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6. Appendix
6.1. Notation

w0 is the weights after the seed round.

A−1 is the matrix without the first row and column. A1,−1 is the vector from the first row and all columns except the first
column.

Generally, the O(f(n)) notation hides constants that only depend on the dataset, such as ‖w∗‖, s, B, etc.

For the order of things going to zero, we first choose α to be small, then r to be small, then n to be large.

w0 is weight vector after seed round

εactive(n) = Ef∼active,npoints[Err(f)]

εpassive(n) = Ef∼passive,npoints[Err(f)]

DE(ε) =
max{n : εpassive(n) ≥ ε}
max{n : εactive(n) ≥ ε}

=
npassive(ε)

nactive(ε)

Without loss of generality, assume w∗ = ‖w∗‖e1, w∗0 = 0, and E[x2:] = 0.

With an abuse of notation, let σ = σ(w∗ · x) = σ(‖w∗‖x1).

6.2. Losses

Define σ(x) = 1
1+− exp(x) .

The loss (negative log-likelihood) for a single data point under logistic regression is

lw(x, y) = log(1 + exp(−w · yx))

and so the gradient is

∇lw(x, y) = − yx exp(−w · yx)

1 + exp(−w · yx)
= −yxσ(−w · yx)

and the Hessian is

∇2lw(x, y) =
(yx)(yx)T exp(w · yx)

(1 + exp(w · yx))2

=
xxT

(1 + exp(w · yx))(1 + exp(−w · yx))

= σ(w · yx)σ(−w · yx)xxT

Note that σ(−x) = 1− σ(x).

6.3. Decision Boundary

Lemma 6.1. For sufficiently small r, if ‖w′ − w∗‖2 ≤ 2r, then

|
∫
w′·x=0

p(x)−
∫
w∗·x=0

p(x)‖ = O(r)
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Proof. Without loss of generality (rotation and translation), let w∗0 = 0, w∗ = ‖w∗‖e1 and let w′ = w′1e1 + w′2e2.

We sample from places where w′0 + w′1x1 + w′2x2 = 0 which occurs when x1 =
w′2
w′1
x2 +

w′0
w′1

= ax2 + b. From the

theorem assumption, we know that |w′0|, |w′2| ≤ r and |w′1| ≥ ‖w∗‖ − r ≥ 1
2‖w

∗‖ (for sufficiently small r) so we know
that |a|, |b| ≤ O(r)

Note that

|
∫
w′·x=0

p(x)−
∫
w∗·x=0

p(x)‖ = ‖
∫
x

p(x1 = ax+ b, x2 = x)− p(x1 = 0)|

(Note that the Jacobian of the change of variables has the following matrix which has determinant 1)

[
1 0
−a 1

]

|
∫
w′·x=0

p(x)−
∫
w∗·x=0

p(x)‖ ≤
∫
x

|p(x1 = ax+ b|x2 = x)p(x2 = x)− p(x1 = 0|x2 = x)p(x2 = x)|

With the assumption that the conditional probabilities are Lipschitz,

≤
∫
x

L|ax+ b|p(x2 = x)

≤ aLB + bL

= O(r)

Lemma 6.2. For sufficiently small r, if ‖w0 − w∗‖2 ≤ r, then with probability going to 1 exponentially fast, all points
from two-stage uncertainty sampling are from some hyperplane w′ such that ‖w′ − w∗‖ ≤ 2r.

Proof. For small enough r, then
∫
w′·x=0

p(x) > p0/2 from the above lemma if ‖w0 − w∗‖2 ≤ 2r. Thus, the probability
of an unlabeled point within the parallel plane with bias less than r different from w0 such that ‖w′ − w0‖2 ≤ r is at least
2 r
‖w0‖ (p0/2) ≥ rp0

2‖w∗‖ = Θ(r) (for sufficiently small r).

Recall that npool = ω(n) and nseed = o(n).

For sufficiently large n, the probability of at least n points from the npool − nseed unlabeled points falling in this range is

Pr[Binomial(npool − nseed, probability of falling) ≥ n] ≥

Pr[Binomial(npool/2, C1r)) ≥ n]

for some constant C1.

We can use a Chernoff bound (standard with δ = 1/2) since npool = ω(n) to bound by exp(−ω(n)). Thus the probability
that the planes we choose from are farther than r away from w0 goes to 0 with rate faster than exp(−n).

6.4. Convergence

Lemma 4.2. Both two-stage uncertainty sampling and random sampling converge to w∗.

Proof. For passive learning, the Hessian of the population loss is positive definite because the data covariance is non-
singular (Assumption 8). Thus, the population loss has a unique optimum. By the definition of w∗, w∗ is the minimizer.
Since the sample loss converges to the population loss, the result of passive learning converges to w∗.
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By a similar argument, the weight vectorw0 after the seed round converges tow∗ since nseed is super-constant (Assumption
2). Thus, for any r > 0, with probability converging to 1 as n → ∞, ‖w0 − w∗‖ ≤ r ≤ λ/2. By Lemma 6.2, with
probability going to 1, all points selected are from hyperplanes w where ‖w − w∗‖ ≤ 2r ≤ λ. Thus, by Assumption
5, Ew·x=0[∇lw∗(x, y)] = 0. In the second stage, because of the α proportion of randomly selected points, the loss from
the new uncertainty sampling population has a unique optimum. And because the expectation of the gradient of the loss
is 0 for the points near the decision boundary (with probability going to 1), the result of two-stage uncertainty sampling
converges in probability to w∗.

6.5. Rates

Lemma. If Σ exists, and for any ε > 0, nPr[‖An −A‖ ≥ ε]→ 0 and nPr[‖wn −w∗‖ ≥ ε]→ 0, then there exist vectors
ck 6= 0 that depend only on the data distribution such that,

n(ε(n)− Err)→
∑
k

cTk Σ−1ck

Proof. The zero-one error is

Z(wn) = Pr[yx · wn < 0]

Since Z is twice differentiable at w∗, by Taylor’s theorem,

Z(wn) = Z(w∗)+(∇Z(w∗))T (wn−w∗)+(wn−w∗)T (
1

2
∇2Z(w∗))(wn−w∗)+(wn−w∗)TR(wn−w∗)(wn−w∗)T

where R(w)→ 0 as w → 0.

Since Z has a local optimum at w∗,∇Z(w∗) = 0. Also Z(w∗) = Err. Additionally, denote H = 1
2∇

2Z(w∗),

Z(wn) = Err + (wn − w∗)T (H +R(wn − w∗))(wn − w∗)

Choose any ε > 0. Since R(w) → 0 as w → 0, there is δε such that ‖w‖ ≤ δε =⇒ ‖R(w)‖ ≤ ε. Define near(n) to be
the event that ‖An −A‖ ≥ ε ∧ ‖wn − w∗‖ ≥ δε. Note that from the theorem assumption, nPr[¬near(n)]→ 0.

ε(n) = E[Z(wn)] = Pr[¬near(n)]E[Z(wn)|¬near(n)] + Pr[near(n)]E[Z(wn)|near(n)]

|nε(n)− nE[Z(wn)|near(n)]| ≤ nPr[¬near(n)]|E[Z(wn)|¬near(n)]− E[Z(wn)|near(n)]|

≤ nPr[¬near(n)]→ 0

Thus,

n(ε(n)− Err)→ n(E[Z(wn)|near(n)]− Err)

So we need to just worry about the convergence of the right side,

E[Z(wn)|near(n)] = Err +
1

n
E[(A−1n bn)T (H +R(wn − w∗))(A−1n bn)|near(n)]

n(E[Z(wn)|near(n)]− Err) = E[bTnA
−1
n (H +R(wn − w∗))A−1n bn|near(n)]
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Because we conditioned on near(n), ‖An − A‖ ≤ ε and ‖wn − w∗‖ ≤ δε and therefore ‖R(wn − w∗)‖ ≤ ε. So
‖A−1n (H +R(wn − w∗))A−1n −A−1HA−1‖ = O(ε). Using this, we get,

‖n(E[Z(wn)|near(n)]− Err)− E[bTnA
−1HA−1bn|near(n)]‖ ≤ ‖E[bTnO(ε)bn|near(n)]‖

≤ O(ε)‖E[‖bn‖2|near(n)]‖

≤ O(ε)‖E[bnb
T
n |near(n)]‖

Note that,
E[bnb

T
n ] = E[bnb

T
n |near(n)] Pr[near(n)] + E[bnb

T
n |¬near(n)] Pr[¬near(n)]

and the later two expectations exist since the left exists and the matrices are positive semidefinite. Passing through the
limit, we see that E[bnb

T
n |near(n)]→ B.

Thus, noting that we can drive ε→ 0,

n(E[Z(wn)|near(n)]− Err)→ E[bTnA
−1HA−1bn|near(n)]

→
∑
i,j

[A−1HA−1]i,jE[bnb
T
n |near(n)]i,j

→
∑
i,j

[A−1HA−1]i,jBi,j

Thus, putting this together, we see that

n(ε(n)− Err)→
∑
i,j

[A−1HA−1]i,jBi,j

Doing manipulations on the indices, we find,

∑
i,j

[A−1HA−1]i,jBi,j =
∑
i,j

Hi,j(A
−1BA−1)i,j

=
∑
i,j

Hi,jΣi,j

Therefore,

n(ε(n)− Err)→
∑
i,j

Hi,jΣi,j

and we are most of the way there, just need to use some properties to show the final form.

Since w∗ is a local optimum, H � 0 (and symmetric) and since the Hessian is not identically zero at w∗, H 6= 0.

Without loss of generality, let w∗ = ‖w∗‖e1 and w∗0 = 0 as assumed before. Note that Z(w∗ + αe1) = Z(w∗) for
α ∈ (−‖w∗‖/2,∞). Since it is constant along this line, (∇2Z(w∗))1,1 = 0, and so H1,1 = 0

So H � 0, H is symmetric, H 6= 0, and H1,1 = 0. Since H � 0 and H1,1 = 0, H1,i = 0 for all i.

Since H � 0 and H 6= 0,

H =
∑
k ckc

T
k

for some vectors ck (where there is at least one). And further, (ck)1 = 0.
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∑
i,j

Hi,jΣi,j =
∑
i,j

(
∑
k

ckc
T
k )i,jΣi,j

=
∑
k

cTk Σck

We can remove the first elements of ck and the first row and column of Σ without changing anything, so

∑
i,j

Hi,jΣi,j =
∑
k

cTk Σ−1ck

And thus the theorem is proved.

Lemma. If we have two algorithms a and b that satisfy the conditions of Lemma 2, and

Σa,−1 � cΣb,−1

then there exists ε0 such that for Err < ε < ε0,

na(ε) ≥ cnb(ε)

Proof.
Σa,−1 � αΣb,−1

∑
k

cTk Σa,−1ck > α
∑
k

cTk Σb,−1ck

so, for n > n0, n
′ > n0,

n(εa(n)− Err) > αn′(εb(n
′)− Err)

setting n′ = n/α and for n > max(n0, n0/α),

n(εa(n)− Err) > n(εb(n/α)− Err)

So for sufficiently large n,

εa(n) > εb(n/α)

For any ε > Err such that na(ε) is sufficiently large, (we know this exists since na(ε) = Θ( 1
ε−Err ))

εa(n) ≤ ε for n ≥ na(ε)

εb(n/α) ≤ ε for n ≥ na(ε)

εb(n
′) ≤ ε for n′ ≥ 1

α
na(ε)

nb(ε) ≤
1

α
na(ε)

na(ε) ≥ αnb(ε)
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Lemma 4.1. If we have two algorithms with Σa and Σb, and for any ε > 0 and both estimators, nPr[‖An −A‖ ≥ ε]→ 0
and nPr[‖wn − w∗‖ ≥ ε]→ 0, then

Σa,−1 � cΣb,−1

implies that for some ε0 and any Err < ε < ε0,

na(ε) ≥ cnb(ε)

Proof. This is a straightforward application of the above lemmas, Lemma 2 and Lemma 3.

6.6. Conditions satisfied

Lemma 4.3. For our active and passive learning algorithms, for any ε > 0, nPr[‖An − A‖ ≥ ε] → 0 and nPr[‖wn −
w∗‖ ≥ ε]→ 0

Proof. Recall that

An =
1

n

∑
i

∇2lw′(xi, yi)

bn =
1√
n

∑
i

∇lw∗(xi, yi)

where ‖w′ − w∗‖ ≤ ‖wn − w∗‖.

For passive learning, by CLT, for any ε, Pr[‖wn −w∗‖ > ε] = O( e
−Θ(n)
√
n

). Thus, we find that nPr[‖wn −w∗‖ ≥ ε]→ 0.

We also need this fact to bound w′. Then, with a Hoeffding bound on the sum of An, we can get that Pr[‖An−A‖ ≥ ε] =

O( e
−Θ(n)
√
n

) and thus nPr[‖An −A‖ ≥ ε]→ 0.

For active learning, we need to be careful because if ‖w0 − w∗‖ > λ/2, we are not even guaranteed that the final result
converges (see Lemma 6.2). However, by the CLT, we find that Pr[‖w0 − w∗‖ > λ/2] = O( e

−Θ(nseed)
√
nseed

). Because
nseed = Ω(nρ) (see Assumption 2), this converges exponentially fast and nPr[‖w0 − w∗‖ > λ/2]→ 0.

Because of the α random sampling, and conditioned on the probability that ‖w0 − w∗‖ < λ/2, we can get the same
results for active learning as for passive learning. Note that from Lemma 6.2, there is exponentially small probability of
not sampling all points from w′ where ‖w′ − w∗‖ < λ.

6.7. COV calculation for passive

Lemma 6.3. For passive learning, E[∇lw∗(x, y)(∇lw∗(x, y))T ] = E[σ(1− σ)xxT ].

Proof. Since the mean of the derivative of the loss is 0 at w∗,

E[∇lw∗(x, y)(∇lw∗(x, y))T ]i,j = E[xixjσ(−‖w∗‖yx1)2]

= Ex1
[E[xixj |x1]E[σ(‖w∗‖yx1)2|x1]]

= Ex1
[E[xixj |x1][P (y = 1|x1)σ(−‖w∗‖x1)2 + P (y = 1|x1)σ(‖w∗‖x1)2]]

from the calibrated assumption,
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= Ex1
[E[xixj |x1][σ(‖w∗‖x1)σ(−‖w∗‖x1)2 + σ(−‖w∗‖x1)σ(‖w∗‖x1)2]]

= Ex1
[E[xixj |x1]σ(‖w∗‖x1)σ(−‖w∗‖x1)[σ(|w∗‖x1) + σ(‖w∗‖x1)]]

= Ex1
[E[xixj |x1]σ(‖w∗‖x1)σ(−‖w∗‖x1)]

= E[xixjσ(‖w∗‖x1)σ(−‖w∗‖x1)]

= E[σ(1− σ)xxT ]i,j

Lemma 4.4.
Σpassive = [E[σ(1− σ)xxT ]]−1

Proof. For passive learning, by the convergence of wn → w∗ and by the law of large numbers,

An → A = E[σ(1− σ)xxT ]

Further, by independence of draws,

E[bnb
T
n ] = E[∇lw∗(x, y)(∇lw∗(x, y))T ]

so by Lemma 6.3,
E[bnb

T
n ] = E[σ(1− σ)xxT ]

B = E[σ(1− σ)xxT ]

B = A

Thus,

Σpassive = A−1BA−1

= A−1

= [E[σ(1− σ)xxT ]]−1

6.8. COV calculation for active

Lemma 6.4. For sufficiently small r (small with respect to dataset-only dependent constants), if ‖w′ − w∗‖2 ≤ 2r, then

‖Ew′·x=0[σ(1− σ)xxT ]− Ew∗·x=0[σ(1− σ)xxT ]‖ = O(r)

and

‖Ew′·x=0[σ(−yx1‖w∗‖)2xxT ]− Ew∗·x=0[σ(−yx1‖w∗‖)2xxT ]‖ = O(r)

Proof. Without loss of generality (rotation and translation), let w∗0 = 0, w∗ = ‖w∗‖e1 and let ŵ = c1e1 + c2e2.

We sample from places where w′0 + w′1x1 + w′2x2 = 0 which occurs when x1 =
w′2
w′1
x2 +

w′0
w′1

= ax2 + b. From the

theorem assumption, we know that |w′0|, |w′2| ≤ r and |w′1| ≥ ‖w∗‖ − r ≥ 1
2‖w

∗‖ (for sufficiently small r) so we know
that |a|, |b| ≤ O(r)
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Define Q(x1) = σ(‖w∗‖x1)σ(−‖w∗‖x1) or Q(x1) = σ(−yx1‖w∗‖)2 (abuse of notation). Both these functions are
Lipschitz around x1 = 0, and bounded (since support bounded by B).

First, we compute the joint (not the conditionals) and then we can divide by the marginals from the previous lemma,

Let i1, i2, ..., id be indicators for the indices i, j that are non-zero. Thus, i1 + i2 + ...+ id ≤ 2,

Ew′·x=0[σ(1− σ)xxT ]i,j =

= Ew′·x=0[Q(x1)(x1)i1(x2)i2(x3)i3 ...] =

(As before, the Jacobian of the change of variables has determinant 1)∫
x

p(x1 = ax+ b, x2 = x)Q(ax+ b)(ax+ b)i1(x)i2E[xi33 ...|x1 = ax+ b, x2 = x] =

=

∫
x

p(x2 = x)(x)i2F (ax+ b, x)

where F (x1, x2) = p(x1|x2)(Q(x1)xi11 )mathbbE[xi33 ...|x1, x2]

All three components of F are bounded, since support bounded, Assumption 3. Further, all three components are Lipschitz,
because of Assumption 4 and bounded support as well. Therefore, F is Lipschitz.

|
∫
x

p(x2 = x)(x)i2F (ax+ b, x)−
∫
x

p(x2 = x)(x)i2F (0, x)

≤
∫
x

p(x2 = x)|x|i2L|ax+ b|

≤ aLBi2+1 + bLBi2

= O(r)

Thus, for any i, j,

‖Ew′·x=0[QxxT ]i,j − Ew∗·x=0[QxxT ]i,j‖ = O(r)

We can use this to bound the matrix norm,

‖Ew′·x=0[QxxT ]− Ew∗·x=0[QxxT ]‖ = O(r)

Since the probabilities (see Lemma 6.1) and conditionals are both off by onlyO(r) (from above) and since the probabilities
are bounded away from 0 (see Lemma 6.1 and Assumption 8), the conditional distribution is off by O(r). We can plug in
both functions of Q to get the statement of the theorem.

Lemma 4.5.
Σactive = [(1− α)Ex1=0[σ(1− σ)xxT ] + αE[σ(1− σ)xxT ]]−1

Proof. Because wn → w∗, and by the law of large numbers,

An → (1− α)Ew′ [Ew′·x=0[σ(−yx1‖w∗‖)2xxT ]] + αE[σ(−yx1‖w∗‖)2xxT ]

From Lemma 6.4,
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‖Ew′·x=0[σ(1− σ)xxT ]− Ew∗·x=0[σ(1− σ)xxT ]‖ = O(r)

and ‖w′ − w∗‖ < 2r with probability going to 1,

An →
n− nseed

n
[(1− α)Ew∗·x=0[σ(1− σ)xxT ] +O(r) + αE[σ(1− σ)xxT ]]

Since w0 → w∗, r → 0, and since nseed = o(n) (see Assumption 2) so

An → A = (1− α)Ew∗·x=0[σ(1− σ)xxT ] + αE[σ(1− σ)xxT ]

The same line of argument with using Lemma 6.4 and Lemma 6.3 yields

B = A

So

Σactive = A−1BA−1 = A−1

= [(1− α)Ex1=0[σ(1− σ)xxT ] + αE[σ(1− σ)xxT ]]−1

6.9. Inverses Without First Coordinate

Lemma 6.5. [
a ~aT

~a A

]−1
=

[
b ~bT

~b B

]

Where

b =
1

a− ~aTA−1~a

~b = −bA−1~a

B = A−1 + b(A−1~a)(A−1~a)T

Proof. Matrix algebra.

Lemma 6.6.

(A−1)−1 = (A−1)−1 +
((A−1)−1A−1,1)((A−1)−1A−1,1)T

A1,1 −AT−1,1(A−1)−1A−1,1

Proof. Use the above theorem and note that b > 0 so

b(A−1~a)(A−1~a)T � 0
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6.10. Relating Err to expectation of sigmoid

Lemma 6.7.
Err

2
< E[σ(1− σ)] < Err

Proof.
Err = P (yx1‖w∗‖ < 0)

= P (x1 < 0 ∧ y = 1) + P (x1 > 0 ∧ y = −1)

From Assumption 7,

=

∫ 0

−∞
px1(x1)σ(−w∗1x1) +

∫ 0∞

0

px1(x1)σ(w∗1x1)

=

∫ ∞
0

[px1(−x1) + px1(x1)]σ(w∗1x1)

Additionally,

E[σ(1− σ)] = E[σ(yx1‖w∗‖)σ(−yx1‖w∗‖)]

= E[σ(‖w∗‖x1)σ(−‖w∗‖x1)]

=

∫ 0

−∞
px1

(x1)σ(‖w∗‖x1)σ(−‖w∗‖x1) +

∫ ∞
0

px1
(x1)σ(‖w∗‖x1)σ(−‖w∗‖x1)

=

∫ ∞
0

[px1
(−x1) + px1

(x1)]σ(‖w∗‖x1)σ(−‖w∗‖x1)

Note that for x1 > 0, 1
2 < σ(−‖w∗‖x1) < 1. Comparing equations, we get,

Err

2
< E[σ(1− σ)] < Err

6.11. Main DE bound

Theorem 4.1. For sufficiently small constant α (that depends on the dataset) and for Err < ε < ε0,

DE(ε) >
s

4Err

Proof. For convenience, define

Q = Ex1=0[σ(1− σ)xxT ]

R = E[σ(1− σ)xxT ] = COVpassive

S = αR+ (1− α)Q = COVactive

By the definition of s,

Ex1=0[x−1x
T
−1] � s

E[σ(1− σ)x−1x
T
−1]

E[σ(1− σ)]
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By Lemma 6.7,

4Q−1 �
s

Err
R−1

For small enough α,

Q−1 �
s/(4Err)− α

1− α
R−1

αR−1 + (1− α)Q−1 �
s

4Err
R−1

S−1 �
s

4Err
R−1

s

4Err
(S−1)−1 ≺ (R−1)−1 � (R−1)−1

The last step comes from noting that the right hand side of Lemma 6.6 positive semidefinite for A positive semidefinite.

Additionally, note that the first row and column of Q is 0,

so S−1,1 = αR−1,1 and S1,1 = αR1,1.

An examination yields,

(S−1)−1S−1,1)(S−1)−1S−1,1)T

S1,1 − ST−1,1(S−1)−1S−1,1
= O(α)

Using Lemma 6.6, we find that we can make α small enough so that

s

4Err
(S−1)−1 ≺ (R−1)−1

s

4Err
COVactive,−1 ≺ COVpassive,−1

so by Lemma 4.1, for Err < ε < ε0,

DE(ε) >
s

4Err

6.12. DE Bound Given Decomposition

We actually get a slightly more general result from the following lemma.
Lemma 6.8. If p(x) = p(x1)p(x−1), then for sufficiently small constant α (that depends on the dataset), and for Err <
ε < ε0,

1

4Err
< DE(ε) <

1

2Err
(1 +

E[X̃]

V ar(X̃)
)

where

p(X̃ = x) ∝ σ(‖w∗‖x)(1− σ(‖w∗‖x))p(x1 = x)
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Proof. With the decomposition, in the Theorem 4.1, s = 1. So we get for free that for Err < ε < ε0,

DE(ε) >
1

4Err

As before, for convenience, define

Q = Ex1=0[σ(1− σ)xxT ]

R = E[σ(1− σ)xxT ] = COVpassive

S = αR+ (1− α)Q = COVactive

Because of the decomposition,

R2:,2: = E[σ(1− σ)]E[x2:x
T
2:] �

Err

2
E[x2:x

T
2:]

Q2:,2: =
1

4
E[x2:x

T
2:]

Q2:,2: ≺
1

2Err
R2:,2:

For sufficiently small α,

Q2:,2: ≺
1/(2Err)− α

1− α
R2:,2:

αR2:,2: + (1− α)Q2:,2: ≺
1

2Err
R2:,2:

S2:,2: ≺
1

2Err
R2:,2:

Because of the decomposition, and because E[x2:] = 0 (without loss of generality by translation),

R0:1,2: = 0

Q0:1,2: = 0

1

2Err
(A−1)2:,2: � (R−1)2:,2:

Now, let us examine the upper left corners,

R0:1,0:1 =

[
E[σ(1− σ)] E[σ(1− σ)x1]

E[σ(1− σ)x1] E[σ(1− σ)x21]

]
S0:1,0:1 =

[
(1− α)/4 + αE[σ(1− σ)] αE[σ(1− σ)x1]

αE[σ(1− σ)x1] αE[σ(1− σ)x21]

]
Denote

D = E[σ(1− σ)]E[σ(1− σ)x21]− E[σ(1− σ)x1]2

Then,
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(R−1)0,0 =
E[σ(1− σ)x21]

D

(S−1)0,0 =
αE[σ(1− σ)x21]

α(1− α)(1/4)E[σ(1− σ)x21] + α2D

(R−1)0,0/(S
−1)0,0 =

1− α
4E[σ(1− σ)]

(1 +
E[σ(1− σ)x1]2

D
) + α

For small enough α,

(R−1)0,0/(S
−1)0,0 <

1

2Err
(1 +

E[σ(1− σ)x1]2

D
)

Combining the bounds on the two blocks of the matrices, we get that

1

2Err
(1 +

E[σ(1− σ)x1]2

D
)(S−1)−1 � (R−1)−1

1

2Err
(1 +

E[σ(1− σ)x1]2

D
)COVactive,−1 � COVpassive,−1

So for ε < ε0,

DE(ε) <
1

2Err
(1 +

E[σ(1− σ)x1]2

D
)

if we define X̃ such that pX̃(x) ∝ σ(1− σ)px1
(x),

DE(ε) <
1

2Err
(1 +

E[X̃]2

V ar(X̃)
)

Theorem 4.2. If p(x) = p(x1)p(x−1) and p(x1) = p(−x1), then for sufficiently small constant α (that depends on the
dataset), and for Err < ε < ε0,

1

4Err
< DE(ε) <

1

2Err

Proof. If p(x1) = p(−x1), then p(X̃) = p(−X̃) and so E[X̃] = 0.

Using Lemma 6.8, we arrive at the conclusion.


