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Abstract

Structured prediction requires searching over a

combinatorial number of structures. To tackle

it, we introduce SparseMAP: a new method for

sparse structured inference, and its natural loss

function. SparseMAP automatically selects only

a few global structures: it is situated between

MAP inference, which picks a single structure,

and marginal inference, which assigns nonzero

probability to all structures, including implausi-

ble ones. SparseMAP can be computed using

only calls to a MAP oracle, making it applicable

to problems with intractable marginal inference,

e.g., linear assignment. Sparsity makes gradient

backpropagation efficient regardless of the struc-

ture, enabling us to augment deep neural networks

with generic and sparse structured hidden lay-

ers. Experiments in dependency parsing and nat-

ural language inference reveal competitive accu-

racy, improved interpretability, and the ability to

capture natural language ambiguities, which is

attractive for pipeline systems.

1. Introduction

Structured prediction involves the manipulation of dis-

crete, combinatorial structures, e.g., trees and alignments

(Bakır et al., 2007; Smith, 2011; Nowozin et al., 2014). Such

structures arise naturally as machine learning outputs, and

as intermediate representations in deep pipelines. However,

the set of possible structures is typically prohibitively large.

As such, inference is a core challenge, often sidestepped

by greedy search, factorization assumptions, or continuous

relaxations (Belanger & McCallum, 2016).
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Figure 1. Left: in the unstructured case, softmax and sparsemax

can be interpreted as regularized, differentiable argmax approxi-

mations; softmax returns dense solutions while sparsemax favors

sparse ones. Right: in this work, we extend this view to structured

inference, which consists of optimizing over a polytope M, the

convex hull of all possible structures (depicted: the arborescence

polytope, whose vertices are trees). We introduce SparseMAP as a

structured extension of sparsemax: it is situated in between MAP

inference, which yields a single structure, and marginal inference,

which returns a dense combination of structures.

In this paper, we propose an appealing alternative: a new

inference strategy, dubbed SparseMAP, which encourages

sparsity in the structured representations. Namely, we seek

solutions explicitly expressed as a combination of a small,

enumerable set of global structures. Our framework departs

from the two most common inference strategies in struc-

tured prediction: maximum a posteriori (MAP) inference,

which returns the highest-scoring structure, and marginal

inference, which yields a dense probability distribution over

structures. Neither of these strategies is fully satisfactory:

for latent structure models, marginal inference is appealing,

since it can represent uncertainty and, unlike MAP inference,

it is continuous and differentiable, hence amenable for use

in structured hidden layers in neural networks (Kim et al.,

2017). It has, however, several limitations. First, there are

useful problems for which MAP is tractable, but marginal in-

ference is not, e.g., linear assignment (Valiant, 1979; Taskar,

2004). Even when marginal inference is available, case-by-

case derivation of the backward pass is needed, sometimes

producing fairly complicated algorithms, e.g., second-order

expectation semirings (Li & Eisner, 2009). Finally, marginal

inference is dense: it assigns nonzero probabilities to all

structures and cannot completely rule out irrelevant ones.

This can be statistically and computationally wasteful, as

well as qualitatively harder to interpret.
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In this work, we make the following contributions:

1. We propose SparseMAP: a new framework for sparse

structured inference (§3.1). The main idea is illustrated

in Figure 1. SparseMAP is a twofold generalization:

first, as a structured extension of the sparsemax transfor-

mation (Martins & Astudillo, 2016); second, as a con-

tinuous yet sparse relaxation of MAP inference. MAP

yields a single structure and marginal inference yields

a dense distribution over all structures. In contrast, the

SparseMAP solutions are sparse combinations of a small

number of often-overlapping structures.

2. We show how to compute SparseMAP effectively, re-

quiring only a MAP solver as a subroutine (§3.2), by

exploiting the problem’s sparsity and quadratic curvature.

Noticeably, the MAP oracle can be any arbitrary solver,

e.g., the Hungarian algorithm for linear assignment,

which permits tackling problems for which marginal

inference is intractable.

3. We derive expressions for gradient backpropagation

through SparseMAP inference, which, unlike MAP, is

differentiable almost everywhere (§3.3). The backward

pass is fully general (applicable to any type of structure),

and it is efficient, thanks to the sparsity of the solutions

and to reusing quantities computed in the forward pass.

4. We introduce a novel SparseMAP loss for structured pre-

diction, placing it into a family of loss functions which

generalizes the CRF and structured SVM losses (§4).

Inheriting the desirable properties of SparseMAP infer-

ence, the SparseMAP loss and its gradients can be com-

puted efficiently, provided access to MAP inference.

Our experiments demonstrate that SparseMAP is useful

both for predicting structured outputs, as well as for learn-

ing latent structured representations. On dependency pars-

ing (§5.1), structured output networks trained with the

SparseMAP loss yield more accurate models with sparse,

interpretable predictions, adapting to the ambiguity (or lack

thereof) of test examples. On natural language inference

(§5.2), we learn latent structured alignments, obtaining good

predictive performance, as well as useful natural visualiza-

tions concentrated on a small number of structures.1

Notation. Given vectors a ∈ R
m, b ∈ R

n, [a; b] ∈
R

m+n denotes their concatenation; given matrices A ∈
R

m×k,B ∈ R
n×k, we denote their row-wise stacking as

[A;B] ∈ R
(m+n)×k. We denote the columns of a matrix A

by aj ; by extension, a slice of columns of A is denoted AI

for a set of indices I. We denote the canonical simplex by

△d := {y ∈ R
d : y � 0,

∑d
i=1 yi = 1}, and the indicator

function of a predicate p as I[p] = {1 if p, 0 otherwise }.

1 General-purpose dynet and pytorch implementations avail-
able at https://github.com/vene/sparsemap.

2. Preliminaries

2.1. Regularized Max Operators: Softmax, Sparsemax

As a basis for the more complex structured case, we first

consider the simple problem of selecting the largest value

in a vector θ ∈ R
d. We denote the vector mapping

argmax(θ) := argmax
y∈△d

θ⊤y.

When there are no ties, argmax has a unique solution ei
peaking at the index i of the highest value of θ. When

there are ties, argmax is set-valued. Even assuming no

ties, argmax is piecewise constant, and thus is ill-suited for

direct use within neural networks, e.g., in an attention mech-

anism. Instead, it is common to use softmax, a continuous

and differentiable approximation to argmax, which can be

seen as an entropy-regularized argmax

softmax(θ) := argmax
y∈△d

θ⊤y+H(y) =
expθ

∑d
i=1 exp θi

(1)

where H(y) = −
∑

i yi ln yi, i.e. the negative Shannon

entropy. Since exp · > 0 strictly, softmax outputs are dense.

By replacing the entropic penalty with a squared ℓ2 norm,

Martins & Astudillo (2016) introduced a sparse alternative

to softmax, called sparsemax, given by

sparsemax(θ) := argmax
y∈△d

θ⊤y −
1

2
‖y‖

2
2

= argmin
y∈△d

‖y − θ‖
2
2 .

(2)

Both softmax and sparsemax are continuous and differen-

tiable almost everywhere; however, sparsemax encourages

sparsity in its outputs. This is because it corresponds to an

Euclidean projection onto the simplex, which is likely to hit

its boundary as the magnitude of θ increases. Both mech-

anisms, as well as variants with different penalties (Nic-

ulae & Blondel, 2017), have been successfully used in

attention mechanisms, for mapping a score vector θ to

a d-dimensional normalized discrete probability distribu-

tion over a small set of choices. The relationship between

argmax, softmax, and sparsemax, illustrated in Figure 1,

sits at the foundation of SparseMAP.

2.2. Structured Inference

In structured prediction, the space of possible outputs is

typically very large: for instance, all possible labelings of

a length-n sequence, spanning trees over n nodes, or one-

to-one alignments between two sets. We may still write

optimization problems such as maxDs=1 θs, but it is imprac-

tical to enumerate all of the D possible structures and, in

turn, to specify the scores for each structure in θ.

https://github.com/vene/sparsemap
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Instead, structured problems are often parametrized through

structured log-potentials (scores) θ := A⊤η, where A ∈
R

k×D is a matrix that specifies the structure of the problem,

and η ∈ R
k is lower-dimensional parameter vector, i.e.,

k ≪ D. For example, in a factor graph (Kschischang

et al., 2001) with variables U and factors F , θ is given by

θs :=
∑

i∈U

ηU,i(si) +
∑

f∈F

ηF,f (sf ),

where ηU and ηF are unary and higher-order log-potentials,

and si and sf are local configurations at variable and fac-

tor nodes. This can be written in matrix notation as θ =
M⊤ηU+N⊤ηF for suitable matrices {M ,N}, fitting the

assumption above with A = [M ;N ] and η = [ηU ;ηF ].

We can then rewrite the MAP inference problem, which

seeks the highest-scoring structure, as a k-dimensional prob-

lem, by introducing variables [u;v] ∈ R
k to denote config-

urations at variable and factor nodes:2

MAPA(η) := argmax
u:=My

y∈△
D

θ⊤y

= argmax
u: [u;v]∈MA

η⊤
Uu+ η⊤

F v,

(3)

whereMA := {[u;v] : u = My, v = Ny, y ∈ △D} is

the marginal polytope (Wainwright & Jordan, 2008), with

one vertex for each possible structure (Figure 1). However,

as previously said, since it is equivalent to a D-dimensional

argmax, MAP is piecewise constant and discontinuous.

Negative entropy regularization over y, on the other hand,

yields marginal inference,

MarginalA(η) := argmax
u:=My

y∈△
D

θ⊤y +H(y)

= argmax
u: [u;v]∈MA

η⊤
Uu+ η⊤

F v +HA(u,v).

(4)

Marginal inference is differentiable, but may be more diffi-

cult to compute; the entropy HA(u,v) = H(y) itself lacks

a closed form (Wainwright & Jordan, 2008, §4.1.2). Gradi-

ent backpropagation is available only to specialized problem

instances, e.g. those solvable by dynamic programming (Li

& Eisner, 2009). The entropic term regularizes y toward

more uniform distributions, resulting in strictly dense solu-

tions, just like in the case of softmax (Equation 1).

Interesting types of structures, which we use in the experi-

ments described in Section 5, include the following.

2We use the notation argmax
u: [u;v]∈M to convey that the

maximization is over both u and v, but only u is returned. Sepa-
rating the variables as [u;v] loses no generality and allows us to
isolate the unary posteriors u as the return value of interest.

Sequence tagging. Consider a sequence of n items, each

assigned one out of a possible m tags. In this case, a global

structure s is a joint assignment of tags (t1, · · · , tn). The

matrix M is nm-by-mn–dimensional, with columns ms ∈
{0, 1}nm := [et1 , ..., etn ] indicating which tag is assigned

to each variable in the global structure s. N is nm2-by-

mn–dimensional, with ns encoding the transitions between

consecutive tags, i.e., ns(i, a, b) := I[ti−1 = a & ti = b].
The Viterbi algorithm provides MAP inference and forward-

backward provides marginal inference (Rabiner, 1989).

Non-projective dependency parsing. Consider a sentence

of length n. Here, a structure s is a dependency tree: a

rooted spanning tree over the n2 possible arcs (for example,

the arcs above the sentences in Figure 3). Each column

ms ∈ {0, 1}
n2

encodes a tree by assigning a 1 to its arcs.

N is empty,MA is known as the arborescence polytope

(Martins et al., 2009). MAP inference may be performed

by maximal arborescence algorithms (Chu & Liu, 1965;

Edmonds, 1967; McDonald et al., 2005), and the Matrix-

Tree theorem (Kirchhoff, 1847) provides a way to perform

marginal inference (Koo et al., 2007; Smith & Smith, 2007).

Linear assignment. Consider a one-to-one matching (lin-

ear assignment) between two sets of n nodes. A global

structure s is a n-permutation, and a column ms ∈ {0, 1}
n2

can be seen as a flattening of the corresponding permu-

tation matrix. Again, N is empty. MA is the Birkhoff

polytope (Birkhoff, 1946), and MAP inference can be per-

formed by, e.g., the Hungarian algorithm (Kuhn, 1955) or

the Jonker-Volgenant algorithm (Jonker & Volgenant, 1987).

Noticeably, marginal inference is known to be #P-complete

(Valiant, 1979; Taskar, 2004, Section 3.5). This makes it an

open problem how to use matchings as latent variables.

3. SparseMAP

Armed with the parallel between structured inference and

regularized max operators described in §2, we are now ready

to introduce SparseMAP, a novel inference optimization

problem which returns sparse solutions.

3.1. Definition

We introduce SparseMAP by regularizing the MAP infer-

ence problem in Equation 3 with a squared ℓ2 penalty on

the returned posteriors, i.e., 1
2 ‖u‖

2
2. Denoting, as above,

θ := A⊤η, the result is a quadratic optimization problem,

SparseMAPA(η) := argmax
u:=My

y∈△
D

θ⊤y −
1

2
‖My‖

2
2

= argmax
u: [u,v]∈MA

η⊤
Uu+ η⊤

F v −
1

2
‖u‖

2
2 .

(5)
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Figure 2. Comparison of solvers on the SparseMAP optimization

problem for a tree factor with 20 nodes. The active set solver

converges much faster and to a much sparser solution.

The quadratic penalty replaces the entropic penalty from

marginal inference (Equation 4), which pushes the solutions

to the strict interior of the marginal polytope. In conse-

quence, SparseMAP favors sparse solutions from the faces

of the marginal polytope MA, as illustrated in Figure 1.

For the structured prediction problems mentioned in Sec-

tion 2.2, SparseMAP would be able to return, for example,

a sparse combination of sequence labelings, parse trees, or

matchings. Moreover, the strongly convex regularization

on u ensures that SparseMAP has a unique solution and is

differentiable almost everywhere, as we will see.

3.2. Solving SparseMAP

We now tackle the optimization problem in Equation 5.

Although SparseMAP is a QP over a polytope, even de-

scribing it in standard form is infeasible, since enumerating

the exponentially-large set of vertices is infeasible. This

prevents direct application of, e.g., the generic differentiable

QP solver of Amos & Kolter (2017). We instead focus on

SparseMAP solvers that involve a sequence of MAP prob-

lems as a subroutine—this makes SparseMAP widely appli-

cable, given the availability of MAP implementations for

various structures. We discuss two such methods, one based

on the conditional gradient algorithm and another based

on the active set method for quadratic programming. We

provide a full description of both methods in Appendix A.

Conditional gradient. One family of such solvers is based

on the conditional gradient (CG) algorithm (Frank & Wolfe,

1956; Lacoste-Julien & Jaggi, 2015), considered in prior

work for solving approximations of the marginal inference

problem (Belanger et al., 2013; Krishnan et al., 2015). Each

step must solve a linearized subproblem. Denote by f the

SparseMAP objective from Equation 5,

f(u,v) := η⊤
Uu+ η⊤

F v −
1

2
‖u‖

2
2 .

The gradients of f with respect to the two variables are

∇uf(u
′,v′) = ηU − u′, ∇vf(u

′,v′) = ηV .

A linear approximation to f around a point [u′;v′] is

f̂(u,v) := (∇uf)
⊤u+(∇vf)

⊤v = (ηU−u
′)⊤u+η⊤

F v.

Minimizing f̂ overM is exactly MAP inference with ad-

justed variable scores ηU − u′. Intuitively, at each step

we seek a high-scoring structure while penalizing sharing

variables with already-selected structures Vanilla CG simply

adds the new structure to the active set at every iteration.

The pairwise and away-step variants trade off between the

direction toward the new structure, and away from one of

the already-selected structures. More sophisticated variants

have been proposed (Garber & Meshi, 2016) which can

provide sparse solutions when optimizing over a polytope.

Active set method. Importantly, the SparseMAP problem

in Equation 5 has quadratic curvature, which the general

CG algorithms may not optimally leverage. For this reason,

we consider the active set method for constrained QPs: a

generalization of Wolfe’s min-norm point algorithm (Wolfe,

1976), also used in structured prediction for the quadratic

subproblems by Martins et al. (2015). The active set algo-

rithm, at each iteration, updates an estimate of the solution

support by adding or removing one constraint to/from the

active set; then it solves the Karush–Kuhn–Tucker (KKT)

system of a relaxed QP restricted to the current support.

Comparison. Both algorithms enjoy global linear conver-

gence with similar rates (Lacoste-Julien & Jaggi, 2015),

but the active set algorithm also exhibits exact finite

convergence—this allows it, for instance, to capture the op-

timal sparsity pattern (Nocedal & Wright, 1999, Ch. 16.4 &

16.5). Vinyes & Obozinski (2017) provide a more in-depth

discussion of the connections between the two algorithms.

We perform an empirical comparison on a dependency pars-

ing instance with random potentials. Figure 2 shows that

active set substantially outperforms all CG variants, both in

terms of objective value as well as in the solution sparsity,

suggesting that the quadratic curvature makes SparseMAP

solvable in very few iterations to high accuracy. We there-

fore use the active set solver in the remainder of the paper.

3.3. Backpropagating Gradients through SparseMAP

In order to use SparseMAP as a neural network layer trained

with backpropagation, one must compute products of the

SparseMAP Jacobian with a vector p. Computing the Ja-

cobian of an optimization problem is an active research

topic known as argmin differentiation, and is generally diffi-

cult. Fortunately, as we show next, argmin differentiation is

always easy and efficient in the case of SparseMAP.

Proposition 1 Denote a SparseMAP solution by y⋆ and

its support by I := {s : ys > 0}. Then, SparseMAP is
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differentiable almost everywhere with Jacobian

∂u⋆

∂η
= MD(I)A⊤, where D(I) = D(I)⊤given by

d(I)s :=

{

(

I − 1
1TZ1

Z11
T
)

zs, s ∈ I

0 s /∈ I
,

Z := (MI
⊤MI)

−1.

The proof, given in Appendix B, relies on the KKT con-

ditions of the SparseMAP QP. Importantly, because D(I)
is zero outside of the support of the solution, computing

the Jacobian only requires the columns of M and A corre-

sponding to the structures in the active set. Moreover, when

using the active set algorithm discussed in §3.2, the matrix

Z is readily available as a byproduct of the forward pass.

The backward pass can, therefore, be computed in O(k|I|).

Our approach for gradient computation draws its efficiency

from the solution sparsity and does not depend on the type

of structure considered. This is contrasted with two related

lines of research. The first is “unrolling” iterative inference

algorithms, for instance belief propagation (Stoyanov et al.,

2011; Domke, 2013) and gradient descent (Belanger et al.,

2017), where the backward pass complexity scales with the

number of iterations. In the second, employed by Kim et al.

(2017), when inference can be performed via dynamic pro-

gramming, backpropagation can be performed using second-

order expectation semirings (Li & Eisner, 2009) or more

general smoothing (Mensch & Blondel, 2018), in the same

time complexity as the forward pass. Moreover, in our ap-

proach, neither the forward nor the backward passes involve

logarithms, exponentiations or log-domain classes, avoiding

the slowdown and stability issues normally incurred.

In the unstructured case, since M = I , Z is also an iden-

tity matrix, uncovering the sparsemax Jacobian (Martins &

Astudillo, 2016). In general, structures are not necessarily

orthogonal, but may have degrees of overlap.

4. Structured Fenchel-Young Losses

and the SparseMAP Loss

With the efficient algorithms derived above in hand, we

switch gears to defining a SparseMAP loss function. Struc-

tured output prediction models are typically trained by min-

imizing a structured loss measuring the discrepancy be-

tween the desired structure (encoded, for instance, as an

indicator vector y = es) and the prediction induced by the

log-potentials η. We provide here a general family of struc-

tured prediction losses that will make the newly proposed

SparseMAP loss arise as a very natural case. Below, we let

Ω : RD → R denote a convex penalty function and denote

by Ω△ its restriction to△D ⊂ R
D, i.e.,

Ω△(y) :=

{

Ω(y), y ∈ △D;

∞, y /∈ △D.

The Fenchel convex conjugate of Ω△ is

Ω⋆
△(θ) := sup

y∈RD

θ⊤y − Ω△(y) = sup
y∈△D

θ⊤y − Ω(y).

We next introduce a family of structured prediction losses,

named after the corresponding Fenchel-Young duality gap.

Definition 1 (Fenchel-Young losses) Given a convex

penalty function Ω : RD → R, and a (k ×D)-dimensional

matrix A = [M ;N ] encoding the structure of the problem,

we define the following family of structured losses:

ℓΩ,A(η,y) := Ω⋆
△(A⊤η) + Ω△(y)− η⊤Ay. (6)

This family, studied in more detail in(Blondel et al., 2018),

includes the commonly-used structured losses:

• Structured perceptron (Collins, 2002): Ω ≡ 0;

• Structured SVM (Taskar et al., 2003; Tsochantaridis

et al., 2004): Ω ≡ ρ(·, ȳ) for a cost function ρ, where ȳ

is the true output;

• CRF (Lafferty et al., 2001): Ω ≡ −H;

• Margin CRF (Gimpel & Smith, 2010):

Ω ≡ −H + ρ(·, ȳ).

This leads to a natural way of defining SparseMAP losses,

by plugging the following into Equation 6:

• SparseMAP loss: Ω(y) = 1
2 ‖My‖

2
2,

• Margin SparseMAP: Ω(y) = 1
2 ‖My‖

2
2 + ρ(y, ȳ).

It is well-known that the subgradients of structured percep-

tron and SVM losses consist of MAP inference, while the

CRF loss gradient requires marginal inference. Similarly,

the subgradients of the SparseMAP loss can be computed

via SparseMAP inference, which in turn only requires MAP.

The next proposition states properties of structured Fenchel-

Young losses, including a general connection between a loss

and its corresponding inference method.

Proposition 2 Consider a convex Ω and a structured model

defined by the matrix A ∈ R
k×D. Denote the inference

objective fΩ(y) := η⊤Ay − Ω(y), and a solution y⋆ :=
argmax
y∈△D

fΩ(y). Then, the following properties hold:

1. ℓΩ,A(η,y) ≥ 0, with equality when fΩ(y) = fΩ(y
⋆);

2. ℓΩ,A(η,y) is convex, ∂ℓΩ,A(η,y) ∋ A(y⋆ − y);

3. ℓtΩ,A(η,y) = tℓΩ(η/t,y) for any t ∈ R, t > 0.



SparseMAP: Differentiable Sparse Structured Inference

Table 1. Unlabeled attachment accuracy scores for dependency

parsing, using a bi-LSTM model (Kiperwasser & Goldberg, 2016).

SparseMAP and its margin version, m-SparseMAP, produce the

best parser on 4/5 datasets. For context, we include the scores

of the CoNLL 2017 UDPipe baseline, which is trained under the

same conditions (Straka & Straková, 2017).

Loss en zh vi ro ja

Structured SVM 87.02 81.94 69.42 87.58 96.24
CRF 86.74 83.18 69.10 87.13 96.09

SparseMAP 86.90 84.03 69.71 87.35 96.04
m-SparseMAP 87.34 82.63 70.87 87.63 96.03

UDPipe baseline 87.68 82.14 69.63 87.36 95.94

Proof is given in Appendix C. Property 1 suggests that pmin-

imizing ℓΩ,A aligns models with the true label. Property

2 shows how to compute subgradients of ℓΩ,A provided

access to the inference output [u⋆;v⋆] = Ay⋆ ∈ R
k. Com-

bined with our efficient procedure described in Section 3.2,

it makes the SparseMAP losses promising for structured

prediction. Property 3 suggests that the strength of the

penalty Ω can be adjusted by simply scaling η. Finally, we

remark that for a strongly-convex Ω, ℓΩ,A can be seen as a

smoothed perceptron loss; other smoothed losses have been

explored by Shalev-Shwartz & Zhang (2016).

5. Experimental Results

In this section, we experimentally validate SparseMAP on

two natural language processing applications, illustrating

the two main use cases presented: structured output predic-

tion with the SparseMAP loss (§5.1) and structured hidden

layers (§5.2). All models are implemented using the dynet

library v2.0.2 (Neubig et al., 2017).

5.1. Dependency Parsing with the SparseMAP Loss

We evaluate the SparseMAP losses against the commonly

used CRF and structured SVM losses. The task we focus on

is non-projective dependency parsing: a structured output

task consisting of predicting the directed tree of grammatical

dependencies between words in a sentence (Jurafsky & Mar-

tin, 2018, Ch. 14). We use annotated Universal Dependency

data (Nivre et al., 2016), as used in the CoNLL 2017 shared

task (Zeman et al., 2017). To isolate the effect of the loss,

we use the provided gold tokenization and part-of-speech

tags. We follow closely the bidirectional LSTM arc-factored

parser of Kiperwasser & Goldberg (2016), using the same

model configuration; the only exception is not using exter-

nally pretrained embeddings. Parameters are trained using

Adam (Kingma & Ba, 2015), tuning the learning rate on the

grid {.5, 1, 2, 4, 8} × 10−3, expanded by a factor of 2 if the

best model is at either end.

We experiment with 5 languages, diverse both in terms of

Table 2. Test accuracy scores for natural language inference with

structured and unstructured variants of ESIM. In parentheses: the

percentage of pairs of words with nonzero alignment scores.

ESIM variant MultiNLI SNLI

softmax 76.05 (100%) 86.52 (100%)
sequential 75.54 (13%) 86.62 (19%)
matching 76.13 (8%) 86.05 (15%)

family and in terms of the amount of training data (ranging

from 1,400 sentences for Vietnamese to 12,525 for English).

Test set results (Table 1) indicate that the SparseMAP losses

outperform the SVM and CRF losses on 4 out of the 5

languages considered. This suggests that SparseMAP is

a good middle ground between MAP-based and marginal-

based losses in terms of smoothness and gradient sparsity.

Moreover, as illustrated in Figure 4, the SparseMAP loss

encourages sparse predictions: models converge towards

sparser solutions as they train, yielding very few ambigu-

ous arcs. When confident, SparseMAP can predict a single

tree. Otherwise, the small set of candidate parses returned

can be easily visualized, often indicating genuine linguistic

ambiguities (Figure 3). Returning a small set of parses, also

sought concomittantly by Keith et al. (2018), is valuable in

pipeline systems, e.g., when the parse is an input to a down-

stream application: error propagation is diminished in cases

where the highest-scoring tree is incorrect (which is the case

for the sentences in Figure 3). Unlike K-best heuristics,

SparseMAP dynamically adjusts its output sparsity, which

is desirable on realistic data where most instances are easy.

5.2. Latent Structured Alignment

for Natural Language Inference

In this section, we demonstrate SparseMAP for inferring

latent structure in large-scale deep neural networks. We

focus on the task of natural language inference, defined as

the classification problem of deciding, given two sentences

(a premise and a hypothesis), whether the premise entails

the hypothesis, contradicts it, or is neutral with respect to it.

We consider novel structured variants of the state-of-the-art

ESIM model (Chen et al., 2017). Given a premise P of

length m and a hypothesis H of length n, ESIM:

1. Encodes P and H with an LSTM.

2. Computes alignment scores G ∈ R
m×n; with gij the

inner product between the P word i and H word j.

3. Computes P-to-H and H-to-P alignments using row-wise,

respectively column-wise softmax on G.

4. Augments P words with the weighted average of its

aligned H words, and vice-versa.

5. Passes the result through another LSTM, then predicts.
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⋆ They did a vehicle wrap for my Toyota Venza that looks amazing .
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⋆ the broccoli looks browned around the edges .
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Figure 3. Example of ambiguous parses from the UD English validation set. SparseMAP selects a small number of candidate parses (left:

three, right: two), differing from each other in a small number of ambiguous dependency arcs. In both cases, the desired gold parse is

among the selected trees (depicted by the arcs above the sentence), but it is not the highest-scoring one.
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Figure 4. Distribution of the tree sparsity (top) and arc sparsity (bottom) of SparseMAP solutions during training on the Chinese dataset.

Shown are respectively the number of trees and the average number of parents per word with nonzero probability.

We consider the following structured replacements for the

independent row-wise and column-wise softmaxes (step 3):

Sequential alignment. We model the alignment of p to

h as a sequence tagging instance of length m, with n pos-

sible tags corresponding to the n words of the hypothesis.

Through transition scores, we enable the model to capture

continuity and monotonicity of alignments: we parametrize

transitioning from word t1 to t2 by binning the distance

t2 − t1 into 5 groups, {−2 or less,−1, 0, 1, 2 or more}.
We similarly parametrize the initial alignment using bins

{1, 2 or more} and the final alignment as {−2 or less,−1},
allowing the model to express whether an alignment starts

at the beginning or ends on the final word of h; formally

ηF (i, t1, t2) :=











wbin(t2−t1) 0 < i < n,

wstart
bin(t2)

i = 0,

wend
bin(t1)

i = n.

We align p to h applying the same method in the other direc-

tion, with different transition scores w. Overall, sequential

alignment requires learning 18 additional scalar parameters.

Matching alignment. We now seek a symmetrical align-

ment in both directions simultaneously. To this end, we cast

the alignment problem as finding a maximal weight bipar-

tite matching. We recall from §2.2 that a solution can be

found via the Hungarian algorithm (in contrast to marginal

inference, which is #P-complete). When n = m, maximal

matchings can be represented as permutation matrices, and

when n 6= m some words remain unaligned. SparseMAP

returns a weighted average of a few maximal matchings.

This method requires no additional learned parameters.

We evaluate the two models alongside the softmax baseline

on the SNLI (Bowman et al., 2015) and MultiNLI (Williams

et al., 2018) datasets.3 All models are trained by SGD,

with 0.9× learning rate decay at epochs when the validation

accuracy is not the best seen. We tune the learning rate on

the grid
{

2k : k ∈ {−6,−5,−4,−3}
}

, extending the range

if the best model is at either end. The results in Table 2 show

that structured alignments are competitive with softmax in

terms of accuracy, but are orders of magnitude sparser. This

sparsity allows them to produce global alignment structures

that are interpretable, as illustrated in Figure 5.

Interestingly, we observe computational advantages of spar-

sity. Despite the overhead of GPU memory copying, both

training and validation in our latent structure models take

roughly the same time as with softmax and become faster as

the models grow more certain. For the sake of comparison,

Kim et al. (2017) report a 5× slow-down in their structured

attention networks, where they use marginal inference.

3We split the MultiNLI matched validation set into equal vali-
dation and test sets; for SNLI we use the provided split.
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Figure 5. Latent alignments on an example from the SNLI validation set, correctly predicted as neutral by all compared models. The

premise is on the y-axis, the hypothesis on the x-axis. Top: columns sum to 1; bottom: rows sum to 1. The matching alignment mechanism

yields a symmetrical alignment, and is thus shown only once. Softmax yields a dense alignment (nonzero weights are marked with a

border). The structures selected by sequential alignment are overlayed as paths; the selected matchings are displayed in the top right.

6. Related Work

Structured attention networks. Kim et al. (2017) and

Liu & Lapata (2018) take advantage of the tractability of

marginal inference in certain structured models and de-

rive specialized backward passes for structured attention.

In contrast, our approach is modular and general: with

SparseMAP, the forward pass only requires MAP inference,

and the backward pass is efficiently computed based on the

forward pass results. Moreover, unlike marginal inference,

SparseMAP yields sparse solutions, which is an appealing

property statistically, computationally, and visually.

K-best inference. As it returns a small set of structures,

SparseMAP brings to mind K-best inference, often used

in pipeline NLP systems for increasing recall and handling

uncertainty (Yang & Cardie, 2013). K-best inference can

be approximated (or, in some cases, solved), roughly K
times slower than MAP inference (Yanover & Weiss, 2004;

Camerini et al., 1980; Chegireddy & Hamacher, 1987;

Fromer & Globerson, 2009). The main advantages of

SparseMAP are convexity, differentiablity, and modular-

ity, as SparseMAP can be computed in terms of MAP sub-

problems. Moreover, it yields a distribution, unlike K-best,

which does not reveal the gap between selected structures,

Learning permutations. A popular approach for differen-

tiable permutation learning involves mean-entropic optimal

transport relaxations (Adams & Zemel, 2011; Mena et al.,

2018). Unlike SparseMAP, this does not apply to general

structures, and solutions are not directly expressible as com-

binations of a few permutations.

Regularized inference. Ravikumar et al. (2010), Meshi

et al. (2015), and Martins et al. (2015) proposed ℓ2 per-

turbations and penalties in various related ways, with the

goal of solving LP-MAP approximate inference in graph-

ical models. In contrast, the goal of our work is sparse

structured prediction, which is not considered in the afore-

mentioned work. Nevertheless, some of the formulations in

their work share properties with SparseMAP; exploring the

connections further is an interesting avenue for future work.

7. Conclusion

We introduced a new framework for sparse structured infer-

ence, SparseMAP, along with a corresponding loss function.

We proposed efficient ways to compute the forward and

backward passes of SparseMAP. Experimental results illus-

trate two use cases where sparse inference is well-suited. For

structured prediction, the SparseMAP loss leads to strong

models that make sparse, interpretable predictions, a good

fit for tasks where local ambiguities are common, like many

natural language processing tasks. For structured hidden

layers, we demonstrated that SparseMAP leads to strong,

interpretable networks trained end-to-end. Modular by de-

sign, SparseMAP can be applied readily to any structured

problem for which MAP inference is available, including

combinatorial problems such as linear assignment.
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