
SparseMAP: Differentiable Sparse Structured Inference

Supplementary material

A. Implementation Details for SparseMAP Solvers

A.1. Conditional Gradient Variants

We adapt the presentation of vanilla, away-step and pairwise conditional gradient of Lacoste-Julien & Jaggi (2015).

Recall the SparseMAP optimization problem (Equation 5), which we rewrite below as a minimization, to align with the

formulation in (Lacoste-Julien & Jaggi, 2015)

SparseMAPA(η) := argmin
u: [u,v]∈MA

f(u,v), where f(u,v) :=
1

2
‖u‖

2
2 − η⊤

Uu− η⊤
F v.

The gradients of the objective function f w.r.t. the two variables are

∇uf(u
′,v′) = u′ − ηU , ∇vf(u

′,v′) = −ηV .

The ingredients required to apply conditional gradient algorithms are solving linear minimization problem, selecting the

away step, computing the Wolfe gap, and performing line search.

Linear minimization problem. For SparseMAP, this amounts to a MAP inference call, since

argmin
[u,v]∈MA

〈

∇uf(u
′,v′),u

〉

+
〈

∇vf(u
′,v′),v

〉

= argmin
[u,v]∈MA

(u′ − ηU)
⊤u− η⊤

F v

= {[ms;ns] : s ∈ MAPA(ηU − u′,ηF)}.

where we assume MAPA yields the set of maximally-scoring structures.

Away step selection. This step involves searching the currently selected structures in the active set I with the opposite

goal: finding the structure maximizing the linearization

argmax
s∈I

〈

∇uf(u
′,v′),ms

〉

+
〈

∇vf(u
′,v′),ns

〉

= argmax
s∈I

(u′ − ηU)
⊤ms − η⊤

Fns

Wolfe gap. The gap at a point d = [du;dv] is given by

gap(d,u′) :=
〈

−∇uf(u
′,v′),du

〉

+
〈

−∇vf(u
′,v′),dv

〉

=
〈

ηU − u′,du

〉

+
〈

ηF ,dv

〉

.
(7)

Line search. Once we have picked a direction d = [du;dv], we can pick the optimal step size by solving a simple

optimization problem. Let uγ := u′ + γdu, and vγ := v′ + γdv . We seek γ so as to optimize

argmin
γ∈[0,γmax]

f(uγ ,vγ)

Setting the gradient w.r.t. γ to 0 yields

0 =
∂

∂γ
f(uγ ,vγ)

=
〈

du,∇uf(uγ ,vγ)
〉

+
〈

dv,∇vf(uγ ,vγ)
〉

=
〈

du,u
′ + γdu − ηU

〉

+
〈

dv,−ηF

〉

= γ ‖du‖
2
2 + u′⊤du − η⊤d

SparseMAP: Differentiable Sparse Structured Inference

We may therefore compute the optimal step size γ as

γ = max

(

0,min

(

γmax,
η⊤d− u′⊤du

‖du‖
2
2

))

(8)

Algorithm 1 Conditional gradient for SparseMAP

1: Initialization: s(0) ← MAPA(ηU ,ηF); I(0) = {s(0)}; y(0) = es(0) ; [u(0);v(0)] = as(0)

2: for t = 0 . . . tmax do

3: s← MAPA(ηU − u(t),ηF); dF ← as − [u(t);v(t)] (forward direction)

4: w ← argmax
w∈I(t)

(ηU − u(t))⊤mw + η⊤
Fnw; dW ← [u(t);v(t)]− aw (away direction)

5: if gap(dF,u(t)) < ǫ then

6: return u(t) (Equation 7)

7: end if

8: if variant = vanilla then

9: d← dF; γmax ← 1
10: else if variant = pairwise then

11: d← dF + dW; γmax ← yw
12: else if variant = away-step then

13: if gap(dF,u(t)) ≥ gap(dW,u(t)) then

14: d← dF; γmax ← 1
15: else

16: d← dA; γmax ← yw/(1− yw)
17: end if

18: end if

19: Compute step size γ (Equation 8)

20: [u(t+1);v(t+1)]← [u(t);v(t)] + d

21: Update I(t+1) and y(t+1) accordingly.

22: end for

A.2. The Active Set Algorithm

We use a variant of the active set algorithm (Nocedal & Wright, 1999, Ch. 16.4 & 16.5) as proposed for the quadratic

subproblems of the AD3 algorithm; our presentation follows (Martins et al., 2015, Algorithm 3). At each step, the active set

algorithm solves a relaxed variant of the SparseMAP QP, relaxing the non-negativity constraint on y, and restricting the

solution to the current active set I

minimizeyI∈R|I|

1

2
‖MIyI‖

2
2 − η⊤AIyI subject to 1

⊤yI = 1

whose solution can be found by solving the KKT system

[

M⊤
I MI 1

1
⊤ 0

] [

yI

τ

]

=

[

A⊤
I η

1

]

. (9)

At each iteration, the (symmetric) design matrix in Equation 9 is updated by adding or removing a row and a column;

therefore its inverse (or a decomposition) may be efficiently maintained and updated.

Line search. The optimal step size for moving a feasible current estimate y′ toward a solution ŷ of Equation 9, while

keeping feasibility, is given by (Martins et al., 2015, Equation 31)

γ = min

(

1, min
s∈I, y′

s
>ŷs

y′s
y′s − ŷs

)

(10)

When γ ≤ 1 this update zeros out a coordinate of y′; otherwise, I remains the same.

SparseMAP: Differentiable Sparse Structured Inference

Algorithm 2 Active Set algorithm for SparseMAP

1: Initialization: s(0) ← MAPA(ηU ,ηF); I(0) = {s(0)}; y(0) = es(0) ; [u(0);v(0)] = as(0)

2: for t = 0 . . . tmax do

3: Solve the relaxed QP restricted to I(t); get ŷ, τ̂ , û = Mŷ (Equation 9)

4: if ŷ = y(t) then

5: s← MAPA(ηU − û,ηF)
6: if gap(as, û) ≤ τ̂ then

7: return u(t) (Equation 7)

8: else

9: I(t+1) ← I(t) ∪ {s}
10: end if

11: else

12: Compute step size γ (Equation 10)

13: y(t+1) ← (1− γ)y(t) + γŷ (sparse update)

14: Update S(t+1) if necessary

15: end if

16: end for

B. Computing the SparseMAP Jacobian: Proof of Proposition 1

Recall that SparseMAP is defined as the u⋆ that maximizes the value of the quadratic program (Equation 5),

g(ηU ,ηF) := max
[u;v]∈MA

η⊤
Uu+ η⊤

F v −
1

2
‖u‖

2
2 . (11)

As the ℓ22 norm is strongly convex, there is always a unique minimizer u⋆ (implying that SparseMAP is well-defined), and

the convex conjugate of the QP in (11), g∗(u,v) =
{

1
2 ‖u‖

2
2 , [u;v] ∈MA;−∞ otherwise

}

is smooth in u, implying that

SparseMAP (which only returns u) is Lipschitz-continuous and thus differentiable almost everywhere.

We now rewrite the QP in Equation 11 in terms of the convex combination of vertices of the marginal polytope

min
y∈△D

1

2
‖My‖

2
2 − θ⊤y where θ := A⊤η (12)

We use the optimality conditions of problem 12 to derive an explicit relationship between u⋆ and x. At an optimum, the

following KKT conditions hold

M⊤My⋆ − λ⋆ + τ⋆1 = θ (13)

1
⊤y⋆ = 1 (14)

y⋆ ≥ 0 (15)

λ⋆ ≥ 0 (16)

λ⋆⊤y⋆ = 0 (17)

Let I denote the support of y⋆, i.e., I = {s : y⋆s > 0}. From Equation 17 we have λI = 0 and therefore

MI
⊤MIy

⋆
I + τ⋆1 = θI (18)

1
⊤y⋆

I = 1 (19)

Solving for y⋆
I in Equation 18 we get a direct expression

yI
⋆ = (MI

⊤MI)
−1(θI − τ⋆1) = Z(θI − τ⋆1).

SparseMAP: Differentiable Sparse Structured Inference

where we introduced Z = (M⊤M)−1. Solving for τ⋆ yields

τ⋆ =
1

1TZ1

(

1
TZθI − 1

)

Plugging this back and left-multiplying by MI we get

u⋆ = MIy
⋆
I = MIZ

(

θI −
1

1⊤Z1
1
⊤ZθI1+

1

1⊤Z1
1

)

Note that, in a neighborhood of η, the support of the solution I is constant. (On the measure-zero set of points where

the support changes, SparseMAP is subdifferentiable and our assumption yields a generalized Jacobian (Clarke, 1990).)

Differentiating w.r.t. the score of a configuration θs, we get the expression

∂u⋆

∂θs
=

{

M
(

I − 1
1TZ1

Z11
T
)

zs s ∈ I

0 s /∈ I
(20)

Since θs = a⊤
s η, by the chain rule, we get the desired result

∂u⋆

∂η
=

∂u⋆

∂θ
A⊤. (21)

C. Fenchel-Young Losses: Proof of Proposition 2

We recall that the structured Fenchel-Young loss defined by a convex Ω : RD → R and a matrix A is defined as

ℓΩ,A : Rk ×△D → R, ℓΩ,A(η,y) := Ω∗
△(A⊤η) + Ω△(y)− η⊤Ay.

Since Ω△ is the restriction of a convex function to a convex set, it is convex (Boyd & Vandenberghe, 2004, Section 3.1.2).

Property 1. From the Fenchel-Young inequality (Fenchel, 1949; Boyd & Vandenberghe, 2004, Section 3.3.2), we have

θ⊤y ≤ Ω∗
△(θ) + Ω△(y).

In particular, when θ = A⊤η,

0 ≤ −η⊤Ay +Ω∗
△(A⊤η) + Ω△(y)

= ℓΩ,A(η,y).

Equality is achieved when

Ω∗
△(A⊤η) = η⊤Ay − Ω△(y) ⇐⇒

max
y′∈△d

η⊤Ay′ − Ω(y′) = η⊤Ay − Ω(y),

where we used the fact that y ∈ △d. The second part of the claim follows.

Property 2. To prove convexity in η, we rewrite the loss, for fixed y, as

ℓΩ,A(η) = h(A⊤η) + const, where h(θ) = Ω∗
△(θ)− θ⊤y.

Ω∗
△

is a convex conjugate, and thus itself convex. Linear functions are convex, and the sum of two convex functions is

convex, therefore h is convex. Finally, the composition of a convex function with a linear function is convex as well, thus

the function
(

hA⊤
)

is convex. Convexity of ℓΩ,A in η directly follows. Convexity in y is straightforward, as the sum of a

convex and a linear function (Boyd & Vandenberghe, 2004, Sections 3.2.1, 3.2.2, 3.3.1).

Property 3. This follows from the scaling property of the convex conjugate (Boyd & Vandenberghe, 2004, Section 3.3.2)

(tΩ)∗(θ) = tΩ∗(t−1θ)

Denoting η′ = t−1η, we have that

ℓtΩ,A(η,y) = (tΩ△)∗(A⊤η) + tΩ△(y)− η⊤Ay

= tΩ∗
△(A⊤η′) + tΩ△(y)− η⊤Ay

= t
(

Ω∗
△(A⊤η′) + Ω△(y)− η′⊤Ay

)

= tℓΩ,A(t−1η,y).

