
\left|\int_{w^{\prime} \cdot x=0} p(x)-\int_{w^{*} \cdot x=0} p(x)\|=\| \int_{x} p\left(x_{1}=a x+b, x_{2}=x\right)-p\left(x_{1}=0\right)\right|
$$

(Note that the Jacobian of the change of variables has the following matrix which has determinant 1)

$$
\left.\left\lvert\, \int_{w^{\prime} \cdot x=0} p(x)-\int_{w^{*} \cdot x=0}^{1} \begin{array}{cc}
0 & 1
\end{array}\right.\right] \quad p(x) \| \leq \int_{x}\left|p\left(x_{1}=a x+b \mid x_{2}=x\right) p\left(x_{2}=x\right)-p\left(x_{1}=0 \mid x_{2}=x\right) p\left(x_{2}=x\right)\right|
$$

With the assumption that the conditional probabilities are Lipschitz,

$$
\begin{gathered}
\leq \int_{x} L|a x+b| p\left(x_{2}=x\right) \\
\leq a L B+b L \\
=O(r)
\end{gathered}
$$

Lemma 6.2. For sufficiently small r, if $\left\|w_{0}-w^{*}\right\|_{2} \leq r$, then with probability going to 1 exponentially fast, all points from two-stage uncertainty sampling are from some hyperplane w^{\prime} such that $\left\|w^{\prime}-w^{*}\right\| \leq 2 r$.

Proof. For small enough r, then $\int_{w^{\prime} \cdot x=0} p(x)>p_{0} / 2$ from the above lemma if $\left\|w_{0}-w^{*}\right\|_{2} \leq 2 r$. Thus, the probability of an unlabeled point within the parallel plane with bias less than r different from w_{0} such that $\left\|w^{\prime}-w_{0}\right\|_{2} \leq r$ is at least $2 \frac{r}{\left\|w_{0}\right\|}\left(p_{0} / 2\right) \geq \frac{r p_{0}}{2\left\|w^{*}\right\|}=\Theta(r)$ (for sufficiently small r).
Recall that $n_{\text {pool }}=\omega(n)$ and $n_{\text {seed }}=o(n)$.
For sufficiently large n, the probability of at least n points from the $n_{\text {pool }}-n_{\text {seed }}$ unlabeled points falling in this range is

$$
\begin{gathered}
\operatorname{Pr}\left[\text { Binomial }\left(n_{\text {pool }}-n_{\text {seed }}, \text { probability of falling }\right) \geq n\right] \geq \\
\left.\operatorname{Pr}\left[\text { Binomial }\left(n_{\text {pool }} / 2, C_{1} r\right)\right) \geq n\right]
\end{gathered}
$$

for some constant C_{1}.
We can use a Chernoff bound (standard with $\delta=1 / 2$) since $n_{\text {pool }}=\omega(n)$ to bound by $\exp (-\omega(n))$. Thus the probability that the planes we choose from are farther than r away from w_{0} goes to 0 with rate faster than $\exp (-n)$.

6.4. Convergence

Lemma 4.2. Both two-stage uncertainty sampling and random sampling converge to w^{*}.
Proof. For passive learning, the Hessian of the population loss is positive definite because the data covariance is nonsingular (Assumption 8). Thus, the population loss has a unique optimum. By the definition of w^{*}, w^{*} is the minimizer. Since the sample loss converges to the population loss, the result of passive learning converges to w^{*}.

By a similar argument, the weight vector w_{0} after the seed round converges to w^{*} since $n_{\text {seed }}$ is super-constant (Assumption 2). Thus, for any $r>0$, with probability converging to 1 as $n \rightarrow \infty,\left\|w_{0}-w^{*}\right\| \leq r \leq \lambda / 2$. By Lemma 6.2, with probability going to 1 , all points selected are from hyperplanes w where $\left\|w-w^{*}\right\| \leq 2 r \leq \lambda$. Thus, by Assumption $5, \mathbb{E}_{w \cdot x=0}\left[\nabla l_{w^{*}}(x, y)\right]=0$. In the second stage, because of the α proportion of randomly selected points, the loss from the new uncertainty sampling population has a unique optimum. And because the expectation of the gradient of the loss is 0 for the points near the decision boundary (with probability going to 1), the result of two-stage uncertainty sampling converges in probability to w^{*}.

6.5. Rates

Lemma. If Σ exists, and for any $\epsilon>0, n \operatorname{Pr}\left[\left\|A_{n}-A\right\| \geq \epsilon\right] \rightarrow 0$ and $n \operatorname{Pr}\left[\left\|w_{n}-w^{*}\right\| \geq \epsilon\right] \rightarrow 0$, then there exist vectors $c_{k} \neq 0$ that depend only on the data distribution such that,

$$
n(\epsilon(n)-E r r) \rightarrow \sum_{k} c_{k}^{T} \Sigma_{-1} c_{k}
$$

Proof. The zero-one error is

$$
Z\left(w_{n}\right)=\operatorname{Pr}\left[y x \cdot w_{n}<0\right]
$$

Since Z is twice differentiable at w^{*}, by Taylor's theorem,
$Z\left(w_{n}\right)=Z\left(w^{*}\right)+\left(\nabla Z\left(w^{*}\right)\right)^{T}\left(w_{n}-w^{*}\right)+\left(w_{n}-w^{*}\right)^{T}\left(\frac{1}{2} \nabla^{2} Z\left(w^{*}\right)\right)\left(w_{n}-w^{*}\right)+\left(w_{n}-w^{*}\right)^{T} R\left(w_{n}-w^{*}\right)\left(w_{n}-w^{*}\right)^{T}$
where $R(w) \rightarrow 0$ as $w \rightarrow 0$.
Since Z has a local optimum at $w^{*}, \nabla Z\left(w^{*}\right)=0$. Also $Z\left(w^{*}\right)=E r r$. Additionally, denote $H=\frac{1}{2} \nabla^{2} Z\left(w^{*}\right)$,

$$
Z\left(w_{n}\right)=\operatorname{Err}+\left(w_{n}-w^{*}\right)^{T}\left(H+R\left(w_{n}-w^{*}\right)\right)\left(w_{n}-w^{*}\right)
$$

Choose any $\epsilon>0$. Since $R(w) \rightarrow 0$ as $w \rightarrow 0$, there is δ_{ϵ} such that $\|w\| \leq \delta_{\epsilon} \Longrightarrow\|R(w)\| \leq \epsilon$. Define near (n) to be the event that $\left\|A_{n}-A\right\| \geq \epsilon \wedge\left\|w_{n}-w^{*}\right\| \geq \delta_{\epsilon}$. Note that from the theorem assumption, $n \operatorname{Pr}[\neg$ near $(n)] \rightarrow 0$.

$$
\begin{gathered}
\epsilon(n)=\mathbb{E}\left[Z\left(w_{n}\right)\right]=\operatorname{Pr}[\neg \text { near }(n)] \mathbb{E}\left[Z\left(w_{n}\right) \mid \neg \text { near }(n)\right]+\operatorname{Pr}[\text { near }(n)] \mathbb{E}\left[Z\left(w_{n}\right) \mid \text { near }(n)\right] \\
\left|n \epsilon(n)-n \mathbb{E}\left[Z\left(w_{n}\right) \mid n e a r(n)\right]\right| \leq n \operatorname{Pr}[\neg \text { near }(n)]\left|\mathbb{E}\left[Z\left(w_{n}\right) \mid \neg \operatorname{near}(n)\right]-\mathbb{E}\left[Z\left(w_{n}\right) \mid n e a r(n)\right]\right| \\
\leq n \operatorname{Pr}[\neg \text { near }(n)] \rightarrow 0
\end{gathered}
$$

Thus,

$$
n(\epsilon(n)-E r r) \rightarrow n\left(\mathbb{E}\left[Z\left(w_{n}\right) \mid n e a r(n)\right]-E r r\right)
$$

So we need to just worry about the convergence of the right side,

$$
\begin{aligned}
& \mathbb{E}\left[Z\left(w_{n}\right) \mid n e a r(n)\right]=\operatorname{Err}+\frac{1}{n} \mathbb{E}\left[\left(A_{n}^{-1} b_{n}\right)^{T}\left(H+R\left(w_{n}-w^{*}\right)\right)\left(A_{n}^{-1} b_{n}\right) \mid n e a r(n)\right] \\
& n\left(\mathbb{E}\left[Z\left(w_{n}\right) \mid \operatorname{near}(n)\right]-\operatorname{Err}\right)=\mathbb{E}\left[b_{n}^{T} A_{n}^{-1}\left(H+R\left(w_{n}-w^{*}\right)\right) A_{n}^{-1} b_{n} \mid \operatorname{near}(n)\right]
\end{aligned}
$$

Because we conditioned on near $(n),\left\|A_{n}-A\right\| \leq \epsilon$ and $\left\|w_{n}-w^{*}\right\| \leq \delta_{\epsilon}$ and therefore $\left\|R\left(w_{n}-w^{*}\right)\right\| \leq \epsilon$. So $\left\|A_{n}^{-1}\left(H+R\left(w_{n}-w^{*}\right)\right) A_{n}^{-1}-A^{-1} H A^{-1}\right\|=O(\epsilon)$. Using this, we get,

$$
\begin{aligned}
\| n\left(\mathbb{E}\left[Z\left(w_{n}\right) \mid n e a r(n)\right]-E r r\right) & -\mathbb{E}\left[b_{n}^{T} A^{-1} H A^{-1} b_{n} \mid n e a r(n)\right]\|\leq\| \mathbb{E}\left[b_{n}^{T} O(\epsilon) b_{n} \mid \operatorname{near}(n)\right] \| \\
& \leq O(\epsilon)\left\|\mathbb{E}\left[\left\|b_{n}\right\|^{2} \mid \operatorname{near}(n)\right]\right\| \\
& \leq O(\epsilon)\left\|\mathbb{E}\left[b_{n} b_{n}^{T} \mid \operatorname{near}(n)\right]\right\|
\end{aligned}
$$

Note that,

$$
\mathbb{E}\left[b_{n} b_{n}^{T}\right]=\mathbb{E}\left[b_{n} b_{n}^{T} \mid \operatorname{near}(n)\right] \operatorname{Pr}[\operatorname{near}(n)]+\mathbb{E}\left[b_{n} b_{n}^{T} \mid \neg \operatorname{near}(n)\right] \operatorname{Pr}[\neg \text { near }(n)]
$$

and the later two expectations exist since the left exists and the matrices are positive semidefinite. Passing through the limit, we see that $\mathbb{E}\left[b_{n} b_{n}^{T} \mid\right.$ near $\left.(n)\right] \rightarrow B$.

Thus, noting that we can drive $\epsilon \rightarrow 0$,

$$
\begin{gathered}
n\left(\mathbb{E}\left[Z\left(w_{n}\right) \mid \text { near }(n)\right]-E r r\right) \rightarrow \mathbb{E}\left[b_{n}^{T} A^{-1} H A^{-1} b_{n} \mid \text { near }(n)\right] \\
\rightarrow \sum_{i, j}\left[A^{-1} H A^{-1}\right]_{i, j} \mathbb{E}\left[b_{n} b_{n}^{T} \mid \text { near }(n)\right]_{i, j} \\
\rightarrow \sum_{i, j}\left[A^{-1} H A^{-1}\right]_{i, j} B_{i, j}
\end{gathered}
$$

Thus, putting this together, we see that

$$
n(\epsilon(n)-E r r) \rightarrow \sum_{i, j}\left[A^{-1} H A^{-1}\right]_{i, j} B_{i, j}
$$

Doing manipulations on the indices, we find,

$$
\begin{gathered}
\sum_{i, j}\left[A^{-1} H A^{-1}\right]_{i, j} B_{i, j}=\sum_{i, j} H_{i, j}\left(A^{-1} B A^{-1}\right)_{i, j} \\
=\sum_{i, j} H_{i, j} \Sigma_{i, j}
\end{gathered}
$$

Therefore,

$$
n(\epsilon(n)-E r r) \rightarrow \sum_{i, j} H_{i, j} \Sigma_{i, j}
$$

and we are most of the way there, just need to use some properties to show the final form.
Since w^{*} is a local optimum, $H \succeq 0$ (and symmetric) and since the Hessian is not identically zero at $w^{*}, H \neq 0$.
Without loss of generality, let $w^{*}=\left\|w^{*}\right\| e_{1}$ and $w_{0}^{*}=0$ as assumed before. Note that $Z\left(w^{*}+\alpha e_{1}\right)=Z\left(w^{*}\right)$ for $\alpha \in\left(-\left\|w^{*}\right\| / 2, \infty\right)$. Since it is constant along this line, $\left(\nabla^{2} Z\left(w^{*}\right)\right)_{1,1}=0$, and so $H_{1,1}=0$
So $H \succeq 0, H$ is symmetric, $H \neq 0$, and $H_{1,1}=0$. Since $H \succeq 0$ and $H_{1,1}=0, H_{1, i}=0$ for all i.
Since $H \succeq 0$ and $H \neq 0$,
$H=\sum_{k} c_{k} c_{k}^{T}$
for some vectors c_{k} (where there is at least one). And further, $\left(c_{k}\right)_{1}=0$.

$$
\begin{aligned}
\sum_{i, j} H_{i, j} \Sigma_{i, j} & =\sum_{i, j}\left(\sum_{k} c_{k} c_{k}^{T}\right)_{i, j} \Sigma_{i, j} \\
= & \sum_{k} c_{k}^{T} \Sigma c_{k}
\end{aligned}
$$

We can remove the first elements of c_{k} and the first row and column of Σ without changing anything, so

$$
\sum_{i, j} H_{i, j} \Sigma_{i, j}=\sum_{k} c_{k}^{T} \Sigma_{-1} c_{k}
$$

And thus the theorem is proved.

Lemma. If we have two algorithms a and b that satisfy the conditions of Lemma 2, and

$$
\Sigma_{a,-1} \succ c \Sigma_{b,-1}
$$

then there exists ϵ_{0} such that for $\operatorname{Err}<\epsilon<\epsilon_{0}$,

$$
n_{a}(\epsilon) \geq c n_{b}(\epsilon)
$$

Proof.

$$
\begin{gathered}
\Sigma_{a,-1} \succ \alpha \Sigma_{b,-1} \\
\sum_{k} c_{k}^{T} \Sigma_{a,-1} c_{k}>\alpha \sum_{k} c_{k}^{T} \Sigma_{b,-1} c_{k}
\end{gathered}
$$

so, for $n>n_{0}, n^{\prime}>n_{0}$,

$$
n\left(\epsilon_{a}(n)-E r r\right)>\alpha n^{\prime}\left(\epsilon_{b}\left(n^{\prime}\right)-E r r\right)
$$

setting $n^{\prime}=n / \alpha$ and for $n>\max \left(n_{0}, n_{0} / \alpha\right)$,

$$
n\left(\epsilon_{a}(n)-E r r\right)>n\left(\epsilon_{b}(n / \alpha)-E r r\right)
$$

So for sufficiently large n,

$$
\epsilon_{a}(n)>\epsilon_{b}(n / \alpha)
$$

For any $\epsilon>\operatorname{Err}$ such that $n_{a}(\epsilon)$ is sufficiently large, (we know this exists since $n_{a}(\epsilon)=\Theta\left(\frac{1}{\epsilon-E r r}\right)$)

$$
\begin{gathered}
\epsilon_{a}(n) \leq \epsilon \text { for } n \geq n_{a}(\epsilon) \\
\epsilon_{b}(n / \alpha) \leq \epsilon \text { for } n \geq n_{a}(\epsilon) \\
\epsilon_{b}\left(n^{\prime}\right) \leq \epsilon \text { for } n^{\prime} \geq \frac{1}{\alpha} n_{a}(\epsilon) \\
n_{b}(\epsilon) \leq \frac{1}{\alpha} n_{a}(\epsilon) \\
n_{a}(\epsilon) \geq \alpha n_{b}(\epsilon)
\end{gathered}
$$

Lemma 4.1. If we have two algorithms with Σ_{a} and Σ_{b}, and for any $\epsilon>0$ and both estimators, $n \operatorname{Pr}\left[\left\|A_{n}-A\right\| \geq \epsilon\right] \rightarrow 0$ and $n \operatorname{Pr}\left[\left\|w_{n}-w^{*}\right\| \geq \epsilon\right] \rightarrow 0$, then

$$
\Sigma_{a,-1} \succ c \Sigma_{b,-1}
$$

implies that for some ϵ_{0} and any $\operatorname{Err}<\epsilon<\epsilon_{0}$,

$$
n_{a}(\epsilon) \geq c n_{b}(\epsilon)
$$

Proof. This is a straightforward application of the above lemmas, Lemma 2 and Lemma 3.

6.6. Conditions satisfied

Lemma 4.3. For our active and passive learning algorithms, for any $\epsilon>0, n \operatorname{Pr}\left[\left\|A_{n}-A\right\| \geq \epsilon\right] \rightarrow 0$ and $n \operatorname{Pr}\left[\| w_{n}-\right.$ $\left.w^{*} \| \geq \epsilon\right] \rightarrow 0$

Proof. Recall that

$$
\begin{aligned}
& A_{n}=\frac{1}{n} \sum_{i} \nabla^{2} l_{w^{\prime}}\left(x_{i}, y_{i}\right) \\
& b_{n}=\frac{1}{\sqrt{n}} \sum_{i} \nabla l_{w^{*}}\left(x_{i}, y_{i}\right)
\end{aligned}
$$

where $\left\|w^{\prime}-w^{*}\right\| \leq\left\|w_{n}-w^{*}\right\|$.
For passive learning, by CLT, for any $\epsilon, \operatorname{Pr}\left[\left\|w_{n}-w^{*}\right\|>\epsilon\right]=O\left(\frac{e^{-\Theta(n)}}{\sqrt{n}}\right)$. Thus, we find that $n \operatorname{Pr}\left[\left\|w_{n}-w^{*}\right\| \geq \epsilon\right] \rightarrow 0$. We also need this fact to bound w^{\prime}. Then, with a Hoeffding bound on the sum of A_{n}, we can get that $\operatorname{Pr}\left[\left\|A_{n}-A\right\| \geq \epsilon\right]=$ $O\left(\frac{e^{-\Theta(n)}}{\sqrt{n}}\right)$ and thus $n \operatorname{Pr}\left[\left\|A_{n}-A\right\| \geq \epsilon\right] \rightarrow 0$.
For active learning, we need to be careful because if $\left\|w_{0}-w^{*}\right\|>\lambda / 2$, we are not even guaranteed that the final result converges (see Lemma 6.2). However, by the CLT, we find that $\operatorname{Pr}\left[\left\|w_{0}-w^{*}\right\|>\lambda / 2\right]=O\left(\frac{e^{-\Theta\left(n_{\text {seed }}\right)}}{\sqrt{n_{\text {seed }}}}\right)$. Because $n_{\text {seed }}=\Omega\left(n^{\rho}\right)$ (see Assumption 2), this converges exponentially fast and $n \operatorname{Pr}\left[\left\|w_{0}-w^{*}\right\|>\lambda / 2\right] \rightarrow 0$.
Because of the α random sampling, and conditioned on the probability that $\left\|w_{0}-w^{*}\right\|<\lambda / 2$, we can get the same results for active learning as for passive learning. Note that from Lemma 6.2, there is exponentially small probability of not sampling all points from w^{\prime} where $\left\|w^{\prime}-w^{*}\right\|<\lambda$.

6.7. $C O V$ calculation for passive

Lemma 6.3. For passive learning, $\mathbb{E}\left[\nabla l_{w^{*}}(x, y)\left(\nabla l_{w^{*}}(x, y)\right)^{T}\right]=\mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]$.
Proof. Since the mean of the derivative of the loss is 0 at w^{*},

$$
\begin{gathered}
\mathbb{E}\left[\nabla l_{w^{*}}(x, y)\left(\nabla l_{w^{*}}(x, y)\right)^{T}\right]_{i, j}=\mathbb{E}\left[x_{i} x_{j} \sigma\left(-\left\|w^{*}\right\| y x_{1}\right)^{2}\right] \\
=\mathbb{E}_{x_{1}}\left[\mathbb{E}\left[x_{i} x_{j} \mid x_{1}\right] \mathbb{E}\left[\sigma\left(\left\|w^{*}\right\| y x_{1}\right)^{2} \mid x_{1}\right]\right] \\
=\mathbb{E}_{x_{1}}\left[\mathbb{E}\left[x_{i} x_{j} \mid x_{1}\right]\left[P\left(y=1 \mid x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right)^{2}+P\left(y=1 \mid x_{1}\right) \sigma\left(\left\|w^{*}\right\| x_{1}\right)^{2}\right]\right]
\end{gathered}
$$

from the calibrated assumption,

$$
\begin{gathered}
=\mathbb{E}_{x_{1}}\left[\mathbb{E}\left[x_{i} x_{j} \mid x_{1}\right]\left[\sigma\left(\left\|w^{*}\right\| x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right)^{2}+\sigma\left(-\left\|w^{*}\right\| x_{1}\right) \sigma\left(\left\|w^{*}\right\| x_{1}\right)^{2}\right]\right] \\
=\mathbb{E}_{x_{1}}\left[\mathbb{E}\left[x_{i} x_{j} \mid x_{1}\right] \sigma\left(\left\|w^{*}\right\| x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right)\left[\sigma\left(\mid w^{*} \| x_{1}\right)+\sigma\left(\left\|w^{*}\right\| x_{1}\right)\right]\right] \\
=\mathbb{E}_{x_{1}}\left[\mathbb{E}\left[x_{i} x_{j} \mid x_{1}\right] \sigma\left(\left\|w^{*}\right\| x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right)\right] \\
=\mathbb{E}\left[x_{i} x_{j} \sigma\left(\left\|w^{*}\right\| x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right)\right] \\
=\mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]_{i, j}
\end{gathered}
$$

Lemma 4.4.

$$
\Sigma_{\text {passive }}=\left[\mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]\right]^{-1}
$$

Proof. For passive learning, by the convergence of $w^{n} \rightarrow w^{*}$ and by the law of large numbers,

$$
A_{n} \rightarrow A=\mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]
$$

Further, by independence of draws,

$$
\mathbb{E}\left[b_{n} b_{n}^{T}\right]=\mathbb{E}\left[\nabla l_{w^{*}}(x, y)\left(\nabla l_{w^{*}}(x, y)\right)^{T}\right]
$$

so by Lemma 6.3,

$$
\begin{gathered}
\mathbb{E}\left[b_{n} b_{n}^{T}\right]=\mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right] \\
B=\mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right] \\
B=A
\end{gathered}
$$

Thus,

$$
\begin{gathered}
\Sigma_{\text {passive }}=A^{-1} B A^{-1} \\
=A^{-1} \\
=\left[\mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]\right]^{-1}
\end{gathered}
$$

6.8. $C O V$ calculation for active

Lemma 6.4. For sufficiently small r (small with respect to dataset-only dependent constants), if $\left\|w^{\prime}-w^{*}\right\|_{2} \leq 2 r$, then

$$
\left\|\mathbb{E}_{w^{\prime} \cdot x=0}\left[\sigma(1-\sigma) x x^{T}\right]-\mathbb{E}_{w^{*} \cdot x=0}\left[\sigma(1-\sigma) x x^{T}\right]\right\|=O(r)
$$

and

$$
\left\|\mathbb{E}_{w^{\prime} \cdot x=0}\left[\sigma\left(-y x_{1}\left\|w^{*}\right\|\right)^{2} x x^{T}\right]-\mathbb{E}_{w^{*} \cdot x=0}\left[\sigma\left(-y x_{1}\left\|w^{*}\right\|\right)^{2} x x^{T}\right]\right\|=O(r)
$$

Proof. Without loss of generality (rotation and translation), let $w_{0}^{*}=0, w^{*}=\left\|w^{*}\right\| e_{1}$ and let $\hat{w}=c_{1} e_{1}+c_{2} e_{2}$.
We sample from places where $w_{0}^{\prime}+w_{1}^{\prime} x_{1}+w_{2}^{\prime} x_{2}=0$ which occurs when $x_{1}=\frac{w_{2}^{\prime}}{w_{1}^{\prime}} x_{2}+\frac{w_{0}^{\prime}}{w_{1}^{\prime}}=a x_{2}+b$. From the theorem assumption, we know that $\left|w_{0}^{\prime}\right|,\left|w_{2}^{\prime}\right| \leq r$ and $\left|w_{1}^{\prime}\right| \geq\left\|w^{*}\right\|-r \geq \frac{1}{2}\left\|w^{*}\right\|$ (for sufficiently small r) so we know that $|a|,|b| \leq O(r)$

Define $Q\left(x_{1}\right)=\sigma\left(\left\|w^{*}\right\| x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right)$ or $Q\left(x_{1}\right)=\sigma\left(-y x_{1}\left\|w^{*}\right\|\right)^{2}$ (abuse of notation). Both these functions are Lipschitz around $x_{1}=0$, and bounded (since support bounded by B).

First, we compute the joint (not the conditionals) and then we can divide by the marginals from the previous lemma,
Let $i_{1}, i_{2}, \ldots, i_{d}$ be indicators for the indices i, j that are non-zero. Thus, $i_{1}+i_{2}+\ldots+i_{d} \leq 2$,

$$
\begin{gathered}
\mathbb{E}_{w^{\prime} \cdot x=0}\left[\sigma(1-\sigma) x x^{T}\right]_{i, j}= \\
=\mathbb{E}_{w^{\prime} \cdot x=0}\left[Q\left(x_{1}\right)\left(x_{1}\right)^{i_{1}}\left(x_{2}\right)^{i_{2}}\left(x_{3}\right)^{i_{3}} \ldots\right]=
\end{gathered}
$$

(As before, the Jacobian of the change of variables has determinant 1)

$$
\begin{gathered}
\int_{x} p\left(x_{1}=a x+b, x_{2}=x\right) Q(a x+b)(a x+b)^{i_{1}}(x)^{i_{2}} \mathbb{E}\left[x_{3}^{i_{3}} \ldots \mid x_{1}=a x+b, x_{2}=x\right]= \\
=\int_{x} p\left(x_{2}=x\right)(x)^{i_{2}} F(a x+b, x)
\end{gathered}
$$

where $F\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right)\left(Q\left(x_{1}\right) x_{1}^{i_{1}}\right) \operatorname{mathbb} E\left[x_{3}^{i_{3}} \ldots \mid x_{1}, x_{2}\right]$
All three components of F are bounded, since support bounded, Assumption 3. Further, all three components are Lipschitz, because of Assumption 4 and bounded support as well. Therefore, F is Lipschitz.

$$
\begin{gathered}
\mid \int_{x} p\left(x_{2}=x\right)(x)^{i_{2}} F(a x+b, x)-\int_{x} p\left(x_{2}=x\right)(x)^{i_{2}} F(0, x) \\
\leq \int_{x} p\left(x_{2}=x\right)|x|^{i_{2}} L|a x+b| \\
\leq a L B^{i_{2}+1}+b L B^{i_{2}} \\
=O(r)
\end{gathered}
$$

Thus, for any i, j,

$$
\left\|\mathbb{E}_{w^{\prime} \cdot x=0}\left[Q x x^{T}\right]_{i, j}-\mathbb{E}_{w^{*} \cdot x=0}\left[Q x x^{T}\right]_{i, j}\right\|=O(r)
$$

We can use this to bound the matrix norm,

$$
\left\|\mathbb{E}_{w^{\prime} \cdot x=0}\left[Q x x^{T}\right]-\mathbb{E}_{w^{*} \cdot x=0}\left[Q x x^{T}\right]\right\|=O(r)
$$

Since the probabilities (see Lemma 6.1) and conditionals are both off by only $O(r)$ (from above) and since the probabilities are bounded away from 0 (see Lemma 6.1 and Assumption 8), the conditional distribution is off by $O(r)$. We can plug in both functions of Q to get the statement of the theorem.

Lemma 4.5.

$$
\Sigma_{\text {active }}=\left[(1-\alpha) \mathbb{E}_{x_{1}=0}\left[\sigma(1-\sigma) x x^{T}\right]+\alpha \mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]\right]^{-1}
$$

Proof. Because $w_{n} \rightarrow w^{*}$, and by the law of large numbers,

$$
A_{n} \rightarrow(1-\alpha) \mathbb{E}_{w^{\prime}}\left[\mathbb{E}_{w^{\prime} \cdot x=0}\left[\sigma\left(-y x_{1}\left\|w^{*}\right\|\right)^{2} x x^{T}\right]\right]+\alpha \mathbb{E}\left[\sigma\left(-y x_{1}\left\|w^{*}\right\|\right)^{2} x x^{T}\right]
$$

From Lemma 6.4,

$$
\left\|\mathbb{E}_{w^{\prime} \cdot x=0}\left[\sigma(1-\sigma) x x^{T}\right]-\mathbb{E}_{w^{*} \cdot x=0}\left[\sigma(1-\sigma) x x^{T}\right]\right\|=O(r)
$$

and $\left\|w^{\prime}-w^{*}\right\|<2 r$ with probability going to 1,

$$
A_{n} \rightarrow \frac{n-n_{\text {seed }}}{n}\left[(1-\alpha) \mathbb{E}_{w^{*} \cdot x=0}\left[\sigma(1-\sigma) x x^{T}\right]+O(r)+\alpha \mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]\right]
$$

Since $w_{0} \rightarrow w^{*}, r \rightarrow 0$, and since $n_{\text {seed }}=o(n)$ (see Assumption 2) so

$$
A_{n} \rightarrow A=(1-\alpha) \mathbb{E}_{w^{*} \cdot x=0}\left[\sigma(1-\sigma) x x^{T}\right]+\alpha \mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]
$$

The same line of argument with using Lemma 6.4 and Lemma 6.3 yields

$$
B=A
$$

So

$$
\begin{gathered}
\Sigma_{\text {active }}=A^{-1} B A^{-1}=A^{-1} \\
=\left[(1-\alpha) \mathbb{E}_{x_{1}=0}\left[\sigma(1-\sigma) x x^{T}\right]+\alpha \mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]\right]^{-1}
\end{gathered}
$$

6.9. Inverses Without First Coordinate

Lemma 6.5.

$$
\left[\begin{array}{cc}
a & \vec{a}^{T} \\
\vec{a} & A
\end{array}\right]^{-1}=\left[\begin{array}{cc}
b & \vec{b}^{T} \\
\vec{b} & B
\end{array}\right]
$$

Where

$$
\begin{gathered}
b=\frac{1}{a-\vec{a}^{T} A^{-1} \vec{a}} \\
\vec{b}=-b A^{-1} \vec{a} \\
B=A^{-1}+b\left(A^{-1} \vec{a}\right)\left(A^{-1} \vec{a}\right)^{T}
\end{gathered}
$$

Proof. Matrix algebra.

Lemma 6.6.

$$
\left(A^{-1}\right)_{-1}=\left(A_{-1}\right)^{-1}+\frac{\left(\left(A_{-1}\right)^{-1} A_{-1,1}\right)\left(\left(A_{-1}\right)^{-1} A_{-1,1}\right)^{T}}{A_{1,1}-A_{-1,1}^{T}\left(A_{-1}\right)^{-1} A_{-1,1}}
$$

Proof. Use the above theorem and note that $b>0$ so

$$
b\left(A^{-1} \vec{a}\right)\left(A^{-1} \vec{a}\right)^{T} \succeq 0
$$

6.10. Relating Err to expectation of sigmoid

Lemma 6.7.

$$
\frac{E r r}{2}<\mathbb{E}[\sigma(1-\sigma)]<E r r
$$

Proof.

$$
\begin{gathered}
\operatorname{Err}=P\left(y x_{1}\left\|w^{*}\right\|<0\right) \\
=P\left(x_{1}<0 \wedge y=1\right)+P\left(x_{1}>0 \wedge y=-1\right)
\end{gathered}
$$

From Assumption 7,

$$
\begin{gathered}
=\int_{-\infty}^{0} p_{x_{1}}\left(x_{1}\right) \sigma\left(-w_{1}^{*} x_{1}\right)+\int_{0}^{0 \infty} p_{x_{1}}\left(x_{1}\right) \sigma\left(w_{1}^{*} x_{1}\right) \\
=\int_{0}^{\infty}\left[p_{x_{1}}\left(-x_{1}\right)+p_{x_{1}}\left(x_{1}\right)\right] \sigma\left(w_{1}^{*} x_{1}\right)
\end{gathered}
$$

Additionally,

$$
\begin{gathered}
\mathbb{E}[\sigma(1-\sigma)]=\mathbb{E}\left[\sigma\left(y x_{1}\left\|w^{*}\right\|\right) \sigma\left(-y x_{1}\left\|w^{*}\right\|\right)\right] \\
=\mathbb{E}\left[\sigma\left(\left\|w^{*}\right\| x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right)\right] \\
=\int_{-\infty}^{0} p_{x_{1}}\left(x_{1}\right) \sigma\left(\left\|w^{*}\right\| x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right)+\int_{0}^{\infty} p_{x_{1}}\left(x_{1}\right) \sigma\left(\left\|w^{*}\right\| x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right) \\
=\int_{0}^{\infty}\left[p_{x_{1}}\left(-x_{1}\right)+p_{x_{1}}\left(x_{1}\right)\right] \sigma\left(\left\|w^{*}\right\| x_{1}\right) \sigma\left(-\left\|w^{*}\right\| x_{1}\right)
\end{gathered}
$$

Note that for $x_{1}>0, \frac{1}{2}<\sigma\left(-\left\|w^{*}\right\| x_{1}\right)<1$. Comparing equations, we get,

$$
\frac{E r r}{2}<\mathbb{E}[\sigma(1-\sigma)]<E r r
$$

6.11. Main DE bound

Theorem 4.1. For sufficiently small constant α (that depends on the dataset) and for $E r r<\epsilon<\epsilon_{0}$,

$$
D E(\epsilon)>\frac{s}{4 E r r}
$$

Proof. For convenience, define

$$
\begin{gathered}
Q=\mathbb{E}_{x_{1}=0}\left[\sigma(1-\sigma) x x^{T}\right] \\
R=\mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]=C O V_{\text {passive }} \\
S=\alpha R+(1-\alpha) Q=C O V_{\text {active }}
\end{gathered}
$$

By the definition of s,

$$
\mathbb{E}_{x_{1}=0}\left[x_{-1} x_{-1}^{T}\right] \succeq s \frac{\mathbb{E}\left[\sigma(1-\sigma) x_{-1} x_{-1}^{T}\right]}{\mathbb{E}[\sigma(1-\sigma)]}
$$

By Lemma 6.7,

$$
4 Q_{-1} \succ \frac{s}{E r r} R_{-1}
$$

For small enough α,

$$
\begin{gathered}
Q_{-1} \succ \frac{s /(4 E r r)-\alpha}{1-\alpha} R_{-1} \\
\alpha R_{-1}+(1-\alpha) Q_{-1} \succ \frac{s}{4 E r r} R_{-1} \\
S_{-1} \succ \frac{s}{4 E r r} R_{-1} \\
\frac{s}{4 E r r}\left(S_{-1}\right)^{-1} \prec\left(R_{-1}\right)^{-1} \preceq\left(R^{-1}\right)_{-1}
\end{gathered}
$$

The last step comes from noting that the right hand side of Lemma 6.6 positive semidefinite for A positive semidefinite.
Additionally, note that the first row and column of Q is 0 ,
so $S_{-1,1}=\alpha R_{-1,1}$ and $S_{1,1}=\alpha R_{1,1}$.
An examination yields,

$$
\frac{\left.\left.\left(S_{-1}\right)^{-1} S_{-1,1}\right)\left(S_{-1}\right)^{-1} S_{-1,1}\right)^{T}}{S_{1,1}-S_{-1,1}^{T}\left(S_{-1}\right)^{-1} S_{-1,1}}=O(\alpha)
$$

Using Lemma 6.6 , we find that we can make α small enough so that

$$
\begin{aligned}
& \frac{s}{4 E r r}\left(S^{-1}\right)_{-1} \prec\left(R^{-1}\right)_{-1} \\
& \frac{s}{4 E r r} C O V_{\text {active },-1} \prec C O V_{\text {passive },-1}
\end{aligned}
$$

so by Lemma 4.1, for $\operatorname{Err}<\epsilon<\epsilon_{0}$,

$$
D E(\epsilon)>\frac{s}{4 E r r}
$$

6.12. DE Bound Given Decomposition

We actually get a slightly more general result from the following lemma.
Lemma 6.8. If $p(x)=p\left(x_{1}\right) p\left(x_{-1}\right)$, then for sufficiently small constant α (that depends on the dataset), and for Err $<$ $\epsilon<\epsilon_{0}$,

$$
\frac{1}{4 E r r}<D E(\epsilon)<\frac{1}{2 E r r}\left(1+\frac{\mathbb{E}[\tilde{X}]}{\operatorname{Var}(\widetilde{X})}\right)
$$

where

$$
p(\widetilde{X}=x) \propto \sigma\left(\left\|w^{*}\right\| x\right)\left(1-\sigma\left(\left\|w^{*}\right\| x\right)\right) p\left(x_{1}=x\right)
$$

Proof. With the decomposition, in the Theorem 4.1, $s=1$. So we get for free that for $\operatorname{Err}<\epsilon<\epsilon_{0}$,

$$
D E(\epsilon)>\frac{1}{4 E r r}
$$

As before, for convenience, define

$$
\begin{gathered}
Q=\mathbb{E}_{x_{1}=0}\left[\sigma(1-\sigma) x x^{T}\right] \\
R=\mathbb{E}\left[\sigma(1-\sigma) x x^{T}\right]=C O V_{\text {passive }} \\
S=\alpha R+(1-\alpha) Q=C O V_{\text {active }}
\end{gathered}
$$

Because of the decomposition,

$$
\begin{gathered}
R_{2:, 2:}=\mathbb{E}[\sigma(1-\sigma)] \mathbb{E}\left[x_{2:} x_{2:}^{T}\right] \succ \frac{E r r}{2} \mathbb{E}\left[x_{2:} x_{2:}^{T}\right] \\
Q_{2:, 2:}=\frac{1}{4} \mathbb{E}\left[x_{2:} x_{2:}^{T}\right] \\
Q_{2:, 2:} \prec \frac{1}{2 E r r} R_{2:, 2:}
\end{gathered}
$$

For sufficiently small α,

$$
\begin{gathered}
Q_{2:, 2:} \prec \frac{1 /(2 E r r)-\alpha}{1-\alpha} R_{2:, 2:} \\
\alpha R_{2:, 2:}+(1-\alpha) Q_{2:, 2:} \prec \frac{1}{2 E r r} R_{2:, 2:} \\
S_{2:, 2:} \prec \frac{1}{2 E r r} R_{2:, 2:}
\end{gathered}
$$

Because of the decomposition, and because $\mathbb{E}\left[x_{2}:\right]=0$ (without loss of generality by translation),

$$
\begin{gathered}
R_{0: 1,2:}=0 \\
Q_{0: 1,2:}=0 \\
\frac{1}{2 E r r}\left(A^{-1}\right)_{2:, 2:} \\
\succ\left(R^{-1}\right)_{2:, 2}
\end{gathered}
$$

Now, let us examine the upper left corners,

$$
\begin{gathered}
R_{0: 1,0: 1}=\left[\begin{array}{cc}
\mathbb{E}[\sigma(1-\sigma)] & \mathbb{E}\left[\sigma(1-\sigma) x_{1}\right] \\
\mathbb{E}\left[\sigma(1-\sigma) x_{1}\right] & \mathbb{E}\left[\sigma(1-\sigma) x_{1}^{2}\right]
\end{array}\right] \\
S_{0: 1,0: 1}=\left[\begin{array}{cc}
(1-\alpha) / 4+\alpha \mathbb{E}[\sigma(1-\sigma)] & \alpha \mathbb{E}\left[\sigma(1-\sigma) x_{1}\right] \\
\alpha \mathbb{E}\left[\sigma(1-\sigma) x_{1}\right] & \alpha \mathbb{E}\left[\sigma(1-\sigma) x_{1}^{2}\right]
\end{array}\right]
\end{gathered}
$$

Denote

$$
D=\mathbb{E}[\sigma(1-\sigma)] \mathbb{E}\left[\sigma(1-\sigma) x_{1}^{2}\right]-\mathbb{E}\left[\sigma(1-\sigma) x_{1}\right]^{2}
$$

Then,

$$
\begin{gathered}
\left(R^{-1}\right)_{0,0}=\frac{\mathbb{E}\left[\sigma(1-\sigma) x_{1}^{2}\right]}{D} \\
\left(S^{-1}\right)_{0,0}=\frac{\alpha \mathbb{E}\left[\sigma(1-\sigma) x_{1}^{2}\right]}{\alpha(1-\alpha)(1 / 4) \mathbb{E}\left[\sigma(1-\sigma) x_{1}^{2}\right]+\alpha^{2} D} \\
\left(R^{-1}\right)_{0,0} /\left(S^{-1}\right)_{0,0}=\frac{1-\alpha}{4 \mathbb{E}[\sigma(1-\sigma)]}\left(1+\frac{\mathbb{E}\left[\sigma(1-\sigma) x_{1}\right]^{2}}{D}\right)+\alpha
\end{gathered}
$$

For small enough α,

$$
\left(R^{-1}\right)_{0,0} /\left(S^{-1}\right)_{0,0}<\frac{1}{2 E r r}\left(1+\frac{\mathbb{E}\left[\sigma(1-\sigma) x_{1}\right]^{2}}{D}\right)
$$

Combining the bounds on the two blocks of the matrices, we get that

$$
\begin{gathered}
\frac{1}{2 E r r}\left(1+\frac{\mathbb{E}\left[\sigma(1-\sigma) x_{1}\right]^{2}}{D}\right)\left(S^{-1}\right)_{-1} \succ\left(R^{-1}\right)_{-1} \\
\frac{1}{2 E r r}\left(1+\frac{\mathbb{E}\left[\sigma(1-\sigma) x_{1}\right]^{2}}{D}\right) C O V_{\text {active },-1} \succ C O V_{\text {passive },-1}
\end{gathered}
$$

So for $\epsilon<\epsilon_{0}$,

$$
D E(\epsilon)<\frac{1}{2 E r r}\left(1+\frac{\mathbb{E}\left[\sigma(1-\sigma) x_{1}\right]^{2}}{D}\right)
$$

if we define \widetilde{X} such that $p_{\tilde{X}}(x) \propto \sigma(1-\sigma) p_{x_{1}}(x)$,

$$
D E(\epsilon)<\frac{1}{2 E r r}\left(1+\frac{\mathbb{E}[\widetilde{X}]^{2}}{\operatorname{Var}(\widetilde{X})}\right)
$$

Theorem 4.2. If $p(x)=p\left(x_{1}\right) p\left(x_{-1}\right)$ and $p\left(x_{1}\right)=p\left(-x_{1}\right)$, then for sufficiently small constant α (that depends on the dataset), and for Err $<\epsilon<\epsilon_{0}$,

$$
\frac{1}{4 E r r}<D E(\epsilon)<\frac{1}{2 E r r}
$$

Proof. If $p\left(x_{1}\right)=p\left(-x_{1}\right)$, then $p(\widetilde{X})=p(-\widetilde{X})$ and so $\mathbb{E}[\widetilde{X}]=0$.
Using Lemma 6.8, we arrive at the conclusion.

