
Smoothed Action Value Functions for Learning Gaussian Policies
(Supplementary Material)

Ofir Nachum 1 Mohammad Norouzi 1 George Tucker 1 Dale Schuurmans 1 2

1Google Brain 2Department of Computing Science, University of Alberta. Correspondence to: Ofir Nachum <ofir-
nachum@google.com>.

Proceedings of the 35 th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the
author(s).

Smoothed Action Value Functions for Learning Gaussian Policies

A. Proof of Theorem 1
We want to show that for any s, a,

∂Q̃π(s, a)

∂Σ(s)
=

1

2
· ∂

2Q̃π(s, a)

∂a2
(1)

We note that similar identities for Gaussian integrals exist in the literature (Price, 1958; Rezende et al., 2014) and point the
reader to these works for further information.

Proof. The specific identity we state may be derived using standard matrix calculus. We make use of the fact that

∂

∂A
|A|−1/2 = −1

2
|A|−3/2 ∂

∂A
|A| = −1

2
|A|−1/2A−1, (2)

and for symmetric A,
∂

∂A
||v||2A−1 = −A−1vvTA−1. (3)

We omit s from Σ(s) in the following equations for succinctness. The LHS of (1) is∫
A
Qπ(s, ã)

∂

∂Σ
N(ã|a,Σ)dã

=

∫
A
Qπ(s, ã) exp

{
−1

2
||ã− a||2Σ−1

}(
∂

∂Σ
|2πΣ|−1/2 − 1

2
|2πΣ|−1/2 ∂

∂Σ
||ã− a||2Σ−1

)
dã

=
1

2

∫
A
Qπ(s, ã)N(ã|a,Σ)

(
−Σ−1 + Σ−1(ã− a)(ã− a)TΣ−1

)
dã.

Meanwhile, towards tackling the RHS of (1) we note that

∂Q̃π(s, a)

∂a
=

∫
A
Qπ(s, ã)N(ã|a,Σ)Σ−1(ã− a)dã . (4)

Thus we have

∂2Q̃π(s, a)

∂a2
=

∫
A
Qπ(s, ã)

(
Σ−1(ã− a)

∂

∂a
N(ã|a,Σ) +N(ã|a,Σ)

∂

∂a
Σ−1(ã− a)

)
dã

=

∫
A
Qπ(s, ã)N(ã|a,Σ)(Σ−1(ã− a)(ã− a)TΣ−1 − Σ−1) dã .

�

B. Compatible Function Approximation
We claim that a Q̃πw is compatible with respect to µθ if

1. ∇aQ̃πw(s, a)
∣∣
a=µθ(s)

= ∇θµθ(s)Tw,

2. ∇w
∫
S

(
∇aQ̃πw(s, a)

∣∣
a=µθ(s)

− ∇aQ̃π(s, a)
∣∣
a=µθ(s)

)2

dρπ(s) = 0 (i.e., w minimizes the expected squared error

of the gradients).

Additionally, Q̃πw is compatible with respect to Σφ if

1. ∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

= ∇φΣφ(s)Tw,

Smoothed Action Value Functions for Learning Gaussian Policies

2. ∇w
∫
S

(
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

− ∇2
aQ̃

π(s, a)
∣∣
a=µθ(s)

)2

dρπ(s) = 0 (i.e., w minimizes the expected squared error

of the Hessians).

Proof. We shall show how the conditions stated for compatibility with respect to Σφ are sufficient. The reasoning for
µθ follows via a similar argument. We also refer the reader to Silver et al. (2014) which includes a similar procedure for
showing compatibility.

From the second condition for compatibility with respect to Σφ we have∫
S

(
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

−∇2
aQ̃

π(s, a)
∣∣
a=µθ(s)

)
∇w

(
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

)
dρπ(s) = 0 .

We may combine this with the first condition to find∫
S
∇2
aQ̃

π
w(s, a)

∣∣
a=µθ(s)

∇φΣφ(s)dρπ(s) =

∫
S
∇2
aQ̃

π(s, a)
∣∣
a=µθ(s)

∇φΣφ(s)dρπ(s) ,

which is the desired property for compatibility. �

C. Derivative Bellman Equations
The conditions for compatibility require training Q̃πw to fit the true Q̃π with respect to derivatives. Howevever, in RL
contexts, one often does not have access to the derivatives of the true Q̃π . In this section, we elaborate on a method to train
Q̃πw to fit the derivatives of the true Q̃π without access to true derivative information.

Our method relies on a novel formulation: derivative Bellman equations. We begin with the standard Q̃π Bellman equation
presented in the main paper:

Q̃π(s, a) =

∫
A
N(ã | a,Σ(s))Er̃,s̃′

[
r̃ + γQ̃π(s̃′, µ(s̃′))

]
dã . (5)

One may take derivatives of both sides to yield the following identity for any k:

∂kQ̃π(s, a)

∂ak
=

∫
A

∂kN(ã | a,Σ(s))

∂ak
Er̃,s̃′

[
r̃ + γQ̃π(s̃′, µ(s̃′))

]
dã . (6)

One may express the k-the derivative of a normal density for k ≤ 2 simply as

∂kN(ã | a,Σ(s))

∂ak
= N(ã | a,Σ(s))Σ(s)−k/2 ·Hk(Σ(s)−1/2(ã− a)), (7)

where Hk is a polynomial. Therefore, we have the following derivative Bellman equations for any k ≤ 2:

∂kQ̃π(s, a)

∂ak
=

∫
A
N(ã | a,Σ(s))Σ(s)−k/2 ·Hk(Σ(s)−1/2(ã− a))Er̃,s̃′

[
r̃ + γQ̃π(s̃′, µ(s̃′))

]
dã . (8)

One may train a parameterized Q̃πw to satisfy these consistencies in a manner similar to that described in Section 4.2.
Specifically, suppose one has access to a tuple (s, ã, r̃, s̃′) sampled from a replay buffer with knowledge of the sampling
probability q(ã | s) (possibly unnormalized) with full support. Then we draw a phantom action a ∼ N(ã,Σ(s)) and
optimize Q̃πw(s, a) by minimizing a weighted derivative Bellman error

1

q(ã|s)

(
∂kQ̃πw(s, a)

∂ak
− Σ(s)−k/2 ·Hk(Σ(s)−1/2(a− ã))(r̃ + γQ̃πw(s̃′, µ(s̃′)))

)2

, (9)

for k = 0, 1, 2. As in the main text, it is possible to argue that when using target networks, this training procedure reaches
an optimum when Q̃πw(s, a) satisfies the recursion in the derivative Bellman equations (8) for k = 0, 1, 2.

Smoothed Action Value Functions for Learning Gaussian Policies

Hyperparameter Range Sampling
actor learning rate [1e-6,1e-3] log
critic learning rate [1e-6,1e-3] log

reward scale [0.01,0.3] log
OU damping [1e-4,1e-3] log
OU stddev [1e-3,1.0] log

λ [1e-6, 4e-2] log
discount factor 0.995 fixed

target network lag 0.01 fixed
batch size 128 fixed

clipping on gradients of Q 4.0 fixed
num gradient updates per observation 1 fixed

Huber loss clipping 1.0 fixed

Table 1. Random hyperparameter search procedure. We also include the hyperparameters which we kept fixed.

D. Implementation Details
We utilize feed forward networks for both policy and Q-value approximator. For µθ(s) we use two hidden layers of
dimensions (400, 300) and relu activation functions. For Q̃πw(s, a) and Qπw(s, a) we first embed the state into a 400
dimensional vector using a fully-connected layer and tanh non-linearity. We then concatenate the embedded state with a
and pass the result through a 1-hidden layer neural network of dimension 300 with tanh activations. We use a diagonal
Σφ(s) = eφ for Smoothie, with φ initialized to −1.

To find optimal hyperparameters we perform a 100-trial random search over the hyperparameters specified in Table 1.
The OU exploration parameters only apply to DDPG. The λ coefficient on KL-penalty only applies to Smoothie with a
KL-penalty.

D.1. Fast Computation of Gradients and Hessians

The Smoothie algorithm relies on the computation of the gradients ∂Q̃πw(s,a)
∂a and Hessians ∂2Q̃πw(s,a)

∂a2 . In general, these
quantities may be computed through multiple backward passes of a computation graph. However, for faster training, in our
implementation we take advantage of a more efficient computation. We make use of the following identities:

∂

∂x
f(g(x)) = f ′(g(x))

∂

∂x
g(x), (10)

∂2

∂x2
f(g(x)) =

(
∂

∂x
g(x)

)T
f ′′(g(x))

∂

∂x
g(x) + f ′(g(x))

∂2

∂x2
g(x). (11)

Thus, during the forward computation of our critic network Q̃πw, we not only maintain the tensor output OL of layer L, but
also the tensor GL corresponding to the gradients of OL with respect to input actions and the tensor HL corresponding to
the Hessians of OL with respect to input actions. At each layer we may compute OL+1, GL+1, HL+1 given OL, GL, HL.
Moreover, since we utilize feed-forward fully-connected layers, the computation of OL+1, GL+1, HL+1 may be computed
using fast tensor products.

References
Price, R. A useful theorem for nonlinear devices having gaussian inputs. IRE Transactions on Information Theory, 4(2):

69–72, 1958.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference in deep generative
models. In International Conference on Machine Learning, pp. 1278–1286, 2014.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. Deterministic policy gradient algorithms. In
ICML, 2014.

