
Beyond 1/2-Approximation for Submodular Maximization
on Massive Data Streams

Ashkan Norouzi-Fard * 1 Jakub Tarnawski * 1 Slobodan Mitrović * 1 Amir Zandieh * 1 Aidasadat Mousavifar 1

Ola Svensson 1

Abstract

Many tasks in machine learning and data min-
ing, such as data diversification, non-parametric
learning, kernel machines, clustering etc., require
extracting a small but representative summary
from a massive dataset. Often, such problems
can be posed as maximizing a submodular set
function subject to a cardinality constraint. We
consider this question in the streaming setting,
where elements arrive over time at a fast pace
and thus we need to design an efficient, low-
memory algorithm. One such method, proposed
by Badanidiyuru et al. (2014), always finds a 0.5-
approximate solution. Can this approximation
factor be improved? We answer this question af-
firmatively by designing a new algorithm SALSA
for streaming submodular maximization. It is
the first low-memory, single-pass algorithm that
improves the factor 0.5, under the natural assump-
tion that elements arrive in a random order. We
also show that this assumption is necessary, i.e.,
that there is no such algorithm with better than
0.5-approximation when elements arrive in arbi-
trary order. Our experiments demonstrate that
SALSA significantly outperforms the state of the
art in applications related to exemplar-based clus-
tering, social graph analysis, and recommender
systems.

1. Introduction
We are experiencing an unprecedented growth in the sizes
of modern datasets. Streams of data of massive volume
are generated every second, coming from many different
sources in industry and science such as: image and video

*Equal contribution 1Theory of Computation Laboratory, EPFL,
Lausanne, Vaud, Switzerland. Correspondence to: Ashkan
Norouzi-Fard <ashkan.afn@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

streams, sensor data, social networks, stock markets, and
many others. Sometimes, such data is produced so rapidly
that most of it cannot even be stored in any way. In this
context, a critical task is data summarization: one of extract-
ing a representative subset of manageable size from rich,
large-scale data streams. A central topic in machine learning
and data mining today, its main challenge is to produce such
a concise yet high-value summary while doing so efficiently
and on-the-fly.

In many applications, this challenge can be viewed as opti-
mizing a submodular function subject to a cardinality con-
straint. Indeed, submodularity – an intuitive notion of di-
minishing returns, which postulates that an element should
contribute more to a smaller set than to a larger one – plays
a similar role in this setting as convexity does in continuous
optimization. Namely, it is general enough to model a multi-
tude of practical scenarios, such as viral marketing (Kempe
et al., 2003), recommender systems (El-Arini & Guestrin,
2011), search result diversification (Agrawal et al., 2009) or
active learning (Golovin & Krause, 2011), while allowing
for both theoretically and practically sound and efficient al-
gorithms. In particular, a celebrated result by Nemhauser et
al. (1978) shows that the GREEDY algorithm – one that iter-
atively picks the element with the largest marginal contribu-
tion to the current summary – is a (1− 1/e)-approximation
for maximizing a monotone submodular function subject
to a cardinality constraint. That is, the objective value that
it attains is at least a (1− 1/e)-fraction of the optimum.
This approximation factor is NP-hard to improve (Feige,
1998). Unfortunately, GREEDY requires repeated access to
the complete dataset, which precludes it from use in large-
scale applications in terms of both memory and running
time.

The sheer bulk of large datasets and the infeasibility of
GREEDY together imply a growing need for faster and
memory-efficient algorithms, ideally ones that can work
in the streaming setting: one where input arrives one ele-
ment at a time, rather than being available all at once, and
only a small portion of the data can be kept in memory at any
point. The first such algorithm was given by Chakrabarti and
Kale (2014), yielding a 0.25-approximation while requiring
only a single pass over the data, in arbitrary order, and using

Beyond 0.5-Approximation for Submodular Maximization on Massive Data Streams

O(k) function evaluations per element and O(k) memory.1

A more accurate and efficient method SIEVE-STREAMING
was proposed by Badanidiyuru et al. (2014). For any ε > 0,
it provides a (0.5 − ε)-approximation and uses O (log k/ε)
function evaluations per element and O (k log k/ε) memory.
While well-suited for use in big data stream scenarios, its
approximation guarantee is nevertheless still inferior to that
of GREEDY. It is natural to wonder: can the ratio 0.5 be
improved upon by a more accurate algorithm?

It turns out that in general, the answer is no (modulo the
natural assumption that the submodular function is only
evaluated on feasible sets). As one of our results, we show
that:

Theorem 1.1. Any algorithm for streaming submodular
maximization that only queries the value of the submod-
ular function on feasible sets (i.e., sets of cardinality at most
k) and is an α-approximation for a constant α > 0.5 must
use Ω(n/k) memory, where n is the length of the stream.

This hardness includes randomized algorithms, and applies
even for estimating the optimum value to within this fac-
tor, without necessarily returning a solution (see the full
version).2 Note that usually n/k � k; such an algorithm
therefore cannot run in a large-scale streaming setting.

However, this bound pertains to arbitrary-order streams. An
immediate question, then, is whether inherent randomness
present in the stream can be helpful in obtaining higher
accuracy. Namely, in many real-world scenarios the data
arrives in random order, or can be processed in random order.
This can be seen as a sweet spot between assuming that the
data is drawn randomly from an underlying prior distribution
– which is usually unrealistic – and needing to allow for
instances whose contents and order are both adversarially
designed – which also do not appear in applications. Is it
possible to obtain a better approximation ratio under this
natural assumption?

Again, we begin with a negative result: the performance of
the state-of-the-art SIEVE-STREAMING algorithm remains
capped at 0.5 in this setting.

Theorem 1.2. There exists a family of instances on which
the approximation ratio of SIEVE-STREAMING is at most
0.5 + o(1) even if elements arrive in random order.

1 We make the usual assumption that one can store any element,
or the value of any set, using O(1) memory. The memory usage
calculation in (Chakrabarti & Kale, 2014) is lower-level, which
results in an extra logn factor. Furthermore, their algorithm can
be implemented using a priority queue, which would result in a
runtime of O(log k) per element.

2 Moreover, note that Theorem 1.1 does not follow from the
work of Buchbinder et al. (2015), who proved an approximation
hardness of 0.5 for online algorithms whose memory state must
always be a feasible solution (consisting of at most k elements).

We remark that Theorem 1.2 also extends to certain natural
modifications of SIEVE-STREAMING (with a different value
of a threshold parameter used in the algorithm, or multiple
such values that are tried in parallel). Thus, new ideas are
required to go beyond an approximation ratio of 0.5.

As the main result of this paper we present a new algorithm
SALSA (Streaming ALgorithm for Submodular maximiza-
tion with Adaptive thresholding), which does break the
0.5 barrier in the random-order case. SALSA, like SIEVE-
STREAMING, works in the streaming model and takes only
a single pass over the data, selecting those elements whose
marginal contribution is above some current threshold. How-
ever, it employs an adaptive thresholding scheme, where
the threshold is chosen dynamically based on the objective
value obtained until a certain point in the data stream. This
additional power allows us to prove the following guarantee:

Theorem 1.3. [Main Theorem] There exists a constant α >
0.5 such that, for any stream of elements that arrive in
random order, the value of the solution returned by SALSA
is at least α ·OPT in expectation (where OPT is the value
of the optimum solution). SALSA uses O(k log k) memory
(independent of the length of the stream) and processes
each element using O(log k) evaluations of the objective
function.

We remark that even if the stream is adversarial-order,
SALSA still guarantees a (0.5− ε)-approximation.

A different way to improve the accuracy of an algorithm is
allowing it to make multiple passes over the stream. In this
paper we also consider this setting and present a 2-pass algo-
rithm TWO-PASS for streaming submodular maximization.
We show that TWO-PASS achieves a 5/9 approximation ratio
using the same order of memory and function evaluations
as SIEVE-STREAMING. Formally, for any ε > 0 we show
that:

Theorem 1.4. TWO-PASS is a (5/9− ε)-approximation for
streaming submodular maximization. It uses O (k log k/ε)
memory and processes each element with O (log k/ε) evalua-
tions of the objective function.

Furthermore, we generalize our ideas to design a p-pass
algorithm P-PASS for any constant p ≥ 2. McGregor and
Vu (2016) showed that, regardless of the running time, no
p-pass algorithm can beat the (1− 1/e) approximation guar-
antee using memory poly(k). In this work we show that
P-PASS quickly converges to a (1− 1/e)-approximation as
p grows. We show that:

Theorem 1.5. P-PASS is a (1− (p/p+1)
p − ε)-

approximation for streaming submodular maximization. It
uses O (k log k/ε) memory and processes each element with
O (p log k/ε) evaluations of the objective function.

Beyond 0.5-Approximation for Submodular Maximization on Massive Data Streams

Applications and experiments We assess the accuracy
of our algorithms and show their versatility in several real-
world scenarios. In particular, we study maximum cover-
age in graphs, exemplar-based clustering, and personalized
movie recommendation. We find that SALSA significantly
outperforms the state of the art, SIEVE-STREAMING, in
all tested datasets. In fact, our experimental results show
that SALSA reduces the gap between GREEDY, which is
the benchmark algorithm even for the offline setting (a
“tractable optimum”), and the best known streaming algo-
rithm by a factor of two on average.

Note that we are able to obtain these practical improvements
even though, in our experiments, the order of arrival of
elements is not manually randomized. This suggests that
the random-order assumption, which allows us to obtain our
improved theoretical guarantees, does well in approximating
the nature of real-world datasets, which are not stochastic
but also not adversarial.

Related work The benchmark algorithm for monotone
submodular maximization under a cardinality constraint is
GREEDY. Unfortunately, it is not efficient and requires k
passes over the entire dataset. There has thus been much in-
terest in obtaining more efficient versions of GREEDY, such
as LAZY-GREEDY (Minoux, 1978; Leskovec et al., 2007;
Krause et al., 2008), the algorithm of Badanidiyuru and
Vondrk (2014), or STOCHASTIC-GREEDY (Mirzasoleiman
et al., 2015).

The first multi-pass algorithm for streaming submodular
maximization has been given by Gomes and Krause (2010).
If f is upper-bounded by B, then for any ε > 0 their al-
gorithm attains the value 0.5 · OPT − kε and uses O(k)
memory while making O(B/ε) passes. Interestingly, it
converges to the optimal solution for a restricted class of
submodular functions.

Many different settings are considered under the stream-
ing model. One important requirement often arising in
practice is that the returned solution be robust against dele-
tions (Mirzasoleiman et al., 2017; Mitrovi et al., 2017;
Kazemi et al., 2017). Non-monotone submodular functions
have also been considered (Chekuri et al., 2015; Mirza-
soleiman et al., 2017).

McGregor and Vu (2016) consider the k-coverage problem
in the multi-pass streaming setting. They give an algorithm
achieving (1 − 1/e − ε)-approximation in O(1/ε) passes.
They also show that improving upon the ratio (1 − 1/e)
in a constant number of passes would require an almost
linear memory. Their results generalize from k-coverage to
submodular maximization.

In the online setting, the stream length n is unknown and the
algorithm must always maintain a feasible solution. This

model allows preemption, i.e., the removal of previous ele-
ments from the solution (otherwise no constant competitive
ratio is possible). Chakrabarti and Kale (2014), Chekuri et
al. (2015) and Buchbinder et al. (2015) have obtained 0.25-
competitive algorithms for monotone submodular functions
under a cardinality constraint. This competitive ratio was
later improved to 0.29 by Chan et al. (2017). Buchbinder et
al. (2015) also prove a hardness of 0.5.

A different large-scale scenario is the distributed one, where
the elements are partitioned across m machines. The al-
gorithm GREEDI (Mirzasoleiman et al., 2013) consists
in running GREEDY on each machine and then combin-
ing the resulting summaries on a single machine using an-
other run of GREEDY. This yields an O

(
1/min(

√
k,m)

)
-

approximation. Barbosa et al. (2015) showed that when
the elements are partitioned randomly, one obtains a
(1− 1/e) /2-approximation. Mirrokni and Zadimoghad-
dam (2015) provide a different two-round strategy: they
compute coresets of size O(k) and then greedily merge
them, yielding a 0.545-approximation. The algorithm of Ku-
mar et al. (2015) consists of a logarithmic number of rounds
in the MapReduce setting and approaches the GREEDY ra-
tio. Barbosa et al. (2016) provide a general reduction that
implies a (1− 1/e− ε)-approximation in O(1/ε) rounds.

Korula et al. (2015) study the Submodular Welfare Maxi-
mization problem – where a set of items needs to be parti-
tioned among agents in order to maximize social welfare,
i.e., the sum of the (monotone submodular) utility functions
of the agents – in the online setting. The best possible com-
petitive ratio in general is 0.5. However, they show that the
greedy algorithm is 0.505-competitive if elements arrive in
random order.

2. Preliminaries
We consider a (potentially large) collection V of n items,
also called the ground set. We study the problem of max-
imizing a non-negative monotone submodular function
f : 2V → R+. Given two sets X,Y ⊆ V , the marginal
gain of X with respect to Y is defined as

f (X|Y) = f(X ∪ Y)− f(Y) ,

which quantifies the increase in value when adding X to
Y . We say that f is monotone if for any element e ∈ V
and any set Y ⊆ V it holds that f (e|Y) ≥ 0. The function
f is submodular if for any two sets X and Y such that
X ⊆ Y ⊆ V and any element e ∈ V \ Y we have

f (e|X) ≥ f (e|Y) .

Throughout the paper, we assume that f is given in terms
of a value oracle that computes f(S) for given S ⊆ V . We
also assume that f is normalized, i.e. f(∅) = 0.

Beyond 0.5-Approximation for Submodular Maximization on Massive Data Streams

SUBMODULARITY UNDER CARDINALITY CONSTRAINT

The problem of maximizing function f under cardinality
constraint k is defined as selecting a set S ⊆ V with |S| ≤ k
so as to maximize f(S). We will useO to refer to such a set
S, OPT to denote f(O), and the name SUBMAX to refer
to this problem.

3. Overview of SALSA

In this section, we present an overview of our algorithm.
We also explain the main ideas and the key ingredients of
its analysis. In the full version of this paper, we combine
these ideas into a proof of Theorem 1.3. Throughout this
section, we assume that the value OPT of an optimal solution
O = {o1, ..., ok} is known in advance. We show how to
remove this assumption using standard techniques in the
full version.

We start by defining the notion of dense optimum solutions.
We say that O is dense if there exists a set D ⊆ O of size
at most k/100 such that f(D) ≥ OPT/10.3 Our algorithm
runs three procedures, and each procedure outputs a set of
at most k elements. One of the procedures performs well
in the case when O is dense. The other two approaches are
designed to collect high utility whenO is not dense. We run
these procedures in parallel and, out of the three returned
sets, we report the one attaining the highest utility. In what
follows, we first describe our algorithm for the case when
O is not dense.

Case: O is not dense. We present the intuition behind
the algorithm under the simplifying assumption that f(o) =
OPT/k for every o ∈ O. However, the algorithm that we
state provides an approximation guarantee better than 0.5 in
expectation for any instance that is not dense.

Over the first 0.1-fraction of the stream, both procedures for
this case behave identically: they maintain a set of elements
S; initially, S = ∅; each element e from the stream is added
to S if its marginal gain is at least T1 = OPT

k (1/2 + ε), i.e.,

f(e|S) ≥ OPT
k

(1/2 + ε).

Consider the first element o ∈ O that the procedures en-
counter on the stream. Since the stream is randomly ordered,
o is a random element of O. Due to this, we claim that if
f(S) is small, then it is likely that the procedures add o
to S. This follows from the fact that each element of O
is worth OPT/k. Namely, if f(S) < OPT(1/2 − ε′), for a
small constant ε′ > 0, then the average marginal contribu-
tion of the elements of O with respect to S is more than T1,
hence it is likely that the procedures select o. By repeating

3In the full version, we slightly alter the constants in the defini-
tion of a dense optimal solution.

the same argument we can conclude that after processing
a 0.1-fraction of the stream, either: (1) f(S) is large, i.e.,
f(S) > OPT(1/2− ε′); or (2) the procedures have selected
k/100 elements from O (which are worth OPT/100).

Up to this point, both procedures for the non-dense case
behaved identically. In the remaining 0.9-fraction of the
stream, the procedure corresponding to case (1) above uses
a threshold OPT

k (1/2 − δ), which is lower than T1. Since
there are still 0.9n elements left on the stream, and already
after the first 0.1-fraction we have f(S) > OPT(1/2− ε′), it
is very likely that by the end the procedure will have added
enough further elements to S so that f(S) ≥ OPT(1/2 + ε).

In case (2) above, the procedure has already selected a
set S that contains at least k/100 elements from O, i.e.,
|S∩O| ≥ k/100. Now, the procedure corresponding to this
case continues with the threshold T1 = OPT

k (1/2 + ε). If by
the end of the stream the procedure has selected k elements,
then clearly f(S) ≥ OPT(1/2 + ε), since each element
has marginal gain at least T1. Otherwise, the procedure
has selected fewer than k elements. This means that the
marginal gain of any element of the stream with respect to
S is less than T1. Now we claim that f(S) > OPT/2. First,
there are at most 99k/100 elements in O \ S. Furthermore,
adding each such element to the set S gives marginal gain
less than T1. Therefore, the total benefit that the elements
ofO \S give to S is at most OPT

k (1/2 + ε) · 99k/100, which
is less than OPT(1/2− 1/300) for small enough ε, therefore

OPT ≤ f(S ∪ O) = f(S) + f(O|S)

and thus

f(S) > OPT− OPT(1/2− 1/300)

= OPT(1/2 + 1/300).

Case: O is dense. We now give a brief overview of the
procedure that is designed for the case when O is dense.
Over the first 0.8-fraction of the stream, the procedure uses
a (high) threshold T ′1 = OPT

k · 2. Let D ⊆ O be the dense
part of O. Note that the average value of the elements of
D is at least OPT

k · 10, which is significantly higher than the
threshold T ′1.

Hence, even over the 0.8-fraction of the stream, the algo-
rithm will in expectation collect some elements with large
marginal gain. This, intuitively, means that the algorithm
in expectation selects k′ elements of total value signifi-
cantly larger than k′OPT/(2k). This enables us to select
the remaining k − k′ elements with marginal gain below
OPT/(2k) and still collect a set of utility larger than OPT/2.
We implement this observation by letting the algorithm use
a threshold lower than OPT/(2k) for the remaining 0.2-
fraction of the stream. This increases the chance that the
algorithm collects k − k′ more elements.

Beyond 0.5-Approximation for Submodular Maximization on Massive Data Streams

In what follows, we provide pseudo-codes of our three algo-
rithms. For sake of brevity, we fix the values of constants
and give the full analysis of the algorithms in the full version
of this paper.

We begin with the dense case, presented in Algorithm 1. In
the pseudo-code, C1, C2 are large absolute constants and
β is the fraction of the stream that we process with a high
threshold.

Algorithm 1 DENSE

1: S := ∅
2: for the i-th element ei on the stream do
3: if i ≤ βn and f(ei|S) ≥ C1

k OPT and |S| < k then
4: S := S ∪ {ei}
5: else if i > βn and f(ei|S) ≥ 1

C2·kOPT and |S| <
k then

6: S := S ∪ {ei}
7: return S

For the case when O is not dense, we use two algorithms
as described above. The first algorithm (Algorithm 2) goes
over the stream and selects any element whose marginal gain
to the currently selected elements is at least OPT

k (1/2 + ε).
The second algorithm (Algorithm 3) starts with the same
threshold, but after passing over βn elements it decreases
the threshold to OPT

k (1/2− δ).

Algorithm 2 FIXED THRESHOLD

1: S := ∅
2: for the i-th element ei on the stream do
3: if f(ei|S) ≥ OPT

k (1/2 + ε) and |S| < k then
4: S := S ∪ {ei}
5: return S

Algorithm 3 HIGH-LOW THRESHOLD

1: S := ∅
2: for the i-th element ei on the stream do
3: if i ≤ βn and f(ei|S) ≥ OPT

k (1/2 + ε) and |S| < k
then

4: S := S ∪ {ei}
5: else if i > βn and f(ei|S) ≥ OPT

k (1/2 − δ) and
|S| < k then

6: S := S ∪ {ei}
7: return S

Since we do not know in advance whether the input is dense
or not, we run these three algorithms in parallel and output
the best solution at the end.

4. TWO-PASS Algorithm
In this section, we describe our TWO-PASS algorithm.
Recall that we denote the optimum solution by O =
{o1, . . . , ok} and we let OPT = f(O). Throughout this
section, we assume that OPT is known. We show how to
remove this assumption in the full version of this paper.
Also, in the full version we present a (more general) p-pass
algorithm.

Our TWO-PASS algorithm (Algorithm 4) is simple: in the
first pass we pick any element whose marginal gain with
respect to the currently picked elements is higher than the
threshold T1 = 2

3 ·
OPT
k . In the second pass we do the same

using the threshold T2 = 4
9 ·

OPT
k .

Algorithm 4 TWO-PASS Algorithm

1: S := ∅
2: for the i-th element ei on the stream do
3: if f(ei|S) ≥ 2OPT

3k and |S| < k then
4: S := S ∪ {ei}
5: for the i-th element ei on the stream do
6: if f(ei|S) ≥ 4OPT

9k and |S| < k then
7: S := S ∪ {ei}
8: return S

Theorem 4.1. TWO-PASS is a 5/9-approximation for
SUBMAX.

Proof. We prove this theorem in two cases depending on
|S|. First we consider the case |S| < k. For any element
o ∈ O \ S we have f(o|Si) ≤ T2 since we have not picked
it in the second pass. Therefore

f(O|S) ≤
∑
o∈O

f(o|S) ≤ k · T2 = 4/9 · OPT.

Thus
OPT ≤ f(S ∪ O) = f(S) + f(O|S)

and so

f(S) ≥ OPT · (1− 4/9) = 5/9 · OPT.

Therefore in this case we get the desired approximation
ratio.

Now we consider the second case, i.e., |S| = k. It is clear
that if we have picked k elements in the first round, then
we get a 2/3-approximation guarantee. Therefore assume
that we picked fewer than k elements in the first round, and
let S1 denote these elements. With a similar argument as
in the previous case we get that f(S1) ≥ OPT/3. One can
see that in the worst-case scenario, in the first pass we have
picked k/2 elements with marginal gain exactly T1 each
and in the second pass we have picked k/2 elements with

Beyond 0.5-Approximation for Submodular Maximization on Massive Data Streams

marginal gain exactly T2 each (we present a formal proof of
this statement in the full version). Therefore we have:

f(S) ≥ k/2 · T1 + k/2 · T2

= k/2 · 2

3
· OPT
k

+ k/2 · 4

9
· OPT
k

≥ OPT
2
· (2/3 + 4/9)

≥ 5/9 · OPT .

5. Empirical Evaluation
In this section, we numerically validate our theoret-
ical findings. Namely, we compare our algorithms,
SALSA and TWO-PASS, with two baselines, GREEDY and
SIEVE-STREAMING. For this purpose, we consider three
applications: (i) dominating sets on graphs, (ii) exemplar-
based clustering, and (iii) personalized movie recommen-
dation. In each of the experiments we find that SALSA
outperforms SIEVE-STREAMING.

It is natural to consider the utility obtained by GREEDY
as a proxy for an optimum, as it is theoretically tight and
difficult to beat in practice. The majority of our evaluations
demonstrate that the gap between the solutions constructed
by SALSA and GREEDY is more than two times smaller
than the gap between the solutions constructed by SIEVE-
STREAMING and GREEDY.

For each of the experiments we invoke our algorithms with
the following values of the parameters: Algorithm 1 with
C1 = 10, C2 = 0.2, β = 0.8; Algorithm 2 with ε = 1/6;
Algorithm 3 with β = 0.1, ε = 0.05, δ = 0.025.

5.1. Maximum coverage in big graphs

Maximum coverage is a classic graph theory problem with
many practical applications, including influence maximiza-
tion in social networks (Kempe et al., 2015) and community
detection in graphs (Fortunato & Lancichinetti, 2009). The
goal in this problem is to find a small subset of vertices of a
graph that is connected to a large fraction of the vertices.

Maximum coverage can be cast as maximization of a sub-
modular function subject to a cardinality constraint. More
formally, we are given a graph G = (V,E), where n = |V |
denotes the number of vertices and m = |E| denotes the
number of edges. The goal is to find a set S ⊆ V of size k
that maximizes the number of vertices in the neighborhood
of S.4 We consider three graphs for this problem from the
SNAP data library (Leskovec & Krevl, 2014).

Pokec social network Pokec is the most popular online

4This problem has been also referred to as the dominating set
problem in the literature.

social network in Slovakia. This graph has n =
1, 632, 803 and m = 30, 622, 564.

LiveJournal social network LiveJournal (Backstrom
et al., 2006) is a free online community that enables
members to maintain journals and individual and/or
group blogs. This graph has n = 4, 847, 571 and
m = 68, 993, 773.

Orkut social network Similar to Pokec, Orkut (Yang &
Leskovec, 2015) is also an online social network.
This graph has n = 3, 072, 441 vertices and m =
117, 185, 083 edges.

We compare our algorithms, SALSA and TWO-PASS, with
both baselines on these datasets for different values of k –
from 100 to 10, 000. The results show that SALSA always
outperforms SIEVE-STREAMING by around 10%, and also
reduces the gap between GREEDY and the best streaming
algorithm by a factor of two. Furthermore, the performance
of our TWO-PASS algorithm is very close to that of GREEDY.
The results can be found in Figure 1, where (a) and (b)
correspond to the Orkut dataset, (c) and (d) correspond to
LiveJournal, and (e) to Pokec.

5.2. Exemplar-based clustering

Imagine that we are given a collection of emails labeled as
spam or non-spam and asked to design a spam classifier. In
addition, every email is equipped with an m-dimensional
vector corresponding to the features of that email. One
possible approach is to view these m-dimensional vectors
as points in the Euclidean space, decompose them into k
clusters and fix a representative point for each cluster. Then,
whenever a new email arrives, it is assigned the same label
as the cluster representative closest to it. Let V denote
the set of all the labeled emails. To obtain the described
set of cluster representatives, we maximize the following
submodular function:

f(S) = L({e0})− L(S ∪ {e0}),

where e0 is the all-zero vector, and L(S) is defined as fol-
lows (Gomes & Krause, 2010):

L(S) =
1

|V |
∑
e∈V

min
v∈S

d(e, v).

In the definition of the function L(S), d(x, y) = ‖x− y‖2
denotes the squared Euclidean distance.5

5Notice that we turn a minimization problem over L(S) into a
maximization problem over f(S). The approximation guarantee
for maximizing f(S) does not transfer to an approximation guar-
antee for minimizing L(S). Nevertheless, maximizing f(S) gives
very good practical performance, and hence we use it in place of
L(S).

Beyond 0.5-Approximation for Submodular Maximization on Massive Data Streams

200 400 600 800 1000
k

5

6

7

8

9

10

11

12

O
bj

ec
tiv

e
va

lu
e

105

Sieve
SALSA
Greedy
2 pass

(a) Orkut

1000 2000 3000 4000 5000 6000 7000 8000
k

1.2

1.4

1.6

1.8

2

2.2

O
bj

ec
tiv

e
va

lu
e

106

Sieve
SALSA
2 pass

(b) Orkut

200 400 600 800 1000
k

1.5

2

2.5

3

3.5

4

4.5

O
bj

ec
tiv

e
va

lu
e

105

Sieve
SALSA
Greedy
2 pass

(c) LiveJournal

2000 4000 6000 8000 10000
k

4

6

8

10

12

14
105

O
bj

ec
tiv

e
va

lu
e

Sieve
SALSA
Greedy
2 pass

(d) LiveJournal

200 400 600 800 1000
k

1

1.5

2

2.5

3

O
bj

ec
tiv

e
va

lu
e

105

Sieve
SALSA
Greedy
2 pass

(e) Pokec

10 20 30 40 50
k

2.5

3

3.5

4

4.5

5

O
bj

ec
tiv

e
va

lu
e

105

Sieve
SALSA
Greedy
2 pass

(f) Spambase

5 10 15 20
k

1.6

1.65

1.7

1.75

1.8

1.85

O
bj

ec
tiv

e
va

lu
e

107

Sieve
SALSA
Greedy
2 pass

(g) CIFAR-10

10 20 30 40 50 60
k

10

20

30

40

50

60

70

O
bj

ec
tiv

e
va

lu
e

Sieve
SALSA
Greedy
2 pass

(h) Movies, α = 0.75

50 100 150 200
k

20

40

60

80

100

120

O
bj

ec
tiv

e
va

lu
e

Sieve
SALSA
Greedy
2 pass

(i) Movies, α = 0.85

Figure 1: Numerical comparisons of our two algorithms (SALSA and TWO-PASS) and baselines (GREEDY and SIEVE-
STREAMING). In plot (b) we could not run GREEDY on the underlying dataset due to its prohibitively slow running time on
this instance. Each plot demonstrates the performance of the algorithms for varying values of the cardinality k. The datasets
used for plots (a)-(e) are described in Section 5.1, for plots (f) and (g) in Section 5.2, and for plots (h) and (i) in Section 5.3.

Similarly to spam classification, and among many other
applications, the exemplar submodular function can also be
used for image clustering. In light of these applications, we
perform experiments on two datasets:

Spambase This dataset consists of 4, 601 emails, each
email described by 57 attributes (Lichman, 2013). We
do not consider mail-label as one of the attributes.

CIFAR-10 This dataset consists of 50, 000 color images,
each of size 32 × 32, divided into 10 classes. Each
image is represented as a 3, 072-dimensional vector –
three coordinates corresponding to the red, green and
blue channels of each pixel (Krizhevsky et al., 2014).

Before running these experiments, we subtract the mean of
the corresponding dataset from each data point.

Beyond 0.5-Approximation for Submodular Maximization on Massive Data Streams

The results for the Spambase dataset are shown in Fig-
ure 1(f). We can observe that both of our algorithms attain a
significantly higher utility than SIEVE-STREAMING. Also,
at their point of saturation, our algorithms equalize with
GREEDY. We can also observe that SIEVE-STREAMING
saturates at a much lower value than our algorithms, which
suggests that the strategy we develop filters elements from
the stream more carefully than SIEVE-STREAMING does.

Our results for the CIFAR-10 dataset, depicted in Fig-
ure 1(g), show that, before the point of saturation our
algorithms select elements of around 5% higher utility
than SIEVE-STREAMING. After the point of saturation
our algorithms achieve the same utility as GREEDY, while
SIEVE-STREAMING approaches that value slowly. Satura-
tion happens around k = 10, which is expected since the
images in CIFAR-10 are decomposed into 10 classes.

5.3. Personalized movie recommendation

We use the Movielens 1M dataset (Harper & Konstan, 2016)
to build a recommender system for movies. The dataset
contains over a million ratings for 3,900 movies by 6,040
users. For a given user u and a number k, the system should
recommend a collection of k movies personalized for user
u.

We use the scoring function proposed by Mitrovi et
al. (2017). We first compute low-rank feature vectors
wu ∈ R20 for each user u and vm ∈ R20 for each movie
m. These are obtained via low-rank matrix completion
(Troyanskaya et al., 2001) so as to make each inner product
〈wu, vm〉 approximate the rating of m by u, if known. Now
we define the submodular function

fu,α(S) = α·
∑
m′∈M

max
m∈S
〈vm′ , vm〉+(1−α)·

∑
m∈S
〈wu, vm〉 .

The first term is a facility-location objective (Lindgren et al.,
2016) that measures how well S covers the space M of
all movies (thus promoting diversity). The second term
aggregates the user-dependent scores of items in S. The
parameter α can be adjusted depending on the user’s prefer-
ences.

Our experiments consist in recommending collections of
movies for α = 0.75 and values of k up to 60 (see Fig-
ure 1(h)), as well as for α = 0.85 and values of k up to 200
(see Figure 1(i)). We do this for 8 randomly selected users
and report the averages. We find that the performance of
both SALSA and TWO-PASS falls at around 40% of the gap
between SIEVE-STREAMING and GREEDY. This quantity
improves as k increases.

6. Conclusion
In this paper, we consider the monotone submodular max-
imization problem subject to a cardinality constraint. For
the case of adversarial-order streams, we show that a 1/2
approximation guarantee is tight. Motivated by real-world
applications, we also study this problem in random-order
streams. We show that the previously known techniques
are not sufficient to improve upon 1/2 even in this setting.
We design a novel approach that exploits randomness of the
stream and achieves a better-than-1/2 approximation guaran-
tee. We also present a multi-pass algorithm that approaches
(1− 1/e)-approximation using only a constant number of
passes, even in adversarial-order streams. We validate the
performance of our algorithm on real-world data. Our eval-
uations demonstrate that we outperform the state of the art
SIEVE-STREAMING algorithm by a considerable margin.
In fact, our results are closer to GREEDY than to SIEVE-
STREAMING. Although we make a substantial progress in
the context of streaming submodular maximization, there
is still a gap between our approximation guarantee and the
currently best known lower bound. It would be very inter-
esting to reduce (or close) this gap, and we hope that our
techniques will provide insight in this direction.

Acknowledgements

We thank the anonymous reviewers for their valuable feed-
back. Ola Svensson and Jakub Tarnawski were supported
by ERC Starting Grant 335288-OptApprox.

References
Agrawal, R., Gollapudi, S., Halverson, A., and Ieong, S.

Diversifying search results. In Proceedings of the Second
ACM International Conference on Web Search and Data
Mining, WSDM ’09, pp. 5–14, New York, NY, USA,
2009. ACM.

Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan,
X. Group formation in large social networks: Member-
ship, growth, and evolution. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, pp. 44–54, New
York, NY, USA, 2006. ACM.

Badanidiyuru, A. and Vondrák, J. Fast algorithms for max-
imizing submodular functions. In Proceedings of the
Twenty-fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’14, pp. 1497–1514, Philadelphia, PA,
USA, 2014. Society for Industrial and Applied Mathe-
matics.

Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., and
Krause, A. Streaming submodular maximization: Mas-
sive data summarization on the fly. In Proceedings of the

Beyond 0.5-Approximation for Submodular Maximization on Massive Data Streams

20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, pp. 671–680,
New York, NY, USA, 2014. ACM.

Barbosa, R., Ene, A., Nguyen, H., and Ward, J. The power
of randomization: Distributed submodular maximization
on massive datasets. In International Conference on
Machine Learning, pp. 1236–1244, 2015.

Barbosa, R. D. P., Ene, A., Nguyen, H. L., and Ward, J. A
new framework for distributed submodular maximization.
In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 645–654, Oct 2016. doi:
10.1109/FOCS.2016.74.

Buchbinder, N., Feldman, M., and Schwartz, R. Online sub-
modular maximization with preemption. In Proceedings
of the Twenty-sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’15, pp. 1202–1216, Philadel-
phia, PA, USA, 2015. Society for Industrial and Applied
Mathematics.

Chakrabarti, A. and Kale, S. Submodular maximization
meets streaming: Matchings, matroids, and more. In
Lee, J. and Vygen, J. (eds.), Integer Programming and
Combinatorial Optimization, pp. 210–221, Cham, 2014.
Springer International Publishing.

Chan, T.-H. H., Huang, Z., Jiang, S. H.-C., Kang, N., and
Tang, Z. G. Online submodular maximization with free
disposal: Randomization beats 1/4 for partition matroids.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’17, pp. 1204–
1223, Philadelphia, PA, USA, 2017. Society for Industrial
and Applied Mathematics.

Chekuri, C., Gupta, S., and Quanrud, K. Streaming al-
gorithms for submodular function maximization. In
Halldórsson, M. M., Iwama, K., Kobayashi, N., and
Speckmann, B. (eds.), Automata, Languages, and Pro-
gramming, pp. 318–330, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

El-Arini, K. and Guestrin, C. Beyond keyword search:
Discovering relevant scientific literature. In Proceedings
of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’11, pp.
439–447, New York, NY, USA, 2011. ACM.

Feige, U. A threshold of ln n for approximating set cover.
Journal of the ACM (JACM), 45(4):634–652, 1998.

Fortunato, S. and Lancichinetti, A. Community detection
algorithms: a comparative analysis: invited presentation,
extended abstract. In 4th International Conference on
Performance Evaluation Methodologies and Tools, VAL-
UETOOLS ’09, Pisa, Italy, October 20-22, 2009, pp. 27,
2009.

Golovin, D. and Krause, A. Adaptive submodularity: The-
ory and applications in active learning and stochastic op-
timization. J. Artif. Int. Res., 42(1):427–486, September
2011. ISSN 1076-9757.

Gomes, R. and Krause, A. Budgeted nonparametric learning
from data streams. In In Proc. International Conference
on Machine Learning (ICML, 2010.

Harper, F. M. and Konstan, J. A. The MovieLens datasets:
History and context. ACM Transactions on Interactive
Intelligent Systems (TiiS), 5(4):19, 2016.

Kazemi, E., Zadimoghaddam, M., and Karbasi, A. Deletion-
Robust Submodular Maximization at Scale. ArXiv e-
prints, November 2017.

Kempe, D., Kleinberg, J., and Tardos, E. Maximizing the
spread of influence through a social network. In Proceed-
ings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’03, pp.
137–146, New York, NY, USA, 2003. ACM.

Kempe, D., Kleinberg, J. M., and Tardos, É. Maximizing
the spread of influence through a social network. Theory
of Computing, 11:105–147, 2015.

Korula, N., Mirrokni, V., and Zadimoghaddam, M. On-
line submodular welfare maximization: Greedy beats
1/2 in random order. In Proceedings of the Forty-
seventh Annual ACM Symposium on Theory of Comput-
ing, STOC ’15, pp. 889–898, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3536-2. doi: 10.1145/2746539.
2746626. URL http://doi.acm.org/10.1145/
2746539.2746626.

Krause, A., Singh, A., and Guestrin, C. Near-optimal sen-
sor placements in gaussian processes: Theory, efficient
algorithms and empirical studies. J. Mach. Learn. Res.,
9:235–284, June 2008.

Krizhevsky, A., Nair, V., and Hinton, G. The cifar-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html, 2014.

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A.
Fast greedy algorithms in mapreduce and streaming. ACM
Trans. Parallel Comput., 2(3):14:1–14:22, September
2015.

Leskovec, J. and Krevl, A. SNAP Datasets: Stanford large
network dataset collection, June 2014.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Van-
Briesen, J., and Glance, N. Cost-effective outbreak de-
tection in networks. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’07, pp. 420–429, New
York, NY, USA, 2007. ACM.

http://doi.acm.org/10.1145/2746539.2746626
http://doi.acm.org/10.1145/2746539.2746626

Beyond 0.5-Approximation for Submodular Maximization on Massive Data Streams

Lichman, M. UCI machine learning repository, 2013.

Lindgren, E., Wu, S., and Dimakis, A. G. Leveraging spar-
sity for efficient submodular data summarization. In
Advances in Neural Information Processing Systems, pp.
3414–3422, 2016.

McGregor, A. and Vu, H. T. Better streaming algorithms
for the maximum coverage problem. arXiv preprint
arXiv:1610.06199, 2016.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Stoer, J. (ed.), Optimiza-
tion Techniques, pp. 234–243, Berlin, Heidelberg, 1978.
Springer Berlin Heidelberg.

Mirrokni, V. and Zadimoghaddam, M. Randomized compos-
able core-sets for distributed submodular maximization.
In Proceedings of the Forty-seventh Annual ACM Sympo-
sium on Theory of Computing, STOC ’15, pp. 153–162,
New York, NY, USA, 2015. ACM.

Mirzasoleiman, B., Karbasi, A., Sarkar, R., and Krause,
A. Distributed submodular maximization: Identifying
representative elements in massive data. In Advances in
Neural Information Processing Systems, pp. 2049–2057,
2013.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák,
J., and Krause, A. Lazier than lazy greedy. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, AAAI’15, pp. 1812–1818. AAAI Press, 2015.

Mirzasoleiman, B., Jegelka, S., and Krause, A. Streaming
Non-monotone Submodular Maximization: Personalized
Video Summarization on the Fly. ArXiv e-prints, June
2017.

Mirzasoleiman, B., Karbasi, A., and Krause, A. Deletion-
robust submodular maximization: Data summarization
with “the right to be forgotten”. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 2449–2458, Interna-
tional Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR.

Mitrovi, S., Bogunovi, I., Norouzi-Fard, A., Tarnawski, J.,
and Cevher, V. Streaming robust submodular maximiza-
tion: A partitioned thresholding approach. In Advances
in Neural Information Processing Systems, 2017.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functionsi. Mathematical Programming, 14(1):265–
294, 1978.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P.,
Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B.
Missing value estimation methods for DNA microarrays.
Bioinformatics, 17(6):520–525, 2001.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowl. Inf. Syst., 42
(1):181–213, 2015.

