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Behaviors of Backpropagation-based Visualizations”

A. Proof of Lemma 1

Proof: Saliency map includes only forward ReLUs without

backward ReLUs, whereas DeconvNet includes only back-

ward ReLUs without forward ReLUs. GBP has both types

of ReLUs. Also, the norm of all the visualization results

will be normalized to be in the range of [0, 1]. Thus, by

taking the (modified) derivative of fk(x) in Eq. (3) with

respect to x and applying the proper normalization, these

backpropagation-based visualizations for the k-th logit can

be unified as
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where Zk is the normalization coefficient to ensure

‖sk(x)‖ ∈ [0, 1], (a) follows from the formal definitions of

backpropagation-based visualization for a ReLU activation

in Eq. (1) with h(·), g(·) being given by Eq. (2), (b) is from

applying y(j) = Djx and swapping the two sums, and (c)
is from taking the derivative of g(·) in the three cases with

w̃(i,j) =

{

w(i) for DeconvNet

w(i)
I
(
w(i)T y(j)

)
for saliency map and GBP

as required. �

B. Proof of Theorem 1

Proof: In a random neural network where every entry

of both V and W is assumed to be independently Gaus-

sian distributed with a zero mean and variance c2, we

have Vqij ,k ∼ N (0, c2) and w(i) ∼ N (0, c2I) ∀i ∈
{1, · · · , N}, j ∈ {1, · · · , J}. For GBP, in order to ensure

‖sk(x)‖ ∈ [0, 1] we first set Zk = Z̃kN . Assuming the

number of filters N is sufficiently large (e.g. VGG-16 net

usually has N = 256), then from Eq. (A.1) we have
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where (a) follows from the asymptotic approximation of

sample mean to the expectation and (b) follows from the

fact that Vqij ,k and w(i) are independent.

For GBP, we have h(Vqij ,k) = σ(Vqij ,k). Since we know

Vqij ,k ∼ N (0, c2), then h(Vqij ,k) follows one-dimensional

half normal distribution, and by its definition we can easily

get E
[
h(Vqij ,k)

]
=

√
2
π
c. Also, from the definition of

w̃(i,j) for GBP, we know w̃(i,j) follows a p-dimensional

half-normal distribution and its p.d.f. is

p(w) =
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(B.1)

Then its expectation is given by
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where (a) follows from the change of variables w = Uφ
and U is an unitary matrix satisfying the condition that

UT · y(j)

‖y(j)‖2
= e(p) and e(p) is an unit vector with only the

p-th entry being 1. That is, y(j)

‖y(j)‖2
is the p-th column of U .

Thus, y(j)Tw = y(j)TUφ = e(p)Tφ‖y(j)‖2 = φp‖y(j)‖2
with φp being the p-th entry of φ, which means y(j)Tw > 0
is equivalent to φp > 0. Also, by the change of variables

in the integral, we have dw = |U |dφ where | · | denotes the
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determinant of a matrix. (b) follows from |U | = 1 by the

definition of an unitary matrix, and the swap between matrix

multiplication and the integral.

As φ is a p-dimensional vector, the integral above can be

evaluated at each entry, denoted by φm, of φ separately. For

m 6= p, we have
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where (a) follows from the expansion of the multiple in-

tegral, and all of the other p − 2 integrals over φk for

k /∈ {p,m} are 1. For m = p, we have
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where (a) also follows from the expansion of the multiple

integral, and all other p− 1 integrals over φk for k 6= p are

1; (b) follows from evaluating the integral by the the change

of variables t =
φ2
p

2c2 . Putting them together, (B.2) becomes
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where (a) follows from the the definition of the unitary

matrix U satisfying UT · y(j)

‖y(j)‖2
= e(p).

Therefore, GBP at the k-th logit can be approximated as

sGBP
k (x) ≈ 2c2
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where (a) follows from the definition

Ipj
, Dj

TDj =





0(j−1)b×(j−1)b

Ip×p

0



 ∈ Rd×d.

Ideally, if we assume ‖y(j)‖2 = C0, ∀j (a constant) and

ignore the boundary points (Note that using the “SAME”

padding method instead of the “VALID” one is supposed to

alleviate the boundary inconsistency to some extent), then
∑J

j=1 Ipj
≈ pId×d and thus we can further approximate

the GBP as

sGBP
k (x) ≈ 2c2p

πC0Z̃k

x

Thus, by setting the normalization coefficient Z̃k = πC0

2c2p ,

we get the result. �

C. Proof of Theorem 2

In Eq. (4), we denote by Θj =
∑N

i=1 h(Vqij ,k)w̃
(i,j), which

is a sum of N independent and identically distributed ran-

dom variables. From the Central Limit Theorem, Θj is

approximated as a Gaussian random variable if the number

of filters N is sufficiently large. Since sk(x) is a linear

function of Θj , i.e.

sk(x) =
1

Zk

J∑
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Dj
TΘj (C.1)

we have sk(x) can also be approximated as a Gaussian

random variable for both saliency map and DeconvNet.

In the first part of the proof, we evaluate the mean and

variance of saliency map.

Since for saliency map we know E
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= 0, we can evaluate the mean of Θj as
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where (a) is from the fact that Vqij ,k and w̃(i,j) are indepen-

dent. Apparently, from Eq. (C.1) we have

E
[
sSal
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]
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Then to evaluate the variance of saliency map, we can also

first evaluate the variance of Θj as
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where (a) is also from the fact that Vqij ,k and w̃(i,j) are

independent and (b) follows from E
[
Vqij ,k

]
= 0 and

Var
[
Vqij ,k

]
= c2. According to Eq. (B.1), we get
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where (a) also follows from the change of variables w =
Uφ and U is an unitary matrix satisfying the condition that

UT · y(j)

‖y(j)‖2
= e(p).

Similarly, as φφT is a p × p matrix, the integral above

can be evaluated at each entry, denoted by φmφn, of φφT

separately where m,n ∈ {1, · · · , p}.

First, for m 6= n 6= p, we have
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where (a) follows from the expansion of the multiple inte-

gral, and all the other p−2 integrals over φk for k /∈ {m,n}
are 1. Similarly, we can easily get that Amn = 0 for m 6= n
with i = p or j = p.

Also, for m = n 6= p, we have
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where (a) follows from the expansion of the multiple inte-

gral, and all other p− 2 integrals are 1.

Finally, for m = n = p, we have
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where (a) follows from the expansion of the multiple inte-

gral, and all other p− 1 integrals are 1.

Putting them together, we get A = c2I and thus

E
[
w̃(i,j)w̃(i,j)T

]
= c2UUT = c2I which futher implies

Var [Θj ] = Nc4I . Accordingly, from Eq. (C.1) we have
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where (a) is from the approximation that the patching matrix

Dj satisfies
∑J

j=1 D
T
j Dj ≈ pI , (b) follows from setting

the normalization coefficient to be Zk = c2
√
Np. There-

fore, we have

sSal
k ∼ N (0, I)

In the second part of the proof, we evaluate the mean and

variance of DeconvNet.

Similarly, for DeconvNet we have E
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]
= E
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]
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0, then we can evaluate the mean of Θj as
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where (a) is from the fact that Vqij ,k and w̃(i,j) are indepen-

dent. Apparently, from Eq. (C.1) we have
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Then to evaluate the variance of DeconvNet, we can also
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first evaluate the variance of Θj as

Var [Θj ] = N · Var
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where (a) is also from the fact that σ(Vqij ,k) and w(i)
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Var
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E
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2
]
= c2. Then, the rest of the proof follows

the same derivations with saliency map, which yields

sDeconv
k ∼ N (0, I)

Thus, we finish our proof by showing that both saliency map

and DeconvNet are standard Gaussians which preserve no

input information. �

D. Proof of Proposition 1

First, let us focus on the GBP case. From Eq. (9), we know
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where V̂
(2)
qij ,k

∈ R
d3×1 as we know Γ(l) ∈ R

dl×dl+1 in the

l-th layer, and then V̂
(1)
·,k for GBP becomes
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Since every entry of Γ(2) is i.i.d. Gaussian distributed with

zero-mean, we have
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where (a) follows from the assumption of the dimension

d2 is sufficiently high in the CNN, and thus the impact

of Γ
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o
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. Similarly, σ(V̂
(2)
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under the same approximation.

As d3 is also sufficiently large and V̂
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which approximately is a Gaussian random variable with

zero mean due to the central limit theorem. Next, in order to

show the independence of two Gaussian random variables,

it is equivalent to show they are uncorrelated. Since for any

q′ 6= qij , we know
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where (a) is from the mutual independence of bt, Γ
(2)
qij ,t

and σ(V̂
(2)
t,k ), and (b) is from the independence of two i.i.d.

zero-mean Gaussians Γ
(2)
q′,t′ and Γ

(2)
qij ,t

, by our assumption.

Therefore, V̂
(1)
q′,k and V̂

(1)
qij ,k

are uncorrelated with each other

for any q′ 6= qij , as desired.

Second, we consider the saliency map and DeconvNet cases.

As V̂
(1)
qij ,k

for saliency map becomes

V̂
(1)
qij ,k

≈
d3∑

t=1

Γ
(2)
qij ,t

btV̂
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where V̂
(2)
t,k comes from the definition

V̂
(2)
·,k =

∂o(3)

∂o(2)
· · · ∂o
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· Γ(L)

k

which is also approximately independent of Γ
(2)
qij ,t

as be-

fore, and the other parameters are exactly the same with the

GBP case, the independence approximation also holds for

saliency map.

For DeconvNet, V̂
(1)
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becomes
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Γ
(2)
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where V̂
(2)
t,k is defined identically as (D.1) for GBP. Since

this is a special case of GBP, the analysis in the case trivially

holds for DeconvNet as well. �

E. More Experiments on Random/Trained

VGG-16 Net

We provide more results for backpropagation-based visu-

alizations including saliency map, DeconvNet and GBP in

both untrained (randomly initialized) and trained VGG-16

net. The input images – labeled as “dog”, “panda”, “forest”

and “mastiff” – are randomly chosen from the ImageNet

dataset. As we can see, all the results (Figures 1 - 8) are

consistent with our previous empirical observations that

GBP and DeconvNet are more visually compelling but less

class-sensitive than saliency map.

F. Comparison Between GBP and Edge

Detector

Here we compare the GBP visualization with a linear verti-

cal edge detector, as shown in Figure 9. At the first glance,

the GBP visualizations in a trained VGG-16 net are very

similar to the results of an edge detector. In other words,

GBP indeed pays much attention to the edge information

like a Gabor filter. However, there exist subtle differences

between GBP and linear edge detectors. As we can see, the

linear vertical edge detector will highlight all the horizontal

intensity changes, while GBP has the additional ability to

filter out some background image patches.

G. More Experiments on Partly Trained

VGG-16 Net

In this section, we provide more GBP visualizations by feed-

ing more images to a partly trained VGG-16 net. Specifi-

cally, we consider two kinds of weights loading strategies

for the VGG-16 net. The first one is to load trained weights

up to a given layer as shown in Figure 10. The second

one is to load trained weights for all the layers except for

a given layer as shown in Figure 11. The results are con-

sistent with our previous analysis: it is the trained weights

in the convolutional layers rather than those in the dense

layers that account for filtering out image patches. Also,

earlier convolutional layers have a greater impact on the

GBP visualization than later convolutional layers.

H. More Experiments on ResNet

Our theoretical analysis shows that for GBP it is the local

connections in CNNs, together with the backward ReLU,

that contribute to the clean-looking visualizations. Here

we further investigate backpropagation-based visualizations

on both randomly initialized (Figure 11) and trained (Fig-

ure 12) ResNet-50. In general, the results are very similar

to those in the VGG-16 net. However, we do observe some

additional grid-like textures here and we conjecture that this

deterioration of visual quality is due to the skip connections,

as we have shown earlier that network structure has a sig-

nificant impact on the visualizations. We leave the rigorous

analysis of this phenomenon for future work.
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dog

Sal-max Sal-731 Sal-815

Deconv-max Deconv-731 Deconv-815

GBP-max GBP-731 GBP-815

Figure 1. Saliency map, DeconvNet and GBP visualizations for

the random VGG-16 net with the input image “dog”.

dog

Sal-max Sal-731 Sal-815

Deconv-max Deconv-731 Deconv-815

GBP-max GBP-731 GBP-815

Figure 2. Saliency map, DeconvNet and GBP visualizations for

the trained VGG-16 net with the input image “dog”.
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panda

Sal-max Sal-731 Sal-815

Deconv-max Deconv-731 Deconv-815

GBP-max GBP-731 GBP-815

Figure 3. Saliency map, DeconvNet and GBP visualizations for

the random VGG-16 net with the input image “panda”.

panda

Sal-max Sal-731 Sal-815

Deconv-max Deconv-731 Deconv-815

GBP-max GBP-731 GBP-815

Figure 4. Saliency map, DeconvNet and GBP visualizations for

the trained VGG-16 net with the input image “panda”.
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forest

Sal-max Sal-731 Sal-815

Deconv-max Deconv-731 Deconv-815

GBP-max GBP-731 GBP-815

Figure 5. Saliency map, DeconvNet and GBP visualizations for

the random VGG-16 net with the input image “forest”.
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Figure 6. Saliency map, DeconvNet and GBP visualizations for

the trained VGG-16 net with the input image “forest”.
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Figure 7. Saliency map, DeconvNet and GBP visualizations for

the random VGG-16 net with the input image “mastiff”.
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Figure 8. Saliency map, DeconvNet and GBP visualizations for

the trained VGG-16 net with the input image “mastiff”.
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Figure 9. Comparison between the GBP visualization and the linear edge detector. The left column contains three sample inputs. The

middle column contains the GBP visualization for each input. The right column is a linear vertical edge detector applied to each input.

Specifically, the edge detector is designed by taking each pixel in the image and subtracting the neighboring pixel on the left.
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Figure 10. Load the trained weights of the VGG-16 net up to the

indexed layer and leave the rest layers to be randomly initialized

(denoted by the star sign) with different input images.
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Figure 11. Load the trained weights of the VGG-16 net except for

the indexed layer which is randomly initialized instead (denoted

by the diamond sign) with different input images.
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Figure 12. Saliency map, DeconvNet and GBP visualizations for

the random ResNet-50 with the input image “tabby”.
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Figure 13. Saliency map, DeconvNet and GBP visualizations for

the trained ResNet-50 net with the input image “tabby”.


