
Appendix: Functional Gradient Boosting based on Residual Network Perception

A Auxiliary Lemmas
In this section, we introduce auxiliary lemmas used in our analysis. The first one is Hoeffding’s inequality.

Lemma A (Hoeffding’s inequality). Let Z1, . . . , Zs be i.i.d. random variables to [−a, a] for a > 0. Denote by As the
sample average

∑s
i=1 Zi/s. Then, for any ε > 0, we get

P[As + ε ≤ E[As]] ≤ exp

(
− ε

2s

2a2

)
.

Note that this statement can be reinterpreted as follows: it follows that for δ ∈ (0, 1) with probability at least 1− δ

As + a

√
2

s
log

1

δ
≥ E[As].

We next introduce the uniform bound by Rademacher complexity. For a set G of functions from Z to [−a, a] and a
dataset S = {zi}si=1 ⊂ Z , we denote empirical Rademacher complexity by <̂S(G) and denote Rademacher complexity
by <s(G); let σ = (σi)

s
i=1 be i.i.d random variables taking −1 or 1 with equal probability and let S be distributed

according to a distribution µs,

<̂S(G) = Eσ

[
sup
f∈G

1

s

s∑
i=1

σif(xi)

]
, <s(G) = Eµs [<̂S(G)].

Lemma B. Let Z1, . . . , Zs be i.i.d random variables to Z . Denote by As(f) the sample average
∑s
i=1 f(Zi)/s. Then,

for any δ ∈ (0, 1), we get with probability at least 1− δ over the choice of S,

sup
f∈G
|As(f)− E[As(f)]| ≤ 2<s(G) + a

√
2

s
log

2

δ
.

When a function class is VC-class (for the definite see [vdVW96]), its Rademacher complexity is uniformly bounded
as in the following lemma which can be easily shown by Dudley’s integral bound [Dud99] and the bound on the covering
number by VC-dimension (pseudo-dimension) [vdVW96].

Lemma C. Let G be VC-class. Then, there exists positive value M depending on G such that <s(G) ≤M/
√
m.

The following lemma is useful in estimating Rademacher complexity.

Lemma D. (i) Let hi : R→ R (i ∈ {1, . . . , s}) be L-Lipschitz functions. Then it follows that

Eσ

[
sup
f∈G

s∑
i=1

σihi ◦ f(xi)

]
≤ LEσ

[
sup
f∈G

s∑
i=1

σi ◦ f(xi)

]
.

(ii) We denote by conv(G) the convex hull of G. Then, we have <̂S(conv(G)) = <̂S(G).

The following lemma gives the generalization bound by the margin distribution, which is originally derived by
[KP02]. Let G be the set of predictors; G ⊂ {f : X → Rc} and denote ΠG = {fy(·) : X →| f ∈ G, y ∈ Y}, then the
following holds.

Lemma E. Fix δ > 0. Then, for ∀ρ > 0, with probability at least 1− ρ over the random choice of S from νn, we have
∀f ∈ G,

Pν [mf (X,Y ) ≤ 0] ≤ Pνn [mf (X,Y ) ≤ δ] +
2c2

δ
<n(ΠG) +

√
1

2n
log

1

ρ
.

B Proofs
In this section, we provide missing proofs in the paper.

1



Atsushi Nitanda and Taiji Suzuki

B. 1 Proofs of Section 3 and 4
We first prove Proposition 1 that states Lipschitz smoothness of the risk function.

Proof of Proposition 1 . Because l(z, y, w) is C2-function with respect to z, w, there exist semi-positive definite matri-
ces Aφ,ψx,y , B

φ,ψ
x,y such that

l(ψ(x), y, wφ) = l(φ(x), y, wφ) + ∂zl(φ(x), y, wφ)>(ψ(x)− φ(x))

+
1

2
(ψ(x)− φ(x))>Aφ,ψx,y (ψ(x)− φ(x)), (1)

l(ψ(x), y, wφ) +
λ

2
‖wφ‖22 = l(ψ(x), y, wψ) +

λ

2
‖wψ‖22

+ (∂wl(ψ(x), y, wψ) + λwψ)>(wφ − wψ)

+
1

2
(wφ − wψ)>Bφ,ψx,y (wφ − wψ). (2)

Note that we regard wφ and wψ are flattened into column vectors if necessary. By Assumption 1, we find spectral norms
of Aφ,ψx,y is uniformly bounded with respect to x, y, φ, ψ, hence eigen-values are also uniformly bounded. In particular,
since λ

2 ‖wφ‖
2
2 ≤ R(φ,wφ) ≤ R(φ, 0) ≤ l0 , we see −AcλI � Aφ,ψx,y � AcλI .

By taking the expectation Eν of the equality (1), we get

R(ψ,wφ) = R(φ,wφ) + 〈∇φR(φ), ψ − φ〉Ld2(νX) +
1

2
Eν [(ψ(x)− φ(x))>Aφ,ψx,y (ψ(x)− φ(x))] (3)

and by taking the expectation Eν of the equality (2), we get

R(ψ,wφ) = R(ψ,wψ) +
1

2
(wφ − wψ)>Eν [Bφ,ψx,y ](wφ − wψ), (4)

where we used ∂wR(ψ,wψ) = 0. By combining equalities (3) and (4), we have

R(ψ) = R(φ) + 〈∇φR(φ), ψ − φ〉Ld2(νX) +Hφ(ψ),

where
Hφ(ψ) =

1

2
Eν [(ψ(x)− φ(x))>Aφ,ψx,y (ψ(x)− φ(x))]− 1

2
(wφ − wψ)>Eν [Bφ,ψx,y ](wφ − wψ).

By the uniformly boundedness of Aφ,ψx,y and the semi-positivity of Bφ,ψx,y , we find Hφ(ψ) ≤ Acλ
2 ‖φ− ψ‖

2
Ld2(νX)

.
The other cases can be shown in the same manner, thus, we finish the proof.

We next show the consistency of functional gradient norms.

Proof of Proposition 2. We now prove the first inequality. Note that the integrand of y′-th element of ∇fL(f)(x) for
multiclass logistic loss can be written as

∂ζy′ l(f(x), y) = −1[y = y′] +
exp(fy′(x))∑
y∈Y exp(fy(x))

.

Therefore, we get

‖∇fL(f)‖Lc1(νX) = EνX‖∇fL(f)(X)‖2
= EνX‖Eν(Y |X)[∂ζ(f(X), Y )]‖2

= EνX

√∑
y′∈Y

(Eν(Y |X)[∂ζy′ (f(X), Y )])2


≥ 1√

c

∑
y′∈Y

EνX
[∣∣∣Eν(Y |X)[∂ζy′ (f(X), Y )]

∣∣∣]
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=
1√
c

∑
y′∈Y

EνX

∣∣∣∣∣∣ν(y′|X)

(
−1 +

exp(fy′(X))∑
y∈Y exp(fy(X))

)
+
∑
y 6=y′

ν(y|X)
exp(fy′(X))∑
y∈Y exp(fy(X))

∣∣∣∣∣∣


=
1√
c

∑
y′∈Y

EνX

[∣∣∣∣∣ν(y′|X)

(
−1 +

exp(fy′(X))∑
y∈Y exp(fy(X))

)
+ (1− ν(y′|X))

exp(fy′(X))∑
y∈Y exp(fy(X))

∣∣∣∣∣
]

=
1√
c

∑
y′∈Y

EνX

[∣∣∣∣∣−ν(y′|X) +
exp(fy′(X))∑
y∈Y exp(fy(X))

∣∣∣∣∣
]

=
1√
c

∑
y′∈Y

‖ − ν(y′|·) + pf (y′|·)‖L1(νX),

where for the first inequality we used (
∑c
i=1 ai)

2 ≤ c
∑c
i=1 a

2
i . Noting that the second inequality in Proposition 2 can

be shown in the same way by replacing ν by νn, we finish the proof.

We here give the proof of the following inequality concerning choice of embedding introduced in section 4.

‖Tkt,n∂φRn(φt, wt+1)‖2kt ≥
1

d
‖∂φRn(φt, wt+1)‖2Ld1(νn,X) (5)

Proof of (5) . For notational simplicity, we denote by Gt = ∂φRn(φt, wt+1)(·) and by Git the i-the element of Gt.
Then, we get

‖Tkt,nGt‖2kt = 〈Gt, Tkt,nGt〉Ld2(νn,X)

= E(X,X′)∼ν2
n,X

[Gt(X)>Gt(X
′)Gt(X

′)>Gt(X)/(‖Gt(X)‖2‖Gt(X ′)‖2)]

=

d∑
i,j=1

(Eνn,X [Git(X)Gjt (X)/‖Gt(X)‖2])2

≥
d∑
i=1

(Eνn,X [Git(X)2/‖Gt(X)‖2])2

≥ 1

d
Eνn,X [‖Gt(X))‖2]2 =

1

d
‖Gt‖2Ld1(νn,X),

where we used (
∑c
i=1 ai)

2 ≤ c
∑c
i=1 a

2
i .

B. 2 Empirical risk minimization and generalization bound
In this section, we give the proof of convergence of Algorithm 1 for the empirical risk minimization. We here briefly
introduce the kernel function that provides useful bound in our analysis. A kernel function k is a symmetric function
X × X → R such that for arbitrary s ∈ N and points ∀(xi)si=1, a matrix (k(xi, xj))

s
i,j=1 is positive semi-definite. This

kernel defines a reproducing kernel Hilbert spaceHk of functions on X , which has two characteristic properties: (i) for
∀x ∈ X , a function k(x, ·) : X → R is an element ofHk, (ii) for ∀f ∈ Hk and ∀x ∈ X , f(x) = 〈f, k(x, ·)〉Hk , where
〈, 〉Hk is the inner-product inHk. These properties are very important and the latter one is called reproducing property.
We extend the inner-product into the product spaceHdk in a straightforward way, i.e., 〈f, g〉Hdk =

∑d
i=1

〈
f i, gi

〉
Hk

.
The following proposition is useful in our analysis. The first property mean that the notation ‖Tkt,n∇Rn(φt)‖kt

provided in the paper is nothing but the norm of Tkt,n∇Rn(φt) by the inner-product 〈, 〉Hdkt .

Proposition A. For a kernel function k, the following hold.

• 〈f, g〉L2(νX) = 〈Tkf, g〉Hdk for f ∈ Ld2(νX), g ∈ Hdk where Tkf = EνX [f(X)k(X, ·)],
〈f, g〉L2(νn,X) = 〈Tk,nf, g〉Hdk for f ∈ Ld2(νn,X), g ∈ Hdk where Tk,nf = Eνn,X [f(X)k(X, ·)],

• ‖f‖2L2(νX) ≤ EνX [k(X,X)]‖f‖2Hdk for f ∈ Hdk,

‖f‖2L2(νn,X) ≤ Eνn,X [k(X,X)]‖f‖2Hdk for f ∈ Hdk.
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Proof. We show only the case of νX because we can prove the other case in the same manner. For f ∈ L2(νX), g ∈ Hdk,
we get the first property by using reproducing property,

〈f, g〉L2(νX) = EνX [f(X)>〈g, k(X, ·)〉Hdk ] = 〈g, Tkf〉Hdk .

We next show the second property as follows. For ∀f ∈ Hdk, we get

‖f‖2L2(νX) = EνX‖f(X)‖22
= EνX‖ 〈f(·), k(X, ·)〉Hdk ‖

2
2

≤ EνX‖k(X, ·)‖2Hk‖f‖
2
Hdk

= EνX [k(X,X)]‖f‖2Hdk .

We give the proof of Theorem 1 concerning the convergence of functional gradient norms.

Proof of Theorem 1 . When η ≤ 1
AcλK

, we have from Proposition 1 and Proposition A,

Rn(φt+1, wt+2) ≤ Rn(φt, wt+1)− η

2
‖Tkt,n∂φRn(φt, wt+1)‖2kt .

By Summing this inequality over t ∈ {0, . . . , T − 1} and dividing by T , we get

1

T

T−1∑
t=0

‖Tkt,n∂φRn(φt, wt+1)‖2kt ≤
2

ηT
Rn(φ0, w1), (6)

where we usedRn ≥ 0.
On the other hand, since ∂zl(z, y, w) = ∂zl(w

>z, y) = w∂ζ l(w
>z, y), it follows that

∂φRn(φ,w)(x) = Eνn(Y |x)[∂zl(φ(x), y, w)]

= Eνn(Y |x)[w∂ζ l(w
>φ(x), y)]

= w∇fLn(w>φ)(x).

Thus, by the assumption on (wt
>wt)

T0
t=0, we get for t ∈ {0, . . . , T − 1}

‖∂φRn(φt, wt+1)‖Ldp(νn,X) = Eνn,X [‖wt+1∇fLn(w>t+1φt)(X)‖p2]1/p

≥ σEνn,X [‖∇fLn(w>t+1φt)(X)‖p2]1/p

= σ‖∇fLn(w>t+1φt)‖Lcp(νn,X). (7)

Combining inequalities (6) (7) and Assumption 2, we get

min
t∈[T ]

‖∇fLn(w>t+1φt)‖
q
Lcp(νX) ≤

1

T

T−1∑
t=0

‖∇fLn(w>t+1φt)‖
q
Lcp(νX) ≤

2

ηγσqT
Rn(φ0, w1) +

ε

σq
.

Since p ≥ 1, we observe ‖∇fLn(w>t+1φt)‖Lc1(νn,X) ≤ ‖∇fLn(w>t+1φt)‖Lcp(νn,X) and we finish the proof.

We next show Theorem 2 that gives the generalization bound by the margin distribution. To do that, we give an
upper-bound on the margin distribution by the functional gradient norm.

Proposition B. For ∀δ > 0, the following bound holds.

Pνn [mf (X,Y ) ≤ δ] ≤
(

1 +
1

exp(−δ)

)√
c‖∇fLn(f)‖Lc1(νn,X).
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Proof. If mf (x, y) ≤ δ, then, we see∑
y′ 6=y

exp(fy′(x)− fy(x)) ≥ exp

(
max
y′ 6=y

fy′(x)− fy(x)

)
= exp(−mf (x, y)) ≥ exp(−δ).

This implies,

pf (y|x) =
1

1 +
∑
y′ 6=y exp(fy′(x)− fy(x))

≤ 1

1 + exp(−δ)
.

Thus, we get by Markov inequality and Proposition 2,

Pνn [mf (X,Y ) ≤ δ] ≤ Pνn
[
pf (Y |X) ≤ 1

1 + exp(−δ)

]
= Pνn

[
1− pf (Y |X) ≥ exp(−δ)

1 + exp(−δ)

]
≤
(

1 +
1

exp(−δ)

)
Eνn [1− pf (Y |X)]

=

(
1 +

1

exp(−δ)

)
Eνn [νn(Y |X)− pf (Y |X)]

≤
(

1 +
1

exp(−δ)

)∑
y∈Y
‖νn(y|·)− pf (y|·)]‖L1(νn,X)

≤
(

1 +
1

exp(−δ)

)√
c‖∇fLn(f)‖Lc1(νn,X).

We prove here Theorem 2.

Proof of Theorem 2 . To proof the theorem, we give the network structure. Note that the connection at the t-th layer is
as follows.

φt+1(x) = φt(x)− ηDtσ(Ctφt(x)).

We define recursively the family of functions Ht and Ĥt where each neuron belong: We denote by Pj ∈ Rd the
projection vector to j-th coordinate.

H0
def
= {Pj : X → R | j ∈ {1, . . . , d}},

Ĥt
def
= {σ(c>t φt) : X → R | φt ∈ Hdt , ct−1 ∈ Rd, ‖ct−1‖1 ≤ Λ},

Ht+1
def
= {φjt − ηd>t ψt : X → R | φjt ∈ Ht, ψt ∈ Ĥdt , dt ∈ Rd, ‖dt‖1 ≤ Λ′}.

Then, the family of predictors of y ∈ Y can be written as

GT−1,y
def
= {w>y φT−1 : X → R | φ ∈ HdT−1, wy ∈ Rd, ‖wy‖1 ≤ Λw}.

Note that GT−1 = {(fy)y∈Y | fy ∈ GT−1,y, y ∈ Y}.
From these relationships and Lemma D, we get

<̂S(Ht) ≤ <̂S(Ht−1) + ηΛ′<̂S(Ĥt−1)

≤ (1 + ηΛ′ΛLσ)<̂S(Ht−1),

<̂S(GT−1,y) ≤ Λw<̂S(HT−1).

The Rademacher complexity ofH0 is obtained as follows. Since ‖Pj‖2 = 1, we have

<̂S(H0) =
1

n
E(σi)ni=1

[
sup

j∈{1,...,d}

n∑
i=1

σiPjxi

]

5
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≤ 1

n
E(σi)ni=1

[
sup

j∈{1,...,d}
‖Pj‖2

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]

=
1

n
E(σi)ni=1

[∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]

≤ 1

n

E(σi)ni=1

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

2

 1
2

=
1

n

(
n∑
i=1

‖xi‖22

) 1
2

≤ Λ∞√
n
,

where we used the independence of σi when taking the expectation.
We set ΠGT−1 = {fy(·) : X →| f ∈ GT−1, y ∈ Y}. Noting that <̂S(ΠGT−1) ≤

∑
y∈Y <̂S(GT−1,y), we get

<̂S(ΠGT−1) ≤ cΛwΛ∞(1 + ηΛΛ′Lσ)T−1/
√
n.

Thus, we can finish the proof by applying Proposition B and Lemma E.

B. 3 Sample-splitting technique
In this subsection, we provide proofs for the convergence analysis of the sample-splitting variant of the method for the
expected risk minimization. We first give the statistical error bound on the gap between the empirical and expected
functional gradients.

Proof of Proposition 3 . For the probability measure ν, we denote by φ]ν the push-forward measure (φ, id)]ν, namely,
(φ, id)]ν is the measure that the random variable (φ(X), Y ) follows. We also define φ]νm in the same manner. Then,
we get

‖Tk∂φR(φ,w0)− Tk,m∂φRm(φ,w0)‖Ld2(µ)

=
√

EX′∼µ‖Eν [∂zl(φ(X), Y, w0)k(X,X ′)]− Eνm [∂zl(φ(X), Y, w0)k(X,X ′)]‖22.

=

√√√√ d∑
j=1

EX′∼µ|(Eν [∂zj l(φ(X), Y, w0)ι(φ(X)))]− Eνm [∂zj l(φ(X), Y, w0)ι(φ(X))])>ι(φ(X ′))|2.

≤

√√√√K

d∑
j=1

‖Eν [∂zj l(φ(X), Y, w0)ι(φ(X)))]− Eνm [∂zj l(φ(X), Y, w0)ι(φ(X))]‖22

≤

√√√√K

d∑
j=1

D∑
i=1

∣∣Eφ]ν [∂zj l(X,Y,w0)ιi(X))]− Eφ]νm [∂zj l(X,Y,w0)ιi(X)]
∣∣2. (8)

To derive an uniform bound on (8), we estimate Rademacher complexity of

Gij
def
= {∂zj l(x, y, w0)ιi(x) : X × Y → R | ιi ∈ F i}.

For (xl, yl)
m
l=1 ⊂ X × Y , we set hl(r) = r∂zj l(xl, yl, w0). Since, |∂zj l(xl, yl, w0)| ≤ β‖w0‖2 by Assumption 3, hl is

β‖w0‖2 -Lipschitz continuous. Thus, from Lemma C and Lemma D, there exists M such that for all i ∈ {1, . . . , D}, j ∈
{1, . . . , d},

<̂m(Gij) = Eσ

[
sup
ιi∈Fi

m∑
l=1

σlhl(ι
i(xl))

]

6
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≤ β‖w0‖2Eσ

[
sup
ιi∈Fi

m∑
l=1

σlι
i(xl)

]

≤ β‖w0‖2
M√
m
.

Therefore, by applying Lemma B with δ = ρ
dD for ∀i, j simultaneously, it follows that with probability at least

1− ρ for ∀i, j

sup
ιi∈Fi

∣∣Eφ]ν [∂zj l(X,Y,w0)ιi(X))]− Eφ]νm [∂zj l(X,Y,w0)ιi(X)]
∣∣ ≤ β‖w0‖2√

m

(
2M +

√
2K log

2dD

ρ

)
. (9)

Putting (9) int (8), we get with probability at least 1− ρ

sup
ι∈F
‖Tk∂φR(φ,w0)− Tk,m∂φRm(φ,w0)‖Ld2(µ) ≤ β‖w0‖2

√
KdD

m

(
2M +

√
2K log

2dD

ρ

)
.

We here prove Theorem 3 by using statistical guarantees of empirical functional gradients.

Proof of Theorem 3 . For notational simplicity, we set m← bn/T c and δ ← ρ/T . We first note that

〈∂φR(φt, w0), Tkt,m∂φRm(φt, w0)〉Ld2(νX) =
1

m

m∑
j=1

EνX [∂φR(φt, w0)(X)>∂φRm(φt, w0)(xj)kt(X,xj)]

=
1

m

m∑
j=1

Tkt∂φR(φt, w0)(xj)
>∂φRm(φt, w0)(xj)

= 〈Tkt∂φR(φt, w0), ∂φRm(φt, w0)〉Ld2(νm,X) .

Noting that ‖∂zl(φt(xj), yj , w0)‖2 ≤ β‖w0‖2 by Assumption 1, and applying Proposition 3 for all t ∈ {0, . . . , T−1}
independently, it follows that with probability at least 1− Tδ (i.e., 1− ρ) for ∀t ∈ {0, . . . , T − 1}∣∣∣〈∂φR(φt, w0), Tkt,m∂φRm(φt, w0)〉Ld2(νX) − 〈Tkt,m∂φRm(φt, w0), ∂φRm(φt, w0)〉Ld2(νm,X)

∣∣∣
≤ ‖Tkt∂φR(φt, w0)− Tkt,m∂φRm(φt, w0)‖Ld2(νm,X)‖∂φRm(φt, w0)‖Ld2(νm,X)

≤ β‖w0‖2ε(m, δ). (10)

We next give the following bound.

‖Tkt∂φRm(φt, w0)‖2Ld2(νX) = EνX

∥∥∥∥∥∥ 1

m

m∑
j=1

∂zl(φt(xi), yi, w0)kt(xi, X)

∥∥∥∥∥∥
2

2

≤ β2
‖w0‖2K

2. (11)

On the other hand, we get by Proposition 1

R(φt+1, w0) ≤ R(φt+1, w0)−η 〈∂φR(φt, w0), Tkt,m∂φRm(φt, w0)〉Ld2(νX)+
η2A‖w0‖2

2
‖Tkt∂φRm(φt, w0)‖2Ld2(νX).

(12)
Combining inequalities (10), (11), and (12), we have with probability at least 1− Tδ for t ∈ {0, . . . , T − 1},

R(φt+1, w0) ≤ R(φt+1, w0)− η‖Tkt,m∂φRm(φt, w0)‖2kt + ηβ‖w0‖2ε(m, δ) +
η2β2
‖w0‖2K

2A‖w0‖2

2
.

7
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By Summing this inequality over t ∈ {0, . . . , T − 1} and dividing by T , we get with probability 1− Tδ

1

T

T−1∑
t=0

‖Tkt,m∂φRm(φt, w0)‖2kt ≤
R(φ0, w0)

ηT
+ β‖w0‖2ε(m, δ) +

ηβ2
‖w0‖2K

2A‖w0‖2

2
.

Thus by Assumption 2 and the assumption on w>0 w0, we get

1

T

T−1∑
t=0

‖∇fLm(w>0 φt)‖
q
Ldp(νm,X)

≤ 1

γσq

{
R(φ0, w0)

ηT
+ β‖w0‖2ε(m, δ) +

ηβ2
‖w0‖2K

2A‖w0‖2

2
+ γε

}
. (13)

To clarify the relationship between ‖∇fLm(f)‖Lc1(νm,X) and ‖∇fL(f)‖Lc1(νX), we take an expectation of the
former term with respect to samples (Xj , Yj)

m
j=1 ∼ νm. Since ‖∂ζ l(ζ, y)‖2 ≤ B, we obtain

E(Xj ,Yj)mj=1∼νm‖∇fLm(f)‖Lc1(νm,X) = E(X,Y )∼νm‖∂ζ l(f(X), Y )‖2

≥ 1

B
E(X,Y )∼νm‖∂ζ l(f(X), Y )‖22

≥ 1

B
Eνm,X‖Eν(Y |X)[∂ζ l(f(X), Y )]‖22

=
1

B
Eνm,X‖∇fL(f)(X)‖22

=
1

B
‖∇fL(f)‖2Lc2(νX).

Hence, applying Hoeffding’s inequality with δ ← ρ/T to E(Xj ,Yj)mj=1∼νm‖∇fLm(w>0 φt)‖Lc1(νm,X) for all t ∈
{0, . . . , T − 1} independently, we find that with probability 1− Tδ for ∀t ∈ {0, . . . , T − 1},

‖∇fLm(w>0 φt)‖Lc1(νm,X) +B

√
2

m
log

1

δ
≥ E∼νm‖∇fLm(w>0 φt)‖Lc1(νm,X) ≥

1

B
‖∇fL(w>0 φt)‖2Lc1(νX), (14)

where we used for the last inequality ‖ · ‖2Lc2(νX) ≥ ‖ · ‖
2
Lc1(νX).

We set t∗ = arg mint∈{0,...,T−1} ‖∇fLm(w>0 φt)‖Ldp(νm,X). Combining inequalities (13) and (14) and noting
p ≥ 1, we get with probability at least 1− 2Tδ,

1

B
‖∇fL(w>0 φt∗)‖2Lc1(νX) ≤ B

√
2

m
log

1

δ
+

1

γ1/qσ

{
R(φ0, w0)

ηT
+ β‖w0‖2ε(m, δ) +

ηβ2
‖w0‖2K

2A‖w0‖2

2
+ γε

} 1
q

.

Noting that
√
a+ b ≤

√
a+
√
b for a, b > 0, we finally obtain

‖∇fL(w>0 φt∗)‖Lc1(νX) ≤ B
(

2

m
log

1

δ

) 1
4

+

√
B

γ1/qσ

{
R(φ0, w0)

ηT
+ β‖w0‖2ε(m, δ) +

ηβ2
‖w0‖2K

2A‖w0‖2

2
+ γε

} 1
2q

.

Recalling that m← bn/T c and δ ← ρ/T , the proof is finished.
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