Appendix: Functional Gradient Boosting based on Residual Network Perception

A Auxiliary Lemmas

In this section, we introduce auxiliary lemmas used in our analysis. The first one is Hoeffding’s inequality.

Lemma A (Hoeffding’s inequality). Let Z1, ..., Z; be i.i.d. random variables to [—a, a] for a > 0. Denote by A, the
sample average >:_, Z;/s. Then, for any € > 0, we get

P[A +e< E[A ]] <e p —762
X .
s > sl > 242

Note that this statement can be reinterpreted as follows: it follows that for § € (0, 1) with probability at least 1 — &

A+ cu/glog1 > E[Ag].
s 1)

We next introduce the uniform bound by Rademacher complexity. For a set G of functions from Z to [—a, a] and a

dataset S = {z;}{_, C Z, we denote empirical Rademacher complexity by R (G) and denote Rademacher complexity
by Rs(G); let 0 = (0;)5_, be i.i.d random variables taking —1 or 1 with equal probability and let S be distributed
according to a distribution p°,

Rs(9) = E, lsup Iy mf(a:i)] | Ry(G) = By [Rs(G)).

fe6 553

Lemma B. Let Z1, ..., Z; be i.i.d random variables to Z. Denote by A,(f) the sample average :_, f(Z;)/s. Then,
Sforany § € (0,1), we get with probability at least 1 — & over the choice of S,

up |4, (/) — BIA()]] < 2R,(0) + ay 2 log 3.
feg s

When a function class is VC-class (for the definite see [vdVW96]), its Rademacher complexity is uniformly bounded
as in the following lemma which can be easily shown by Dudley’s integral bound [Dud99] and the bound on the covering
number by VC-dimension (pseudo-dimension) [vdVW96].

Lemma C. Let G be VC-class. Then, there exists positive value M depending on G such that Rs(G) < M/\/m.
The following lemma is useful in estimating Rademacher complexity.

LemmaD. (i) Leth; : R — R (i € {1,..., s}) be L-Lipschitz functions. Then it follows that

E, lsupZaihi o f(x;)| < LE,

fediz

sup oio f(zi)] .
(ii) We denote by conv(G) the convex hull of G. Then, we have Rg(conv(G)) = Rs(G).

The following lemma gives the generalization bound by the margin distribution, which is originally derived by
[KP02]. Let G be the set of predictors; G C {f : X — R} and denote IIG = {f,(-) : X —| f € G,y € Y}, then the
following holds.

Lemma E. Fix § > 0. Then, for Vp > 0, with probability at least 1 — p over the random choice of S from v", we have
vVfeg,

2
P [ms(X,Y) <0] <P, [ms(X,Y) <]+ %mn(r{g) +4/ % log%.

B Proofs

In this section, we provide missing proofs in the paper.
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B.1 Proofs of Section 3 and 4
We first prove Proposition I] that states Lipschitz smoothness of the risk function.

Proof of Proposition|l]. Because [(z,y,w) is C 2_function with respect to z, w, there exist semi-positive definite matri-
ces ADY Bf;f such that

1(1/)(1‘), Y, 1U¢) = l(¢($), Y, w¢) + 8zl(¢(z)7 Y, w(ﬁ)—r("/)(x) - ¢($))

+ 3 (6(a) — 9@) T ALY (W(@) — 9()), 1)

A A
1),y 100) + a1 = 1), 2 0y) + 3 oy
+ Bul (W (), y, wy) + Awy) " (wy — wy)

+ %(% —wy) " BEy (wy — wy). @
Note that we regard w and w,, are flattened into column vectors if necessary. By Assumption |I|, we find spectral norms
of Af:;f is uniformly bounded with respect to x, y, ¢, 1, hence eigen-values are also uniformly bounded. In particular,
since 3 |lwy |3 < R(¢,ws) < R($,0) <lo, wesee —Ag, I < ALY < A, 1.

By taking the expectation E,, of the equality (I), we get

1
R(W,wp) = R(d,wp) + (VoR(9), ¥ = 9) 1g,) + 5Eu[(¥(2) — ¢(x)) T AZY (¥ (2) — ¢(x))] ()
and by taking the expectation E,, of the equality (Z)), we get
1
R(Y,wg) = R(, wy) + §(w¢ —wy) "By [BY(wy — wy), 4)

where we used 0, R (), wy) = 0. By combining equalities (3) and , we have

R() = RS) + (VaR(E). % — &) g ) + Halw),

where
1 1
Hoy () = 5B [(v(w) = ¢(2)) T ALy (0(@) = 6(2))] = 5 (ws — wy) "By [BE ] (wy — wy).
By the uniformly boundedness of A2'Y' and the semi-positivity of BS'Y, we find Hy (1)) < Ag* llp — zZ)Hid( e
) ) 2 14

The other cases can be shown in the same manner, thus, we finish the proof.
We next show the consistency of functional gradient norms.

Proof of Proposition[2] We now prove the first inequality. Note that the integrand of y'-th element of V s £(f)(x) for
multiclass logistic loss can be written as

exp(fy (z))
> gey exp(fp(z)

O, U f(x)y) = -1y =y]+

Therefore, we get

IVL L) = Bux VL) (X2
= Eux [Ey(yx)[0c (F(X), Y]ll2

=Euy | [ EBuyixlde, (F(X),Y)])?

y' ey

Z%ZEVX[

y' ey

Eyv 006, (£(X), V)]
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e (e (X)) el (X))
= 7 X B |ty 'X’< S el <X>>>+Z WS exp(F5 (D)

ey L Y7y’
| _ exp(fy (X)) . exp(fy (X))
\[ yXE:yEVX L v ( 1+ 2 gey eXP(fy(X))) +{ =X > gey exp(fz(X)) H

o eXP(fy’ (X))
\[ > By (v'|X) + > gey exp(f5(X)) H

y' ey L

\/‘ Z ” -V y ‘ +pf(y ‘ )HLI(VX)7

y' ey

where for the first inequality we used (> ;_, a;)* < ¢>_:_, a?. Noting that the second inequality in Proposmonlcan
be shown in the same way by replacing v by v,,, we finish the proof.

We here give the proof of the following inequality concerning choice of embedding introduced in section 4]

1
1Tk @R (St w0 ) 12, 2 106 R (D300 2, o )

Proof of B) . For notational simplicity, we denote by Gy = 0pRn (¢, wi1)(-) and by G the i-the element of G.
Then, we get

1T, nGell7, = (G, Ty nGt) 1g(w )

= E(x xnmz  [Ge(X) TGH(X)G(X') T Go(X) /(|G (X) 2] Ge(X)]|2)]
d

= 3 (B, ([GIEOGLX)/[Go(X) 2]

,j=1

d
D (v, £ [GLX)?/IG(X)]I2])?
i=1

>
1
> P V,L,X[HGt(X))Hﬂ ”Gt”Ld(an)’
where we used (37, a;)? < ¢, al. -

B.2 Empirical risk minimization and generalization bound

In this section, we give the proof of convergence of Algorithm [I|for the empirical risk minimization. We here briefly
introduce the kernel function that provides useful bound in our analysis. A kernel function k is a symmetric function

X x X — R such that for arbitrary s € N and points V(z;);_,, a matrix (k(z;,2;)); ;_; is positive semi-definite. This

kernel defines a reproducing kernel Hilbert space Hj, of functions on X, which has two characteristic properties: (i) for
Vx € X, a function k(z,-) : X — R is an element of Hy, (ii) for Vf € Hy and Vz € X, f(x) = (f, k(, )4, , Where

{, >Hk is the inner-product in Hj. These properties are very important and the latter one is called reproducing property.
We extend the inner-product into the product space Hg in a straightforward way, i.e., (f, 9>7—tg = Zle < 14, gi> e

The following proposition is useful in our analysis. The first property mean that the notation || %, », VR, (¢¢) ||k,
provided in the paper is nothing but the norm of Ty, , VR, (¢) by the inner-product (, ),,a

Proposition A. For a kernel function k, the following hold.

<f7 >L2 (vx) — <ka7 g>?—[ﬁf0rf € Lg(uX)a g€ Hg where Tk:f = EVX [f(X)k(Xv )]’
(fs >L2 (Vn,x) <Tk,nf7 g>7{g for f € Lg(yn,X)v g e /Hg where Ty, f = EVn,x[f(X)k(X> )]’

o 11 oy < B (X, X)) £ for f € HE,
1By < B (KX XN 1B for £ € H.
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Proof. We show only the case of vx because we can prove the other case in the same manner. For f € Lo(vx), g € HY,
we get the first property by using reproducing property,

(o 9) sy = Eon FCOT (g, R(X, Npgg] = (0. T f) g
We next show the second property as follows. For Vf € H¢, we get

1F13 o) = Bu | F(X)13
= Euye | {F() KX, ) pgg 113
< Eu [R(X )3, 1115
= Eue [R(X, X)]1 /1155

We give the proof of Theorem|I]concerning the convergence of functional gradient norms.

Proof of Theorem[I]. When n < ﬁ, we have from Propositionand Proposition ,
Y

Ru(@r41wer2) < R, wirn) = 3 [T nDoRon(b, w7,

By Summing this inequality over ¢ € {0,...,T — 1} and dividing by T, we get

T-1
1
T Z [T, 0 Ron (1, w1 |7, <

t=0

2

ﬁRn(¢0;w1)ﬂ (6)

where we used R,, > 0.
On the other hand, since 9,1(z,y,w) = d.l(w" z,y) = wl(w' z,y), it follows that
OpRon (9, w)(2) = By, (v12)[0:1(6(2), y, w)]
= El/n (Yz) [wacl(ngb(x), y)]
=wV Ly (w' ) (z).

Thus, by the assumption on (w; " w;)’2,, we get fort € {0,...,T — 1}

105 R (B2, wes )| L ) = Bux w01V p Lo (w1 80) (X)15]1/7
> 0By, [V Ln(wly60) (X)|5]M7
= 019 L] 180 5 - ™
Combining inequalities (6) (7) and Assumption 2] we get
T-1

. 1
min ||Vf£n(w:+1¢t)||q§(,,x) ST Z ||Vfﬁn(w;r+1¢t)||q;(,,x) <
=0

€
te[T) R(o, wn) + ot

nyodT
Since p > 1, we observe ||V s Ly, (w1600l L5 (v, x) < IV Ln(wi100) || Lo, ) and we finish the proof. O

We next show Theorem [2] that gives the generalization bound by the margin distribution. To do that, we give an
upper-bound on the margin distribution by the functional gradient norm.

Proposition B. For V§ > 0, the following bound holds.

ot

Py, [my(X,Y) < 0] < (1 t =

> Vel 1 La(F) | Lt x)-
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Proof. If my(z,y) <9, then, we see

> exp(fy (x) = fy () > exp (g}% fy (@) — fy(x)) = exp(—my(z,y)) = exp(—0).

y'#y

This implies,
1 1

< .
L+ 32, exp(fy () — fy(x) = 1+ exp(—0d)
Thus, we get by Markov inequality and Proposition 2]

ps(ylz) =

Py, [my (X, Y) < 0] <Py, [WlX) = 1+x1p<5>}

__exp(=9) ]

o

We prove here Theorem 2]

Proof of Theorem[2]. To proof the theorem, we give the network structure. Note that the connection at the ¢-th layer is
as follows.

Ge41(x) = ¢e(x) — nDio (Cepe(x)).
We define recursively the family of functions H; and H, where each neuron belong: We denote by P; € R? the
projection vector to j-th coordinate.

Ho “ {Pj: X 5 R|je{l,....d}},

A de
f{a(ct b1): X > R| ¢y € Hi ooy € RY ey |1 < AL,
Hipr & {d] —nd] 0 : X 5 R| @] € Hyytr € Hiydy € R ||dy|| < A’}

Then, the family of predictors of y € ) can be written as
de
Gr1y  {w]dr_1: X = R | § € HI_y,wy, € RY, [yl < Ay},

Note that Gr—1 = {(fy)yey | fy € Gr—1,4,y € V}.
From these relationships and Lemma D] we get

§)?3.9(7"&) < ﬁS(IHtfl) + TZA/QA%S(ﬁtfl)
< (14N ALy)Rs(He—1),
Re(Gr—14) < AwRs(Hr_1).

The Rademacher complexity of H, is obtained as follows. Since || P;||2 = 1, we have

. 1
Rs(Ho) = g]E(ai " l sup } E o Pjz;
1=1

je{l,....d
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1 n
< B, [ sup || Pill2 || D o ]
Je{l,., =1 )
1 n
= —E(Ui)?zl l Zaixi
=1 2
1
1 n 2 2
S - E("'i)zzl ZUZ'.’L'Z'
i=1 2

I
| —
7N
e
Bl
OS]
N—
N
A
=3

where we used the independence of o; when taking the expectation. R
Weset IIGr_1 = {fy(") : X —=| f € Gr_1,y € V}. Noting that Rg(IIGr_1) < >° 3, Rs(Gr-1,4), we get

Rs(TGr_1) < cAyAoo(1+nAAN L)1/ /.

Thus, we can finish the proof by applying Proposition[B]and Lemma [E] O

B.3 Sample-splitting technique

In this subsection, we provide proofs for the convergence analysis of the sample-splitting variant of the method for the
expected risk minimization. We first give the statistical error bound on the gap between the empirical and expected
functional gradients.

Proof of Proposition[3]. For the probability measure v, we denote by ¢4 the push-forward measure (¢, id);v, namely,
(¢,id)sv is the measure that the random variable (¢(X),Y") follows. We also define ¢4, in the same manner. Then,
we get

||Tk8¢R(¢7 wO) - Tk,7na¢Rm(¢7 wO) ||Lg(#)

= VEx B [00(6(X), Y, wo) (X, X')] = B, [0:1(6(X), Y, w0 )R(X, X1)][3

= ZEwaI v[0z,U($(X), Y, wo)u(¢(X)))] — By, [0:,1($(X), Y, wo)e(d(X))]) Te(&(X7))[2.

d
< KZ B, [0:,1($(X), Y, wo)e(¢(X)))] = Eu,, [0z, 1(3(X), Y, wo)e(¢(X))][I3
d D
<K ST By (021X, Y, w0) e (X)) — Egyi, [0:,1(X, Y, w0) el (X)), 8)

j=1i=1
To derive an uniform bound on (8), we estimate Rademacher complexity of

30,1,y wo)i () X x Y S R[4 e Fi)

For (z1, )%, C X x Y, weset hy(r) = r0.,1(x1, y1, wo). Since, 9., 1(x1, Y1, wo)| < Bjjw,|, by Assumption 3} hy is
B|jw |- -Lipschitz continuous. Thus, from Lemmaand Lemma@, there exists M such that foralli € {1,...,D}, j €
{1,...,d},
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< Blwollz Eo

m
sup ZalLi(:cl)
GEeEFI T
M
< Blwolla 7

Therefore, by applying Lemma [B{ with 6 = /5 for Vi, j simultaneously, it follows that with probability at least
1 — pforVi,j

7 7 B wo [|2 QdD
D [y 02,1 Y 00)e ()] = B, [0, 1(X, Vo) ()] < =028 (2M+,/2K1ogp>. ©)

Putting (9) int (), we get with probability at least 1 — p

| KdD / 2dD
Sél.g ||Tk8¢R(¢), wo) — Tk,7n8¢R7rL(¢7 U]O)HLg(#) S ﬁ““’O”? T <2M + 2K 10g p) .

We here prove Theorem [3]by using statistical guarantees of empirical functional gradients.

Proof of Theorem[3]. For notational simplicity, we set m < |n/T| and 6 < p/T. We first note that
1 m
(O Rt wo), Tier .m0 Rom (de, w0)) 3,y = D By [05R(01, w0) (X) T s Rom (4, wo) () ke (X, 7))
j=1

- % D Tr, 05R(¢1, wo) (25) T OpRom (61, wo) ()

j=1

= (Ti, 0 R (1, w0), Dy Ron (1, 10)) 1

VnL,X) :

Noting that ||0.1(¢¢(5), 5, wo)ll2 < Bjjwol. bY Assumption and applying Propositionfor allt € {0,...,T—1}
independently, it follows that with probability at least 1 — 7§ (i.e., 1 — p) for V¢ € {0,...,T — 1}

(05 R (¢4, w0), Ty, m Oy Ron (D1, 00)) 14,y — (Ther;mO Rom (D2, w0), 3¢Rm(¢t,wo)>Lg(umyx)‘
< Tk, 0 R(1, wo) = They mOpRom (b1, w0 )| L (1, x) 106 Rom (D1 wo) | L4 1, )
S ﬂ”’u)o”ze(m7 5) (10)
We next give the following bound.

2

1 m
T3, 0 R (de, w0) 17,y = Evc EZazl(¢t(xi),yi7wo>kt(xi,X) < Bluo K- (11)

j=1 9

On the other hand, we get by Proposition|T]

2
0" Ajjw
R(@1+1,w0) < R(r1,w0) =1 (DR (S, w0), Ty R (6, 00)) L)+~ 2 [ T, DR (61, w0) 34,
(12)
Combining inequalities (10, (11)), and (12), we have with probability at least 1 — T'§ fort € {0,...,T — 1},

2102 2
n 5\\%“2[( Aoz

R(¢e+1,w0) < R(es1,w0) — 0| T, mOsRom (de, wo) 17, + 18] wol2€(m, 8) + 5
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By Summing this inequality over ¢t € {0,...,T — 1} and dividing by T, we get with probability 1 — 76

T—1 2 2
1 2 _ R(do, wo) 18} wollo K Afwolla
T ; [Tk ,m O Rom (D1, wo)lk, < T + Blwo | €(M 6) + D) .

Thus by Assumption and the assumption on wg wo, we get

T-1
1 T\l 1) R(¢o, wo)
T ; IV L (wg ¢t>||L;l(Vm,x) < { nT

o (13)

+ Bluwo | €(M, 6) +

N8 woita KA
I 0\\22 llwoll2 el

To clarify the relationship between ||V Ly, (f)l|L¢(v,, x) and [V L(f)||Ls(vx)» We take an expectation of the
former term with respect to samples (X, Y;)7; ~ v™. Since [|0¢I(¢,y)||2 < B, we obtain

Ex;, v, mom IV £ L (P g (0, x) = B,y )min, 10c1(f(X), Y2

1
> ZE i [0 (X), V) B
1

BB x [Buqr 1) [0 (F(X), Y)]I13

1
= ZEu, |V

1
= §||Vf£(f)||2Lg(ux)-

V

Y

Hence, applying Hoeffding’s inequality with 6 < p/T to E(x;,v;)m ~m vaﬁm(ond?t)HLg(ym.x) forall t €
{0,...,T — 1} independently, we find that with probability 1 — 7'§ for Vt € {0,...,T — 1},

2 1
IV ¢ Lon (w3 S| L (v x) + By —log < = By

17

1
VLo (wg &)l L (v 1) = EHVfﬁ(onéf’tﬂ Teny (4

where we used for the last inequality || - S(ux) 2 Il - H%f(l/x)'

We set t. = argmingeo,... 71} ||Vf£m(on¢>t)||Lg(ym,X)- Combining inequalities and and noting
p > 1, we get with probability at least 1 — 279,

[2. 1 1 [R(do,wo) 184 o 1o B Ao
e < Byf5, loa g + ’yl/QJ{ T Plwollae(m, 9) + el e

Noting that v/a + b < \/a + Vb for a,b > 0, we finally obtain

Q=

1
SV L] 60.)

1 L
2 1\7 B | R(¢o,wo) 1B o 1, 5 Aol 2“
T )
IViL(wg e )llswx) < B (mlog 5) 7 { T + Blwol €(m, 6) + ———— + e
Recalling that m <— |n/T'| and ¢ < p/T, the proof is finished. O
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