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Abstract
Data that is gathered adaptively — via bandit al-
gorithms, for example — exhibits bias. This is
true both when gathering simple numeric val-
ued data — the empirical means kept track of
by stochastic bandit algorithms are biased down-
wards — and when gathering more complicated
data — running hypothesis tests on complex data
gathered via contextual bandit algorithms leads
to false discovery. In this paper, we show that this
problem is mitigated if the data collection proce-
dure is differentially private. This lets us both
bound the bias of simple numeric valued quanti-
ties (like the empirical means of stochastic ban-
dit algorithms), and correct the p-values of hy-
pothesis tests run on the adaptively gathered data.
Moreover, there exist differentially private bandit
algorithms with near optimal regret bounds: we
apply existing theorems in the simple stochastic
case, and give a new analysis for linear contex-
tual bandits. We complement our theoretical re-
sults with experiments validating our theory1.

1. Introduction
Many modern data sets consist of data that is gathered
adaptively: the choice of whether to collect more data
points of a given type depends on the data already col-
lected. For example, it is common in industry to conduct
“A/B” tests to make decisions about many things, including
ad targeting, user interface design, and algorithmic modifi-
cations, and this A/B testing is often conducted using “ban-
dit learning algorithms” (Bubeck et al., 2012), which adap-
tively select treatments to show to users in an effort to find
the best treatment as quickly as possible. Similarly, sequen-
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tial clinical trials may halt or re-allocate certain treatment
groups due to preliminary results, and empirical scientists
may initially try and test multiple hypotheses and multiple
treatments, but then decide to gather more data in support
of certain hypotheses and not others, based on the results
of preliminary statistical tests.

Unfortunately, as demonstrated by (Nie et al., 2017), the
data that results from adaptive data gathering procedures
will often exhibit substantial bias. As a result, subsequent
analyses that are conducted on the data gathered by adap-
tive procedures will be prone to error, unless the bias is
explicitly taken into account. This can be difficult. (Nie
et al., 2017) give a selective inference approach: in sim-
ple stochastic bandit settings, if the data was gathered by a
specific stochastic algorithm that they design, they give an
MCMC based procedure to perform maximum likelihood
estimation to recover de-biased estimates of the underly-
ing distribution means. In this paper, we give a related,
but orthogonal approach whose simplicity allows for a sub-
stantial generalization beyond the simple stochastic bandits
setting. We show that in very general settings, if the data is
gathered by a differentially private procedure, then we can
place strong bounds on the bias of the data gathered, with-
out needing any additional de-biasing procedure. Via ele-
mentary techniques, this connection implies the existence
of simple stochastic bandit algorithms with nearly optimal
worst-case regret bounds, with very strong bias guaran-
tees. By leveraging existing connections between differen-
tial privacy and adaptive data analysis (Dwork et al., 2015c;
Bassily et al., 2016; Rogers et al., 2016), we can extend the
generality of our approach to bound not just bias, but to
correct for effects of adaptivity on arbitrary statistics of the
gathered data. Since the data being gathered will generally
be useful for some as yet unspecified scientific analysis,
rather than just for the narrow problem of mean estimation,
our technique allows for substantially broader possibilities
compared to past approaches.

1.1. Our Results

This paper has three main contributions:

1. Using elementary techniques, we provide explicit
bounds on the bias of empirical arm means main-
tained by bandit algorithms in the simple stochastic
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setting that make their selection decisions as a dif-
ferentially private function of their observations. To-
gether with existing differentially private algorithms
for stochastic bandit problems, this yields an algo-
rithm that obtains an essentially optimal worst-case re-
gret bound, and guarantees minimal bias (on the order
of O(1/

√
K · T )) for the empirical mean maintained

for every arm. In the full version (Neel & Roth, 2018),
we also extend our results to the linear contextual ban-
dit problem, proving new bounds for a private linear
UCB algorithm along the way.

2. We then make a general observation, relating adap-
tive data gathering to an adaptive analysis of a fixed
dataset (in which the choice of which query to pose to
the dataset is adaptive). This lets us apply the large
existing literature connecting differential privacy to
adaptive data analysis. In particular, it lets us apply
the max-information bounds of (Dwork et al., 2015b;
Rogers et al., 2016) to our adaptive data gathering set-
ting. This allows us to give much more general guar-
antees about the data collected by differentially pri-
vate collection procedures, that extend well beyond
bias. For example, it lets us correct the p-values for
arbitrary hypothesis tests run on the gathered data.

3. Finally, we run a set of experiments that measure
the bias incurred by the standard UCB algorithm in
the stochastic bandit setting, contrast it with the low
bias obtained by a private UCB algorithm, and show
that there are settings of the privacy parameter that
simultaneously can make bias statistically insignifi-
cant, while having competitive empirical regret with
the non-private UCB algorithm. We also demonstrate
in the linear contextual bandit setting how failing to
correct for adaptivity can lead to false discovery when
applying t-tests for non-zero regression coefficients
on an adaptively gathered dataset.

1.2. Related Work

This paper bridges two recent lines of work. Our starting
point is two recent papers: (Villar et al., 2015) empirically
demonstrate in the context of clinical trials that a variety of
simple stochastic bandit algorithms produce biased sample
mean estimates (Similar results have been empirically ob-
served in the context of contextual bandits (Dimakopoulou
et al., 2017)). (Nie et al., 2017) prove that simple stochastic
bandit algorithms that exhibit two natural properties (satis-
fied by most commonly used algorithms, including UCB
and Thompson Sampling) result in empirical means that
exhibit negative bias. They then propose a heuristic algo-
rithm which computes a maximum likelihood estimator for
the sample means from the empirical means gathered by
a modified UCB algorithm which adds Gumbel noise to

the decision statistics. (Deshpande et al., 2017) propose
a debiasing procedure for ordinary least-squares estimates
computed from adaptively gathered data that trades off bias
for variance, and prove a central limit theorem for their
method. In contrast, the methods we propose in this paper
are quite different. Rather than giving an ex-post debiasing
procedure, we show that if the data were gathered in a dif-
ferentially private manner, no debiasing is necessary. The
strength of our method is both in its simplicity and gen-
erality: rather than proving theorems specific to particular
estimators, we give methods to correct the p-values for ar-
bitrary hypothesis tests that might be run on the adaptively
gathered data.

The second line of work is the recent literature on adap-
tive data analysis (Dwork et al., 2015c;b; Hardt & Ull-
man, 2014; Steinke & Ullman, 2015; Russo & Zou, 2016;
Wang et al., 2016; Bassily et al., 2016; Hardt & Blum,
2015; Cummings et al., 2016; Feldman & Steinke, 2017a;b)
which draws a connection between differential privacy
(Dwork et al., 2006) and generalization guarantees for
adaptively chosen statistics. The adaptivity in this setting
is dual to the setting we study in the present paper: In the
adaptive data analysis literature, the dataset itself is fixed,
and the goal is to find techniques that can mitigate bias due
to the adaptive selection of analyses. In contrast, here, we
study a setting in which the data gathering procedure is it-
self adaptive, and can lead to bias even for a fixed set of
statistics of interest. However, we show that adaptive data
gathering can be re-cast as an adaptive data analysis pro-
cedure, and so the results from the adaptive data analysis
literature can be ported over.

2. Preliminaries
2.1. Simple Stochastic Bandit Problems

In a simple stochastic bandit problem, there are K un-
known distributions Pi over the unit interval [0,1], each
with (unknown) mean µi. Over a series of rounds t ∈
{1, . . . , T}, an algorithm A chooses an arm it ∈ [K], and
observes a reward yit,t ∼ Pit . Given a sequence of choices
i1, . . . , iT , the pseudo-regret of an algorithm is defined to
be:

Regret((P1, . . . , PK), i1, . . . , iT ) = T ·max
i
µi −

T∑
t=1

µit

We say that regret is bounded if we can put a bound on
the quantity Regret((P1, . . . , PK), i1, . . . , iT ) in the worst
case over the choice of distributions P1, . . . , PK , and with
high probability or in expectation over the randomness of
the algorithm and of the reward sampling.

As an algorithm A interacts with a bandit problem, it gen-
erates a history Λ , which records the sequence of actions
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taken and rewards observed thus far: Λt = {(i`, yi`,`)}
t−1
`=1.

We denote the space of histories of length T by HT =
([K]× R)T .

The definition of an algorithm A induces a sequence of T
(possibly randomized) selection functions ft : Ht−1 →
[K], which map histories onto decisions of which arm to
pull at each round.

2.2. Contextual Bandit Problems

In the contextual bandit problem, decisions are endowed
with observable features. Our algorithmic results in this
paper focus on the linear contextual bandit problem, but
our general connection between adaptive data gathering
and differential privacy extends beyond the linear case. For
simplicity of exposition, we specialize to the linear case
here.

There are K arms i, each of which is associated with an
unknown d-dimensional linear function represented by a
vector of coefficients θi ∈ Rd with ||θi||2 ≤ 1. In rounds
t ∈ {1, . . . , T}, the algorithm is presented with a context
xi,t ∈ Rd for each arm i with ||xi,t||2 ≤ 1, which may
be selected by an adaptive adversary as a function of the
past history of play. We write xt to denote the set of all K
contexts present at round t. As a function of these contexts,
the algorithm then selects an arm it, and observes a reward
yit,t. The rewards satisfy E [yi,t] = θi·xi,t and are bounded
to lie in [0, 1].

In the contextual setting, histories incorporate observed
context information as well: Λt = {(i`, x`, yi`,`)}

t−1
`=1.

Again, the definition of an algorithmA induces a sequence
of T (possibly randomized) selection functions ft : Ht−1×
Rd×K → [K], which now maps both a history and a set of
contexts at round t to a choice of arm at round t.

2.3. Data Gathering in the Query Model

Above we’ve characterized a bandit algorithmA as gather-
ing data adaptively using a sequence of selection functions
ft, which map the observed history Λt ∈ Ht−1 to the index
of the next arm pulled. In this model only after the arm is
chosen is a reward drawn from the appropriate distribution.
Then the history is updated, and the process repeats.

In this section, we observe that whether the reward is drawn
after the arm is “pulled,” or in advance, is a distinction
without a difference. We cast this same interaction into
the setting where an analyst asks an adaptively chosen se-
quence of queries to a fixed dataset, representing the arm
rewards. The process of running a bandit algorithm A up
to time T can be formalized as the adaptive selection of T
queries against a single database of size T - fixed in ad-
vance. The formalization consists of observing two things.

First, by the principle of deferred randomness, we can view
any (simple or contextual) bandit algorithm as operating in
a setting in the rewards available for every arm at every
time step have been sampled before the start of the algo-
rithm, rather than online as the algorithm makes its selec-
tions. Second, the choice of arm pulled at time t by the
bandit algorithm can be viewed as the answer to an adap-
tively selected query against this fixed dataset of rewards.

Adaptive data analysis is formalized as an interaction in
which a data analystA performs computations on a dataset
D, observes the results, and then may choose the identity
of the next computation to run as a function of previously
computed results (Dwork et al., 2015c;a). A sequence of
recent results shows that if the queries are differentially pri-
vate in the dataset D, then they will not in general overfit
D, in the sense that the distribution over results induced by
computing q(D) will be “similar” to the distribution over
results induced if q were run on a new dataset, freshly sam-
pled from the same underlying distribution (Dwork et al.,
2015c;a; Bassily et al., 2016; Dwork et al., 2015b; Rogers
et al., 2016). We will be more precise about what these
results say in Section 4.

Recall that histories Λ record the choices of the algorithm,
in addition to its observations. It will be helpful to intro-
duce notation that separates out the choices of the algorithm
from its observations. In the simple stochastic setting and
the contextual setting, given a history Λt, an action history
ΛAt = (i1, . . . , it−1) ∈ [K]t−1 denotes the portion of the
history recording the actions of the algorithm.

In the simple stochastic setting, a bandit tableau is a T ×K
matrix D ∈

(
[0, 1]K

)T
. Each row Dt of D is a vector of

K real numbers, intuitively representing the rewards that
would be available to a bandit algorithm at round t for each
of the K arms. In the contextual setting, a bandit tableau is
represented by a pair of T ×K matrices: D ∈

(
[0, 1]K

)T
and C ∈

(
(Rd)K

)T
. Intuitively, C represents the contexts

presented to a bandit algorithm A at each round: each row
Ct corresponds to a set of K contexts, one for each arm. D
again represents the rewards that would be available to the
bandit algorithm at round t for each of the K arms.

We write Tab to denote a bandit tableau when the setting
has not been specified: implicitly, in the simple stochastic
case, Tab = D, and in the contextual case, Tab = (D,C).

Given a bandit tableau and a bandit algorithm A, we have
the following interaction:

We denote the subset of the reward tableau D correspond-
ing to rewards that would have been revealed to a bandit al-
gorithmA given action history ΛAt , by ΛAt (D). Concretely
if ΛAt = (i1, . . . , it−1) then ΛAt (D) = {(i`, yi`,`)}

t−1
`=1.

Given a selection function ft and an action history ΛAt , de-
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Interact
Inputs: Time horizon T , bandit algorithm A, and bandit
tableau Tab (D in the simple stochastic case, (D,C) in
the contextual case)

1: for t = 1 to T do
2: (contextual case) ShowA contexts Ct,1, . . . , Ct,K
3: Let A play action it
4: Show A reward Dt,it

5: end for
6: Return: (i1, . . . , iT )

fine the query qΛAt
as qΛAt

(D) = ft(Λ
A
t (D)).

We now define Algorithms Bandit and InteractQuery.
Bandit is a standard contextual bandit algorithm defined
by selection functions ft, and InteractQuery is the Inter-
act routine that draws the rewards in advance, and at time t
selects action it as the result of query qΛAt

. With the above
definitions in hand, it is straightforward to show that the
two Algorithms are equivalent, in that they induce the same
joint distribution on their outputs. In both algorithms for
convenience we assume we are in the linear contextual set-
ting, and we write ηit to denote the i.i.d. error distributions
of the rewards, conditional on the contexts.

Bandit
Inputs: T, k, {xit}, {θi}, ft,Λ0 = ∅

1: for t = 1, . . . , T : do
2: Let it = ft(Λt−1)
3: Draw yit,t ∼ xit,t · θit + ηit
4: Update Λt = Λt−1 ∪ (it, yit,t)
5: end for
6: Return: ΛT

InteractQuery
Inputs: T, k,D : Dit = θi · xit + ηit, ft

1: for t = 1, . . . , T : do
2: Let qt = qΛAt−1

3: Let it = qt(D)
4: Update ΛAt = ΛAt−1 ∪ it
5: end for
6: Return: ΛAT

Claim 1. Let P1,t be the joint distribution induced by
Algorithm Bandit on Λt at time t, and let P2,t be the
joint distribution induced by Algorithm InteractQuery on
Λt = ΛAt (D). Then ∀t P1,t = P2,t.

The upshot of this equivalence is that we can import ex-
isting results that hold in the setting in which the dataset

is fixed, and queries are adaptively chosen. There are a
large collection of results of this form that apply when
the queries are differentially private (Dwork et al., 2015c;
Bassily et al., 2016; Rogers et al., 2016) which apply di-
rectly to our setting. In the next section we formally define
differential privacy in the simple stochastic and contextual
bandit setting, and leave the description of the more general
transfer theorems to Section 4.

2.4. Differential Privacy

We will be interested in algorithms that are differentially
private. In the simple stochastic bandit setting, we will re-
quire differential privacy with respect to the rewards. In
the contextual bandit setting, we will also require differen-
tial privacy with respect to the rewards, but not necessarily
with respect to the contexts.

We now define the neighboring relation we need to define
bandit differential privacy:

Definition 1. In the simple stochastic setting, two bandit
tableau’s D,D′ are reward neighbors if they differ in at
most a single row: i.e. if there exists an index ` such that
for all t 6= `, Dt = D′t.

In the contextual setting, two bandit tableau’s
(D,C), (D′, C ′) are reward neighbors if C = C ′

and D and D′ differ in at most a single row: i.e. if there
exists an index ` such that for all t 6= `, Dt = D′t.

Note that changing a context does not result in a neighbor-
ing tableau: this neighboring relation will correspond to
privacy for the rewards, but not for the contexts.
Remark 1. Note that we could have equivalently defined
reward neighbors to be tableaus that differ in only a single
entry, rather than in an entire row. The distinction is unim-
portant in a bandit setting, because a bandit algorithm will
be able to observe only a single entry in any particular row.

Definition 2. A bandit algorithm A is (ε, δ) reward differ-
entially private if for every time horizon T and every pair
of bandit tableau Tab,Tab′ that are reward neighbors, and
every subset S ⊆ [K]T :

P [Interact(T,A,Tab) ∈ S] ≤

eεP
[
Interact(T,A,Tab′) ∈ S

]
+ δ

If δ = 0, we say that A is ε-differentially private.

3. Privacy Reduces Bias in Stochastic Bandit
Problems

We begin by showing that differentially private algorithms
that operate in the stochastic bandit setting compute empiri-
cal means for their arms that are nearly unbiased. Together
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with known differentially private algorithms for stochas-
tic bandit problems, the result is an algorithm that obtains
a nearly optimal (worst-case) regret guarantee while also
guaranteeing that the collected data is nearly unbiased. We
could (and do) obtain these results by combining the re-
duction to answering adaptively selected queries given by
Theorem 1 with the standard generalization theorems in
adaptive data analysis (e.g. Corollary 2 in its most gen-
eral form), but we first prove these de-biasing results from
first principles to build intuition.

Theorem 1. Let A be an (ε, δ)-differentially private algo-
rithm in the stochastic bandit setting. Then, for all i ∈ [K],
and all t, we have:∣∣∣E [Ŷ ti − µi]∣∣∣ ≤ (eε − 1 + Tδ)µi

Remark 2. Note that since µi ∈ [0, 1], and for ε � 1,
eε ≈ 1+ε, this theorem bounds the bias by roughly ε+Tδ.
Often, we will have δ = 0 and so the bias will be bounded
by roughly ε.

Proof. First we fix some notation. Fix any time horizon
T , and let (ft)t∈[T ] be the sequence of selection functions
induced by algorithm A. Let 1{ft(Λt)=i} be the indicator
for the event that arm i is pulled at time t. We can write the
random variable representing the sample mean of arm i at
time T as

Ŷ Ti =

T∑
t=1

1{ft(Λt)=i}∑T
t′=1 1{ft′ (Λt′ )=i}

yit

where we recall that yi,t is the random variable representing
the reward for arm i at time t. Note that the numerator
(ft(Λt) = i) is by definition independent of yi,t, but the
denominator (

∑T
t′=1 1{ft′ (Λt′ )=i}) is not, because for t′ >

tΛt′ depends on yi,t. It is this dependence that leads to bias
in adaptive data gathering procedures, and that we must
argue is mitigated by differential privacy.

We recall that the random variable NT
i represents the num-

ber of times arm i is pulled through round T : NT
i =∑T

t′=1 1{ft′ (Λt′ )=i}. Using this notation, we write the sam-
ple mean of arm i at time T , as:

Ŷ Ti =

T∑
t=1

1{ft(Λt)=i}

NT
i

· yit

We can then calculate:

E[Ŷ ti ] =

T∑
t=1

E[
1{ft(Λt)=i}

NT
i

yit]

=

T∑
t=1

E
yit∼Pi

[yit · E
A

[
1{ft(Λt)=i}

NT
i

|yit]]

where the first equality follows by the linearity of expecta-
tion, and the second follows by the law of iterated expecta-
tion.

Our goal is to show that the conditioning in the inner ex-
pectation does not substantially change the value of the ex-
pectation. Specifically, we want to show that all t, and any
value yit, we have

E[
1{ft(Λt)=i}

Ni
|yit] ≥ e−ε E[

1{ft(Λt)=i}

NT
i

]− δ

If we can show this, then we will have

E[Ŷ Ti ] ≥ (e−ε
T∑
t=1

E[
1{ft(Λt)=i}

NT
i

]− Tδ) · µi

= (e−ε E[
NT
i

NT
i

]− Tδ) · µi = (e−ε − Tδ) · µi

which is what we want (The reverse inequality is symmet-
ric).

This is what we now show to complete the proof. Ob-
serve that for all t, i, the quantity 1{ft(Λt)=i}

Ni
can be de-

rived as a post-processing of the sequence of choices
(f1(Λ1), . . . , fT (ΛT )), and is therefore differentially pri-
vate in the observed reward sequence. Observe also that
the quantity 1{ft(Λt)=i}

NTi
is bounded in [0, 1]. Hence (by a

lemma in the full version) for any pair of values yit, y′it,
we have E[

1{ft(Λt)=i}
NTi

|yit] ≥ e−ε E[
1{ft(Λt)=i}

NTi
|y′it]− δ. All

that remains is to observe that there must exist some value
y′it such that E[

1{ft(Λt)=i}
Ni

|y′it] ≥ E[
1{ft(Λt)=i}

Ni
]. (Other-

wise, this would contradict Ey′it∼Pi [E[
1{ft(Λt)=i}

Ni
|y′it]] =

E[
1{ft(Λt)=i}

NTi
]). Fixing any such y′it implies that for all yit

E[
1{ft(Λt)=i}

Ni
|yit] ≥ e−ε E[

1{ft(Λt)=i}

NT
i

|y′i,t]− δ

≥ e−ε E[
1{ft(Λt)=i}

NT
i

]− δ

as desired. The upper bound on the bias follows symmetri-
cally.

3.1. A Private UCB Algorithm

There are existing differentially private variants of the clas-
sic UCB algorithm ((Auer et al., 2002; Agrawal, 1995;
Lai & Robbins, 1985)), which give a nearly optimal trade-
off between privacy and regret (Mishra & Thakurta, 2014;
Tossou & Dimitrakakis, 2017; 2016). For completeness,
we give a simple version of a private UCB algorithm in the
full version which we use in our experiments. Here, we
simply quote the relevant theorem, which is a consequence
of a theorem in (Tossou & Dimitrakakis, 2016):
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Theorem 2. (Tossou & Dimitrakakis, 2016) There is an ε-
differentially private algorithm that obtains expected regret
bounded by:

O

(
max

(
lnT

ε
· (ln ln(T ) + ln(1/ε)) ,

√
kT log T

))

Thus, we can take ε to be as small as ε = O( ln1.5 T√
kT

)

while still having a regret bound of O(
√
kT log T ), which

is nearly optimal in the worst case (over instances) (Audib-
ert & Bubeck, 2009).

Combining the above bound with Theorem 1, and letting
ε = O( ln1.5 T√

kT
), we have:

Corollary 1. There exists a simple stochastic bandit al-
gorithm that simultaneously guarantees that the bias of
the empirical average for each arm i is bounded by
O(µi · ln1.5 T√

kT
) and guarantees expected regret bounded by

O(
√
kT log T ).

Of course, other tradeoffs are possible using different val-
ues of ε. For example, the algorithm of (Tossou & Dim-
itrakakis, 2016) obtains sub-linear regret so long as ε =

ω( ln2 T
T ). Thus, it is possible to obtain non-trivial regret

while guaranteeing that the bias of the empirical means re-
mains as low as polylog(T )/T .

4. Max Information & Arbitrary Hypothesis
Tests

Up through this point, we have focused our attention on
showing how the private collection of data mitigates the ef-
fect that adaptivity has on bias, in both the stochastic and
(in the full version) contextual bandit problems. In this sec-
tion, we draw upon more powerful results from the adap-
tive data analysis literature to go substantially beyond bias:
to correct the p-values of hypothesis tests applied to adap-
tively gathered data. These p-value corrections follow from
the connection between differential privacy and a quantity
called max information, which controls the extent to which
the dependence of selected test on the dataset can distort the
statistical validity of the test (Dwork et al., 2015b; Rogers
et al., 2016). We briefly define max information, state the
connection to differential privacy, and illustrate how max
information bounds can be used to perform adaptive analy-
ses in the private data gathering framework.

Definition 3 (Max-Information (Dwork et al., 2015b).).
Let X,Z be jointly distributed random variables over
domain (X ,Z). Let X ⊗ Z denote the random vari-
able that draws independent copies of X,Z according
to their marginal distributions. The β-approximate max-
information between X,Z, denoted Iβ(X,Z), is defined

as:

Iβ(X,Z) = log sup
O⊂(X×Z), P[(X,Z)∈O]>β

P [(X,Z) ∈ O]− β
P [X ⊗ Z ∈ O]

Following (Rogers et al., 2016), define a test statistic t :
D → R, where D is the space of all datasets. For D ∈ D,
given an output a = t(D), the p-value associated with the
test t on dataset D is p(a) = PD∼P0 [t(D) ≥ a], where P0

is the null hypothesis distribution. Consider an algorithm
A, mapping a dataset to a test statistic.

Definition 4 (Valid p-value Correction Function (Rogers
et al., 2016).). A function γ : [0, 1] → [0, 1] is a valid
p-value correction function for A if the procedure:

1. Select a test statistic t = A(D)

2. Reject the null hypothesis if p(t(D)) ≤ γ(α)

has probability at most α of rejection, when D ∼ P0.

Then the following theorem gives a valid p-value correction
function when (D,A(D)) have bounded β-approximate
max information.

Theorem 3 ((Rogers et al., 2016).). Let A be a data-
dependent algorithm for selecting a test statistics such that
Iβ(X,A(X)) ≤ k. Then the following function γ is a valid
p-value correction function for A: γ(α) = max(α−β

2k
, 0)

Finally, we can connect max information to differential pri-
vacy, which allows us to leverage private algorithms to per-
form arbitrary valid statistical tests.

Theorem 4 (Theorem 20 from (Dwork et al., 2015b).). Let
A be an ε-differentially private algorithm, let P be an ar-
bitrary product distribution over datasets of size n, and let
D ∼ P . Then for every β > 0:

Iβ(D,A(D)) ≤ log(e)(ε2n/2 + ε
√
n log(2/β)/2)

Remark 3. We note that a hypothesis of this theorem is that
the data is drawn from a product distribution. In the con-
textual bandit setting, this corresponds to rows in the ban-
dit tableau being drawn from a product distribution. This
will be the case if contexts are drawn from a distribution at
each round, and then rewards are generated as some fixed
stochastic function of the contexts. Note that contexts (and
even rewards) can be correlated with one another within a
round, so long as they are selected independently across
rounds.

We now formalize the process of running a hypothesis test
against an adaptively collected dataset. A bandit algorithm
A generates a history ΛT ∈ HT . Let the reward portion
of the gathered dataset be denoted by DA. We define an
adaptive test statistic selector as follows.
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Definition 5. Fix the reward portion of a bandit tableau D
and bandit algorithmA. An adaptive test statistic selector is
a function s from action histories to test statistics such that
s(ΛAT ) is a real-valued function of the adaptively gathered
dataset DA.

Importantly, the selection of the test statistic s(ΛAT ) can
depend on the sequence of arms pulled by A (and in the
contextual setting, on all contexts observed), but not other-
wise on the reward portion of the tableau D. For example,
tA = s(ΛAT ) could be the t-statistic corresponding to the
null hypothesis that the arm i∗ which was pulled the great-

est number of times has mean µ: tA(DA) =
∑NT

i∗
t=1 yi∗t−µ√

NT
i∗

By virtue of Theorems 3 and 4, and our view of adaptive
data gathering as adaptively selected queries, we get the
following corollary:

Corollary 2. Let A be an ε reward differentially pri-
vate bandit algorithm, and let s be an adaptive test
statistic selector. Fix β > 0, and let γ(α) =

α

2log(e)(ε2T/2+ε
√
T log(2/β)/2)

, for α ∈ [0, 1]. Then for any

adaptively selected statistic tA = s(ΛAT ), and any prod-
uct distribution P corresponding to the null hypothesis for
tA

PD∼P,A [p(tA(D)) ≤ γ(α)] ≤ α

If we set ε = O(1/
√
T ) in Corollary 2, then γ(α) = O(α)–

i.e. a valid p-value correction that only scales α by a con-
stant.

5. Experiments
We first validate our theoretical bounds on bias in the sim-
ple stochastic bandit setting. As expected the standard
UCB algorithm underestimates the mean at each arm, while
the private UCB algorithm of (?) obtains very low bias.
While using the ε suggested by the theory effectively re-
duces bias and achieves near optimal asymptotic regret, the
resulting private algorithm only achieves non-trivial regret
for large T due to large constants and logarithmic factors
in our bounds. This motivates a heuristic choice of ε that
provides no theoretical guarantees on bias reduction, but
leads to regret that is comparable to the non-private UCB
algorithm. We find empirically that even with this large
choice of ε we achieve an 8 fold reduction in bias relative
to UCB. This is consistent with the observation that our
guarantees hold in the worst-case, and suggests that there
is room for improvement in our theoretical bounds — both
improving constants in the worst-case bounds on bias and
on regret, and for proving instance specific bounds. Finally,
we show that in the linear contextual bandit setting collect-
ing data adaptively with a linear UCB algorithm and then
conducting t-tests for regression coefficients yields incor-
rect inference (absent a p-value correction). These findings

confirm the necessity of our methods when drawing con-
clusions from adaptively gathered data.

5.1. Stochastic Multi-Armed Bandit

In our first stochastic bandit experiment we set K = 20
and T = 500. The K arm means are equally spaced be-
tween 0 and 1 with gap ∆ = .05, with µ0 = 1. We run
UCB and ε-private UCB for T rounds with ε = .05, and
after each run compute the difference between the sample
mean at each arm and the true mean. We repeat this pro-
cess 10, 000 times, averaging to obtain high confidence es-
timates of the bias at each arm. The average absolute bias
over all arms for private UCB was .00176, with the bias
for every arm being statistically indistinguishable from 0
at 95% confidence (see Figure 1 for confidence intervals)
while the average absolute bias (over arms) for UCB was
.0698, or over 40 times higher. The most biased arm had
a measured bias of roughly 0.14, and except for the top 4
arms, the bias of each arm was statistically significant. It is
worth noting that private UCB achieves bias significantly
lower than the ε = .05 guaranteed by the theory, indicating
that the theoretical bounds on bias obtained from differen-
tial privacy are conservative. Figures 1, 2 show the bias at
each arm for private UCB vs. UCB, with 95% confidence
intervals around the bias at each arm. Not only is the bias
for private UCB an order of magnitude smaller on aver-
age, it does not exhibit the systemic negative bias evident
in Figure 2.

Noting that the observed reduction in bias for ε = .05 ex-
ceeded that guaranteed by the theory, we run a second ex-
periment withK = 5, T = 100000,∆ = .05, and ε = 400,
averaging results over 1000 iterations. Figure 5 shows that
private UCB achieves sub-linear regret comparable with
UCB. While ε = 400 provides no meaningful theoretical
guarantee, the average absolute bias at each arm mean ob-
tained by the private algorithm was .0015 (statistically in-
distinguishable from 0 at 95% confidence for each arm),
while the non-private UCB algorithm obtained average bias
.011, 7.5 times larger. The bias reduction for the arm with
the smallest mean (for which the bias is the worst with the
non private algorithm) was by more than a factor of 10.
Figures 3,4 show the bias at each arm for the private and
non-private UCB algorithms together with 95% confidence
intervals; again we observe a negative skew in the bias for
UCB, consistent with the theory in (Nie et al., 2017).

5.2. Linear Contextual Bandits

Our second experiment confirms that adaptivity leads to
bias in the linear contextual bandit setting in the context of
hypothesis testing – and in particular can lead to false dis-
covery in testing for non-zero regression coefficients. The
set up is as follows: for K = 5 arms, we observe rewards



Mitigating Bias in Adaptive Data Gathering via Differential Privacy

0.0 0.2 0.4 0.6 0.8 1.0 1.2
arm mean

0.03

0.02

0.01

0.00

0.01

0.02

0.03
b
ia

s

Private UCB bias per arm: epsilon = 0.05

Figure 1: Private UCB Bias per Arm (experiment 1)

Figure 2: UCB Bias per Arm (experiment 1)
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Figure 3: Private UCB Bias per Arm (experiment 2)
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Figure 5: Average Regret: UCB vs. Private UCB

Figure 6: Histogram of p-values for z-test under the null
hypothesis. K = d = 5, T = 500.

yi,t ∼ N (θ′ixit, 1), where θi, xit ∈ R5, ||θi|| = ||xit|| = 1.
For each arm i, we set θi1 = 0. Subject to these constraints,
we pick the θ parameters uniformly at random (once per
run), and select the contexts x uniformly at random (at
each round). We run a linear UCB algorithm (OFUL (?))
for T = 500 rounds, and identify the arm i∗ that has
been selected most frequently. We then conduct a z-test
for whether the first coordinate of θi∗ is equal to 0. By
construction the null hypothesis H0 : θi∗1 = 0 of the ex-
periment is true, and absent adaptivity, the p-value should
be distributed uniformly at random. In particular, for any
value of α the probability that the corresponding p-value is
less than α is exactly α. We record the observed p-value,
and repeat the experiment 1000 times, displaying the his-
togram of observed p-values in Figure 6. As expected, the
adaptivity of the data gathering process leads the p-values
to exhibit a strong downward skew. The dotted blue line
demarcates α = .05. Rather than probability .05 of falsely
rejecting the null hypothesis at 95% confidence, we observe
that 76% of the observed p-values fall below the .05 thresh-
old. This shows that a careful p-value correction in the style
of Section 2.3 is essential even for simple testing of regres-
sion coefficients, lest bias lead to false discovery.
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