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Abstract
Existing algorithms for dictionary learning as-
sume that the entries of the (high-dimensional)
input data are fully observed. However, in several
practical applications, only an incomplete fraction
of the data entries may be available. For incom-
plete settings, no provably correct and polynomial-
time algorithm has been reported in the dictio-
nary learning literature. In this paper, we pro-
vide provable approaches for learning – from
incomplete samples – a family of dictionaries
whose atoms have sufficiently “spread-out” mass.
First, we propose a descent-style iterative algo-
rithm that linearly converges to the true dictio-
nary when provided a sufficiently coarse initial
estimate. Second, we propose an initialization al-
gorithm that utilizes a small number of extra fully
observed samples to produce such a coarse initial
estimate. Finally, we theoretically analyze their
performance and provide asymptotic statistical
and computational guarantees.

1. Introduction
1.1. Motivation

In this paper, we consider a variant of the problem of dic-

tionary learning, a widely used unsupervised technique for
learning compact (sparse) representations of high dimen-
sional data. At its core, the challenge in dictionary learn-
ing is to discover a basis (or dictionary) that can sparsely
represent a given set of data samples with as little empir-
ical representation error as possible. The study of sparse
coding enjoys a rich history in image processing, machine
learning, and compressive sensing (Elad & Aharon, 2006;
Aharon et al., 2006; Olshausen & Field, 1997; Candes &
Tao, 2005; Rubinstein et al., 2010; Gregor & LeCun, 2010;
Boureau et al., 2010). While the majority of these afore-
mentioned works involved heuristics, several exciting re-
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cent results (Spielman et al., 2012; Agarwal et al., 2013;
2014; Arora et al., 2014; 2015; Sun et al., 2015; Chatterji &
Bartlett, 2017; Nguyen et al., 2018) have established rigor-
ous conditions under which their algorithms recover the true
dictionary under suitable generative models for the data.

An important underlying assumption that guides the success
of all existing dictionary learning algorithms is the avail-
ability of (sufficiently many) data samples that are fully
observed. Our focus, on the other hand, is on the special
case where the given data points are only partially observed,
that is, we are given access to only a small fraction of the
coordinates of the data samples.

Such a setting of incomplete observations is natural in many
applications like image-inpainting and demosaicing (Ru-
binstein et al., 2010). For example, this routinely appears
in hyper-spectral imaging (Xing et al., 2012) where entire
spectral bands of signals could be missing or unobserved.
Moreover, in other applications, collecting fully observed
samples can be expensive (or in some cases, even infeasible).
Examples include the highly unreliable continuous blood
glucose (CBG) monitoring systems that suffer from signal
dropouts, where often the task is to learn a dictionary from
partially observed signals (Naumova & Schnass, 2017a).

Earlier works that tackle the incomplete variant of the dictio-
nary learning problem only offer heuristic solutions (Xing
et al., 2012; Naumova & Schnass, 2017a) or involve con-
structing intractable statistical estimators (Soni et al., 2016).
Indeed, the recovery of the true dictionary involves analyz-
ing an extremely non-convex optimization problem that is,
in general, not solvable in polynomial time (Loh & Wain-
wright, 2011). To our knowledge, our work is the first to
give a theoretically sound as well as tractable algorithm to
recover the exact dictionary from missing data (provided
certain natural assumptions are met).

1.2. Our Contributions

In this paper, we make concrete theoretical algorithmic
progress to the dictionary learning problem with incom-
plete samples. Inspired by recent algorithmic advances in
dictionary learning (Arora et al., 2014; 2015), we adopt a
learning-theoretic setup. Specifically, we assume that each
data sample is synthesized from a generative model with
an unknown dictionary and a random k-sparse coefficient
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vector (or sparse code). Mathematically, the data samples
Y = [y(1), y(2), . . . , y(p)] 2 Rn⇥p are of the form

Y = A
⇤
X

⇤
,

where A⇤ 2 Rn⇥m denotes the dictionary and X
⇤ 2 Rm⇥p

denotes the (column-wise) k-sparse codes.

However, we do not have direct access to the data; instead,
each high-dimensional data sample is further subsampled
such that only a small fraction of the entries are observed.
The assumption we make is that each entry of Y is observed
independently with probability ⇢ 2 (0, 1]. For reasons that
will become clear, we also assume that the ground truth
dictionary A

⇤ is both incoherent (i.e., the columns of A⇤

are sufficiently close to orthogonal) and democratic (i.e.,
the energy of each atom is well spread). Both these assump-
tions are standard in the compressive-sensing literature. We
clarify the generative model more precisely in the sequel.

Given a set of such (partially observed) data samples, our
goal is to recover the true dictionary A

⇤. Towards this goal,
we make the following contributions:

1. Let us assume, for a moment, that we are given a coarse
estimate A

0 that is sufficiently close to the true dictionary.
We devise a descent-style algorithm that leverages the given
incomplete data to iteratively refine the dictionary estimate;
moreover, we show that it converges rapidly to an estimate
within a small ball of the ground truth A

⇤ (whose radius
decreases given more samples). Our result can be informally
summarized as follows:

Theorem 1 (Informal, descent). When given a “sufficiently-

close” initial estimate A
0
, there exists an iterative gradient

descent-type algorithm that linearly converges to the true

dictionary with O(mk polylog(n)) incomplete samples.

Our above result mirrors several recent results in non-convex
learning that all develop a descent algorithm which succeeds
given a good enough initialization (Yuan & Zhang, 2013;
Cai et al., 2016; Tu et al., 2016). Indeed, similar guarantees
for descent-style algorithms (such as alternating minimiza-
tion) exist for the related problem of matrix completion (Jain
et al., 2013), which coincides with our setting if m ⌧ n.
However, our setting is distinct, since we are interested in
learning overcomplete dictionaries, where m > n.

2. Having established the efficiency of the above refinement
procedure, we then address the challenge of actually coming
up with a coarse estimate of A

⇤. We do not know of a
provable procedure that produces a good enough initial
estimate using partial samples. To circumvent this issue,
we assume availability of O(m) fully observed samples
along with the partial samples1. Given this setting, we show

1While this might be a limitation of our analysis, we emphasize

that we can provide a “sufficiently close” initial estimate in
polynomial time. Our result can be summarized as follows:

Theorem 2 (Informal, initialization). There exists an ini-

tialization algorithm that, given O(m polylog(n)) fully ob-

served samples and an additional O(mk polylog(n)) par-

tially observed samples, returns an initial estimate A
0

that

is sufficiently close to A
⇤

in a column-wise sense.

1.3. Techniques

The majority of our theoretical contributions are fairly tech-
nical, so for clarity, we provide some non-rigorous intuition.

At a high level, our approach merges ideas from two main
themes in the algorithmic learning theory literature. We
build upon recent seminal, theoretically-sound algorithms
for sparse coding (specifically, the framework of Arora et al.
(2015)). Their approach consists of a descent-based al-
gorithm performed over the surface of a suitably defined
loss function of the dictionary parameters. The descent is
achieved by alternating between updating the dictionary esti-
mate and updating the sparse codes of the data samples. The
authors prove that this algorithm succeeds provided that the
codes are sparse enough, the columns of A⇤ are incoherent,
and that we are given sufficiently many samples.

However, a direct application of the above framework to the
partially observed setting does not seem to succeed. To re-
solve this, we leverage a specific property that is commonly
assumed in the matrix completion literature: we suppose
that the dictionaries are not “spiky” and that the energy of
each atom is spread out among its coordinates; specifically,
the sub-dictionaries formed by randomly sub-selecting rows
are still incoherent. We call such dictionaries democratic,
following the terminology of Davenport et al. (2009). (In
matrix completion papers, this property is also sometimes
referred to incoherence, but we avoid doing so since that
overloads the term.) Our main contribution is to show that
democratic, incoherent dictionaries can be learned via a
similar alternating descent scheme if only a small fraction
of the data entries are available. Our analysis is novel and
distinct than that provided in (Arora et al., 2015).

Of course, the above analysis is somewhat local in nature
since we are using a descent-style method. In order to get
global guarantees for recovery of A⇤, we need to initialize
carefully. Here too, the spectral initialization strategies
suggested in earlier dictionary learning papers (Arora et al.,
2014; 2015) do not succeed. To resolve this, we again
appeal to the democracy property of A

⇤. We also need

that the number of full samples needed by our method is relatively
small. Indeed, the state-of-the-art approach for dictionary learn-
ing (Arora et al., 2015) requires O(mk polylog(n)) fully observed
samples, while our method needs only O(m polylog(n)) samples,
which represents a polynomial improvement since k can be as
large as

p
n.
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to assume that provided a small hold-out set of additional,
fully observed samples is available2. Using this hold-out
set (which can be construed as additional prior information
or “side” information) together with the available samples
gives us a spectral initialization strategy that provably gives
a good enough initial estimate.

Putting the above two pieces together: if we are pro-
vided O(mk/⇢

4 polylog n) partially observed samples
from the generative model, together with an additional
O(m polylog n) full samples, then we can guarantee a fast,
provable algorithm for learning A

⇤. See Table 1 for a sum-
mary of our results, and comparison with existing work. We
remark that while our algorithms only succeed up to sparsity
level k  O(⇢

p
n), we obtain a running time improvement

over the best available dictionary learning approaches.

1.4. Relation to Prior Work

The literature on dictionary learning (or sparse coding) is
very vast and hence our references to prior work will nec-
essarily be incomplete; we refer to the seminal work of Ru-
binstein et al. (2010) for a list of applications. Dictionary
learning with incompletely observed data, however, is far
less well-understood. Initial attempts in this direction (Xing
et al., 2012) involve Bayesian-style techniques; more recent
attempts have focused on alternating minimization tech-
niques, along with incoherence- and democracy-type as-
sumptions akin to our framework (Naumova & Schnass,
2017b;a). However, none of these methods provide rigor-
ous polynomial-time algorithms that provably succeed in
recovering the dictionary parameters.

Our setup can also be viewed as an instance of matrix com-
pletion, which has been a source of intense interest in the
machine learning community over the last decade (Candès
& Recht, 2009; Keshavan et al., 2010). The typical assump-
tion in such approaches is that the data matrix Y = A

⇤
X

⇤

is low-rank (i.e., A⇤ typically spans a low-dimensional sub-
space). This assumption leads to either feasible convex
relaxations, or a bilinear form that can be solved approx-
imately via alternating minimization. However, our work
differs significantly from this setup, since we are interested
in the case where A

⇤ is over-complete; moreover, our guar-
antees are not in terms of estimating the missing entries
of Y , but rather obtaining the atoms in A

⇤. Note that our
generative model also differs from the setup of high-rank

matrix completion (Eriksson et al., 2012), where the data
is sampled randomly from a finite union-of-subspaces. In
contrast, our data samples are synthesized via sparse linear
combinations of a given dictionary.

2We do not know how to remove this assumption, and it appears
that techniques stronger than spectral initialization (e.g., involving
higher-order moments) are required.

In the context of matrix-completion, perhaps the most re-
lated work to ours is the statistical analysis of matrix-
completion under the sparse-factor model of Soni et al.
(2016), which employs a similar generative data model to
ours. (Similar sparse-factor models have been studied in
the work of Lan et al. (2014), but no complexity guarantees
are provided.) For this model, Soni et al. (2016) propose a
highly non-convex statistical estimator for estimate Y and
provide error bounds for this estimator under various noise
models. However, they do not discuss an efficient algorithm
to realize that estimator. In contrast, we provide rigorous
polynomial time algorithms, together with error bounds on
the estimation quality of A⇤. Overall, we anticipate that our
work can shed some light on the design of provable algo-
rithms for matrix-completion in such more general settings.

2. Preliminaries
Notation. Given a vector x 2 Rm and a subset S ✓ [m],
we denote xS 2 Rm as a vector which equals x in indices
belonging to S and equals zero elsewhere. We use A•i and
A

T

j• respectively to denote the i
th column and the j

th row
of matrix A 2 Rn⇥m. We use A•S as the submatrix of A
with columns in S. In contrast, we use A�• to indicate the
submatrix of A with rows not in � set to zero. Let supp(x)
and sgn(x) be the support and element-wise sign of x. Let
thresholdK(x) be the hard-thresholding operator that sets
all entries of x with magnitude less than K to zero. The
symbol k·k refers to the `2-norm, unless otherwise specified.

For asymptotic analysis, we use e⌦(·) and eO(·) to repre-
sent ⌦(·) and O(·) up to (unspecified) poly-logarithmic
factors depending on n. Besides, g(n) = O

⇤(f(n)) de-
notes g(n)  Kf(n) for some sufficiently small constant
K. Finally, the terms “with high probability” (abbreviated
to w.h.p.) is used to indicate an event with failure probability
O(n�!(1)). We make use of the following definitions.

Definition 1 (Incoherence). The matrix A is incoherent with

parameter µ if the following holds for all columns i 6= j:

|hA•i, A•ji|
kA•ikkA•jk

 µp
n
.

The incoherence property requires the columns of A to be
approximately orthogonal, and is a canonical property to re-
solve identifiability issues in dictionary learning and sparse
recovery. We distinguish this from the conventional no-
tion of “incoherence” widely used in the matrix completion
literature. This notion is related to a notion that we call
democracy, which we define next.

Definition 2 (Democracy). Suppose that the matrix A is

µ-incoherent. A is further said to be democratic if the

submatrix A�• is µ-incoherent for any subset � ⇢ [n] of

size
p
n  |�|  n.
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Table 1. Comparisons between different approaches.

Setting Reference Sample complexity
w/o noise Running time Sparsity Incomplete samples

Regular
(Spielman et al., 2012) O(n2 log n) e⌦(n4) O(

p
n) 7

(Arora et al., 2014) eO(m2
/k

2) eO(np2) O(
p
n) 7

(Arora et al., 2015) eO(mk) eO(mn
2
p) O(

p
n) 7

Incomplete

(Xing et al., 2012) 7 7 7 3
(Naumova & Schnass, 2017a) 7 7 7 3

This paper
eO(mk/⇢

4) partial samples
eO(m) full samples

eO(⇢mn
2
p) O(⇢

p
n) 3

7 indicates no complexity guarantees. Here, n is the data dimension; m is the size of dictionary; k is the sparsity of x; p is the number of

observed samples; ⇢ is the subsampling probability.

This property tells us that the rows of A have roughly the
same amount of “information”, and that the submatrix of
A restricted to any subset of rows � is also incoherent. A
similar concept (stated in terms of the restricted isometry
property) is well-known in the compressive sensing liter-
ature (Davenport et al., 2009). Several probabilistic con-
structions of dictionaries satisfy this property; typical exam-
ples include random matrices drawn from i.i.d. Gaussian or
Rademacher distributions. The

p
n lower bound on |�| is to

ensure that the submatrix of A including only the rows in �
is balanced in terms of dimensions.

We seek an algorithm that provides a provably “good” esti-
mate of A⇤. For this, we need a suitable measure of “good-
ness”. The following notion of distance records the maximal
column-wise difference between any estimate A and A

⇤ in
`2-norm under a suitable permutation and sign flip.
Definition 3 ((�,)-nearness). The matrix A is said to be

�-close to A
⇤

if k�(i)A•⇡(i)�A
⇤
•ik  � holds for every i =

1, 2, . . . ,m and some permutation ⇡ : [m]! [m] and sign

flip � : [m] : {±1}. In addition, if kA•⇡ � A
⇤k  kA⇤k

holds, then A is said to be (�,)-near to A
⇤
.

To keep notation simple, in our convergence theorems below,
whenever we discuss nearness, we simply replace the trans-
formations ⇡ and � in the above definition with the identity
mapping ⇡(i) = i and the positive sign �(·) = +1 while
keeping in mind that in reality, we are referring to finding
one element in the equivalence class of all permutations and
sign flips of A⇤.

Armed with the above concepts, we now posit a generative
model for our observed data. Suppose that the data sam-
ples Y = [y(1), y(2), . . . , y(p)] are such that each column is
generated according to the rule:

y = P�(A
⇤
x
⇤), (1)

where A
⇤ is an unknown, ground truth dictionary; x⇤ and �

are drawn from some distribution D and P� is the sampling

operator that keeps entries in � untouched and zeroes out
everything else. We emphasize that � is independently
chosen for each y

(i), so more precisely, y(i) = y
(i)
�(i) 2 Rn.

We ignore the superscript to keep the notation simple. We
also make the following assumptions:
Assumption 1. The true dictionary A

⇤
is over-complete

with m  Kn for some constant K > 1, and democratic

with parameter µ. All columns of A
⇤

have unit norms.

Assumption 2. The true dictionary A
⇤

has bounded spec-

tral and max (`1-) norms such that kA⇤k  O(
p

m/n)
and kA⇤kmax  O(1/

p
n).

Assumption 3. The code vector x
⇤

is k-sparse random with

uniform support S. The nonzero entries of x
⇤

are pairwise

independent sub-Gaussian with variance 1, and bounded

below by some known constant C.

Assumption 4. Each entry of the sample A
⇤
x
⇤

is indepen-

dently observed with constant probability ⇢ 2 (0, 1].

The incoherence and spectral bound are ubiquitous in the
dictionary learning literature (Arora et al., 2014; 2015). For
the incomplete setting, we further require the democracy
and max-norm bounds to control the spread of energy of
the entries of A⇤, so that A⇤ is not “spiky”. Such condi-
tions are often encountered in the matrix completion liter-
ature (Candès & Recht, 2009; Keshavan et al., 2010). The
distributional assumptions on the code vectors x⇤ are stan-
dard in theoretical dictionary learning (Agarwal et al., 2014;
Arora et al., 2014; Gribonval et al., 2015; Arora et al., 2015).
Finally, we also require the sparsity k  O

⇤(⇢
p
n/ log n)

throughout the paper.

3. A Descent-Style Learning Algorithm
We now design and analyze an algorithm for learning the
dictionary A⇤ given incomplete samples of the form (1). Our
strategy will be to use a descent-like scheme to construct a
sequence of estimates A which successively gets closer to
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A
⇤ in the sense of (�,)-nearness.

Let us first provide some intuition. The natural approach to
solve this problem is to perform gradient descent over an ap-
propriate empirical loss of the dictionary parameters. More
precisely, we consider the squared loss between observed
entries of Y and their estimates (which is the typical loss
function used in the incomplete observations setting (Jain
et al., 2013)):

L(A) =
1

2

X

i,j2⌦

(Yij � (AX)ij)
2
, (2)

where ⌦ is the set of locations of observed entries in the
samples Y . However, straightforward gradient descent over
A is not possible for several reasons: (i) the gradient de-
pends on the finite sample variability of Y ; (ii) the gradient
with respect to A depends on the optimal code vectors of
the data samples, x⇤

i
, which are unknown a priori; (iii) since

we are working in the overcomplete setting, care has to be
taken to ensure that the code vectors (i.e., columns of X)
obey the sparsity model (as specified in Assumption 2).

The neurally-plausible sparse coding algorithm of Arora
et al. (2015) provides a crucial insight into the understand-
ing of the loss surface of LA in the fully observed setting.
Basically, within a small ball around the ground truth A

⇤,
the surface is well behaved such that a noisy version of X⇤

is sufficient to construct a good enough approximation to the
gradient of L. Moreover, given an estimate within a small
ball around A

⇤, a noisy (but good enough) estimate of X⇤

can be quickly computed using a thresholding operation.

We extend this understanding to the (much more challeng-
ing) setting of incomplete observations. Specifically, we
show the loss surface in (2) behaves well even with missing
data. This enables us to devise an algorithm similar to that
of Arora et al. (2015) and obtain a descent property directly
related to (the population parameter) A⇤. The full procedure
is detailed as Algorithm 1.

We now analyze our proposed algorithm. Specifically, we
can show that if initialized properly and with proper choice
of step size, Algorithm 1 exhibits linear convergence to a
ball of radius O(

p
k/n) around A

⇤. Formally, we have:

Theorem 3. Suppose that the initial estimate A
0

is (�, 2)-
near to A

⇤
with � = O

⇤(1/ log n) and the sampling prob-

ability satisfies ⇢ � 1/(k + 1). If Algorithm 1 is given

p = e⌦(mk) fresh partial samples at each step and uses

learning rate ⌘ = ⇥(m/⇢k), then

E[kAs

•i �A
⇤
•ik

2]  (1� ⌧)skA0
•i �A

⇤
•ik

2 +O(
p
k/n)

for some 0 < ⌧ < 1/2 and s = 1, 2, . . . , T . As a corol-

lary, A
s

converges geometrically to A
⇤

until column-wise

O(
p
k/n) error.

Algorithm 1 Gradient descent-style algorithm
Input: Partial samples Y with observed entry set �(i)

Initial A0 that is (�, 2)-near to A
⇤

for s = 0, 1, . . . , T do
/* Encoding step */
for i = 1, 2, . . . , p do

x
(i)  thresholdC/2(

1
⇢
(As)T y(i))

end
/* Update step */
bgs  1

p

P
p

i=1(P�(i)(As
x
(i))� y

(i))sgn(x(i))T

A
s+1  A

s � ⌘bgs

end
Output: A A

T as a learned dictionary

We defer the full proof of Theorem 3 to Appendix C. To
understand the working of the algorithm and its correctness,
let us consider the setting where we have access to infinitely
many samples. This setting is, of course, fictional; however,
expectations are easier to analyze than empirical averages,
and moreover, this exercise reveals several key elements for
proving Theorem 3. More precisely, we first provide bounds
on the expected value of bgs, denoted as

g
s , Ey[(P�(A

s
x)� y)sgn(x)T ],

to establish the descent property for the infinite sample
case. The sample complexity argument emerges when we
control the concentration of bgs, detailed in Appendix C.
Here, we separately discuss the encoding and update steps
in Algorithm 1.

Encoding step. The first main result is to show that the
hard-thresholding (or pooling)-based rule for estimating
the sparse code vectors is sufficiently accurate. This rule
adapts the encoding step of the dictionary learning algorithm
proposed in (Arora et al., 2015), with an additional scaling
factor 1/⇢. This scaling is necessary to avoid biases arising
due to the presence of incomplete information.

The primary novelty is in our analysis. Specifically, we
prove that the estimate of X obtained via the encoding step
(even under partial observations) enables a good enough
identification of the support of the true X

⇤. The key, here,
is to leverage the fact that A⇤ is democratic and that As

is near A⇤. We call this property support consistency and
establish it as follows.

Lemma 1. Suppose that A
s

is (�, 2)-near to A
⇤

with � =
O

⇤(1/ log n). With high probability over y = P�(A⇤
x
⇤),

the estimate x obtained by the encoding step of Algorithm 1

has the same sign as the true x
⇤
; that is,

sgn
�
thresholdC/2

�1
⇢
(As)T y

��
= sgn(x⇤), (3)
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This holds true for incoherence parameter µ 
p
n

2k , sparsity

parameter k � ⌦(logm) and subsampling probability ⇢ �
1/(k + 1).

Lemma 1 implies that when the “mass” of A
⇤ is spread

out across entries, within a small neighborhood of A⇤ the
estimate x is reliable even if y is incompletely observed.
This lemma is the main ingredient for bounding the behavior
of the update rule.

Update step. The support consistency property of the es-
timated x arising in the encoding step is key to rigorously
analyzing the expected gradient gs. This relatively ‘simple’
encoding enables an explicit form of the update rule, and
gives an intuitive reasoning on how the descent property can
be achieved. In fact, we will see that

g
s

i
= ⇢piqi(�

s

i
A

s

•i �A
⇤
•i) + o(⇢piqi)

for pi = E[|x⇤
i
||i 2 S], qi = P[i 2 S] and �

s

i
= hA•i, A

⇤
•ii.

Since we assume that the current estimate A
s is (column-

wise) sufficiently close to A
⇤, each �

s

i
is approximately

equal to 1, and hence g
s

i
⇡ ⇢piqi(As

•i � A
⇤
•i), i.e., the

gradient points in the desired direction. Combining this
with standard analysis of gradient descent, we can prove
that the overall algorithm geometrically decreases the error
in each step s as long as the learning rate ⌘ is properly
chosen. Specifically, we get the following theoretical result.
Theorem 4. Suppose that A

0
is (�, 2)-near to A

⇤
with � =

O
⇤(1/ log n) and the sampling probability satisfies ⇢ �

1/(k + 1). Assuming infinitely many partial samples at

each step, Algorithm 1 geometrically converges to A
⇤

until

column-wise error O(k/⇢n). More precisely,

kAs+1
•i �A

⇤
•ik

2  (1� ⌧)kAs

•i �A
⇤
•ik

2 +O
�
k
2
/⇢

2
n
2
�

for some 0 < ⌧ < 1/2 and for s = 1, 2, . . . , T provided the

learning rate obeys ⌘ = ⇥(m/⇢k).

We provide the mathematical proof for the form of gs as
well as the descent in Appendix A.2. We also argue that
the (�, 2)-nearness of As+1 and A

⇤ is maintained after each
update. This is studied in Lemma 7 in Appendix A.

4. An Initialization Algorithm
In the previous section, we provided an algorithm that (ac-
curately) recovers A⇤ in an iterative descent-style approach.
In order to establish correctness guarantees, the algorithm
requires a coarse estimate A

0 that is �-close to the ground
truth with closeness parameter � = O

⇤(1/ log n). This sec-
tion presents an initialization strategy to obtain such a good
starting point for A⇤.

Again, we begin with some intuition. At a high level, our
algorithm mimics the spectral initialization strategy for dic-
tionary learning proposed by (Arora et al., 2015). In essence,

the idea is to re-weight the data samples (which are fully
observed) appropriately. When this is the case, analyzing
the spectral properties of the covariance matrix of the new
re-weighted samples gives us the desired initialization. The
re-weighting itself relies upon the computation of pairwise
correlations between the samples with two fixed samples
(say, u and v) chosen from an independent hold-out set.
This strategy is appealing in both from the standpoint of
statistical efficiency as well as computational ease.

Unfortunately, a straightforward application of this strategy
to our setting of incomplete observations does not work.
The major issue, of course, is that pairwise correlation (the
inner product) of two high dimensional vectors is highly
uninformative if each vector is only partially observed. We
circumvent this issue via the following simple (but key) ob-
servation: provided the underlying dictionary is democratic

and the representation is sufficiently sparse, the correlation
between a partially observed data sample y with a fully ob-
served sample u is indeed proportional to the actual correla-
tion between y and u. Therefore, assuming that we are given
a hold-out set that is fully observed, an adaptation of the
spectral approach of Arora et al. (2015) provably succeeds.
Moreover, the size of the hold-out set need not be large; in
particular, we need only O(m polylog(n)) fully-observed
samples, as opposed to the O(mk polylog(n)) samples re-
quired by the analysis of Arora et al. (2015). The parameter
k can be as big as

p
n, so in fact we require polynomially

fewer fully-observed samples.

In summary: in order to initialize our descent procedure,
we assume the availability of a small (but fully observed)
hold-out set. In practice, we can imagine expending some
amount of effort in the beginning to collect all the entries of
a small subset of the available data samples. The availability
of such additional information (or “side-information”) has
been made in the literature on matrix completion (Natarajan
& Dhillon, 2014).

The full procedure is described in pseudocode form as Al-
gorithm 2. Our main theoretical result (Theorem 5) summa-
rizes its performance.

Theorem 5. Suppose that the available training dataset

consists of p1 fully observed samples, together with p2 in-

completely observed samples according to the observation

model (1). Suppose µ = O
⇤� p

n

k log3 n

�
,

1
⇢
� 1  k 

O
⇤( ⇢

p
n

logn
). When p1 = e⌦(m) and p2 = e⌦(mk/⇢

4), then

with high probability, Algorithm 2 returns an initial esti-

mate A
0

whose columns share the same support as A
⇤

and

is (�, 2)-near to A
⇤

with � = O
⇤(1/ log n).

The full proof is provided in Appendix B. To provide some
intuition about the working of the algorithm and its proof,
let us again consider the setting where we have access to in-
finitely many samples. These analyses result in key lemmas,
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Algorithm 2 Spectral initialization algorithm
Input: P1: p1 fully observed samples
P2: p2 partially observed samples
Set L = ;
while |L| < m do

Pick u and v from P1 at random
Construct the weighted covariance matrix cMu,v using
samples y(i) from P2

cMu,v  
1

p2⇢
4

p2X

i=1

hy(i), uihy(i), viy(i)(y(i))T

�1, �2  top singular values
if �1 � ⌦(k/m) and �2 < O

⇤(k/m log n) then
z  top singular vector
if z is not within distance 1/ log n of vectors in L

even with sign flip then
L L [ {z}

end
end

end
Output: A

0  ProjB(Ã) where Ã is the matrix whose
columns in L and B = {A : kAk  2kA⇤k}

which we will reuse extensively for proving Theorem 5.

First, consider two fully observed data samples u = A
⇤
↵

and v = A
⇤
↵
0 drawn from the hold-out set. (Here, A⇤

,↵,↵
0

are unknown.) Consider also a partially observed sample
y = A

⇤
�•x

⇤ under a random subset � ✓ [n]. Define:

� =
1

⇢
A

⇤T
�•u, and �

0 =
1

⇢
A

⇤T
�•v

respectively as (crude) estimates of ↵ and ↵
0, simply ob-

tained by applying a (scaled) adjoint of A�• to u and v

respectively. It follows from the above definition that:

� =
1

⇢
A

⇤T
�•A

⇤
↵, and hy, ui = ⇢h�, x⇤i.

Our main claim is that since A
⇤ is assumed to satisfy the

democracy property, 1
⇢
A

⇤T
�•A

⇤ resembles the identity, and
hence � “looks” like the true code vector ↵. In particular,
we have the following lemma.

Lemma 2. With high probability over the randomness in

u and �, we have: (a) |�i � ↵i|  µk lognp
n

+
q

1�⇢

⇢n1/2 for

each i = 1, 2, . . . ,m and (b) k�k 
p
k logn

⇢
.

Proof. Denote U = supp(↵) and W = U\{i}, then

|�i � ↵i| =
���
1

⇢
A

⇤T
�,iA

⇤
•W↵W +

�1
⇢
hA⇤

�,i, A
⇤
•ii � 1

�
↵i

���

 1

⇢

��A⇤T
�,iA

⇤
•W↵W

��+
���(
1

⇢
A

⇤T
�,iA

⇤
•i � 1)↵i

���.

(4)

We will bound these terms on the right hand side of (4)
using the properties of A⇤ and ↵. First, we notice that for
any � ⇢ [n]:

kA⇤T
�,iA

⇤
•W k

2 =
X

j2W

hA⇤
�,i, A

⇤
•ji

2  µ
2

n

X

j2W

kA⇤
�,ik

2kA⇤
�,jk

2
,

where we have used the democracy of A⇤ with respect to
�. Moreover, using the Chernoff bound for kA⇤

�,ik
2 =

P
n

i=1 A
⇤2
li
1[l 2 �], we have kA⇤

�,ik
2  ⇢ + o(⇢) w.h.p.

Hence, kA⇤T
�,iA

⇤
•W k

2  ⇢
2
µ
2
k/n with high probability.

In addition, k↵W k 
p
k log n w.h.p. because ↵W is k-

sparse sub-Gaussian. Therefore, the first term in (4) gives
1
⇢
|A⇤T

�,iA
⇤
•W↵W |  µk lognp

n
with high probability.

For the second term in (4), consider a random variable
T = ( 1

⇢
A

⇤T
�,iA

⇤
•i � 1)↵i over � and ↵i. We first observe for

any vector w 2 Rn that:

E[(wT

�w)
2] =

nX

i=1

E[w4
i
1i2�] +

nX

i 6=j

E[w2
i
w

2
j
1i,j2�]

= ⇢(1� ⇢)
nX

i=1

w
4
i
+ ⇢

2
.

Hence, T has mean 0 and variance �
2
T

= (1 �
⇢)/⇢

P
n

j=1 A
4
ji

, which is bounded by O( 1�⇢

⇢n
) because

kA⇤kmax  O(1/
p
n). By Chebyshev’s inequality, we

have |T | 
q

1�⇢

⇢n1/2 with failure probability 1/
p
n. Com-

bining everything, we get

|�i � ↵i| 
µk log np

n
+

s
1� ⇢

⇢n1/2
,

w.h.p., which is the first part of the claim.

For the second part, we bound k�k by expanding it as:

k�k = 1

⇢
kA⇤T

�•A
⇤
•U↵Uk 

1

⇢
kA⇤

�•kkA⇤
•Ukk↵Uk,

and again, if we use k↵Uk 
p
k log n w.h.p.and kA⇤k 

O(1), then k�k 
p
k log n/⇢.

We briefly compare the above result with that of Arora
et al. (2015). Our upper bounds are more general, and
are stated in terms of the incompleteness factor ⇢. Indeed,
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Figure 1. (top) The performance of our approach on recovery rate

and reconstruction error in sample size and sampling probability.

our results match the previous bounds when ⇢ = 1. The
above lemma suggests the following interesting regime of
parameters. Specifically, for µ = O

⇤� p
n

k log3 n

�
and 1

⇢
� 1 

k  O
⇤( ⇢

p
n

logn
), one can see that |�i � ↵i|  O

⇤(1/ log2 n)
w.h.p., which implies that � is a good estimate of ↵ even
when a subset of rows in A

⇤ is given.

In the next lemma, we show that that the pairwise correlation
of u and any sample y is sufficiently informative for the
same re-weighted spectral estimation strategy of Arora et al.
(2015) to succeed in the incomplete setting.

Lemma 3. Suppose that u, v are a pair of fully observed

samples and y is an incomplete sample independent of u, v.

The weighted covariance matrix Mu,v has the form:

Mu,v , 1

⇢4
Ey[hy, uihy, viyyT ]

=
X

i2U\V

qici�i�
0
i
A

⇤
•iA

⇤T
•i +O

⇤(k/m log n),

where ci = E[x⇤4
i
|i 2 S] and qi = P[i 2 S].

The complete proof is relegated to Appendix B. We will
instead discuss some implications of this Lemma. Recall
that ci is a constant with 0 < c < 1 and qi = ⇥(k/m).

Suppose, for a moment, that the sparse representations of
u and v share exactly one common dictionary element, say
A

⇤
•i (i.e., if U = supp(u) and V = supp(v) then U \ V =

{i}.) The first term, qici�i�
0
i
A

⇤
•iA

⇤T
•i , has norm |qici�i�

0
i
|.

From Claim 2, |�i| � |↵i|�|�i�↵i| � C�o(1). Therefore,
qici�i�

0
i
A

⇤
•iA

⇤T
•i has norm at least ⌦(k/m) whereas the

perturbation terms are at most O⇤(k/m log n). According
to Wedin’s theorem, we conclude that the top singular vector
of Mu,v must be O

⇤(k/m log n)/⌦(k/m) = O
⇤(1/ log n)

-close to A
⇤
•i. This gives us a coarse estimate of A⇤

•i.

The question remains when and how whether we can a

priori certify whether u, v share a unique dictionary atom
among their sparse representations. Fortunately, the follow-
ing Lemma provides a simple test for this via examining the
decay of the singular vectors of the cross-covariance matrix
Mu,v. The proof follows directly from that of Lemma 37
in (Arora et al., 2015).

Lemma 4. When the top singular value of Mu,v is at

least ⌦(k/m) and the second largest one is at most

O
⇤(k/m log n), then u and v share a unique dictionary

element with high probability.

The above discussion isolates one of the columns of A⇤.
We can repeat this procedure several times by randomly
choosing pairs of samples u and v from the hold-out set.
Using the result of Arora et al. (2015), if |P1| is p1 = eO(m),
then we can estimate all the m dictionary atoms. Overall,
the sample complexity of Algorithm 2 is dominated by
p2 = eO(mk/⇢

4).

5. Experiments
We corroborate our theory by demonstrating some represen-
tative numerical benefits of our proposed algorithms. We
generate a synthetic dataset based on the generative model
described in Section 2. The ground truth dictionary A

⇤ is
of size 256⇥ 256 with independent standard Gaussian en-
tries. We normalize columns of A⇤ to be unit norm. Then,
we generate 6-sparse code vectors x⇤ with support drawn
uniformly at random. Entries in the support are sampled
from ±1 with equal probability. We generate all full sam-
ples, and isolate 5000 samples as “side information” for the
initialization step. The remaining are then subsampled with
different parameters ⇢.

We set the number of iterations to T = 3000 in the initial-
ization procedure and the number of descent steps T = 50
for the descent scheme. Besides, we slightly modify the
thresholding operator in the encoding step of Algorithm 1.
We use another operator that keeps k largest entries of the
input untouched and sets everything else to zero due to its
stability. For each Monte Carlo trial, we uniformly draw p

partial samples. The task, for our algorithm, is to learn A
⇤.

An implementation of our method is available online3.

We evaluate our algorithm on two metrics against p and ⇢:
(i) recovery rate, i.e., the fraction of trials in which each
algorithm successfully recovers the ground truth A

⇤; and (ii)
reconstruction error. All the metrics are averaged over 50
Monte Carlo simulations. “Successful recovery” is defined
according to a threshold ⌧ = 6 on the Frobenius norm of the
difference between the estimate bA and the ground truth A

⇤.
(Since we can only estimate bA modulo a permutation and
sign flip, the optimal column and sign matching is computed
using the Hungarian algorithm.)

Figure 1 shows our experimental results. Here, sample size
refers to the number of incomplete samples. Our algorithms
are able to recover the dictionary for ⇢ = 0.6, 0.8, 1.0. For
⇢ = 0.4, we can observe a “phase transition” in sample com-
plexity of successful recovery around p = 10, 000 samples.

3https://github.com/thanh-isu
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