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Abstract

We consider the exploration/exploitation prob-
lem in reinforcement learning. For exploitation,
it is well known that the Bellman equation con-
nects the value at any time-step to the expected
value at subsequent time-steps. In this paper we
consider a similar uncertainty Bellman equation
(UBE), which connects the uncertainty at any
time-step to the expected uncertainties at subse-
quent time-steps, thereby extending the potential
exploratory benefit of a policy beyond individual
time-steps. We prove that the unique fixed point
of the UBE yields an upper bound on the vari-
ance of the posterior distribution of the Q-values
induced by any policy. This bound can be much
tighter than traditional count-based bonuses that
compound standard deviation rather than vari-
ance. Importantly, and unlike several existing
approaches to optimism, this method scales nat-
urally to large systems with complex generaliza-
tion. Substituting our UBE-exploration strategy
for ε-greedy improves DQN performance on 51
out of 57 games in the Atari suite.

1. Introduction
We consider the reinforcement learning (RL) problem of an
agent interacting with its environment to maximize cumu-
lative rewards over time (Sutton & Barto, 1998). We model
the environment as a Markov decision process (MDP), but
where the agent is initially uncertain of the true dynam-
ics and mean rewards of the MDP (Bellman, 1957; Bert-
sekas, 2005). At each time-step, the agent performs an ac-
tion, receives a reward, and moves to the next state; from
these data it can learn which actions lead to higher payoffs.
This leads to the exploration versus exploitation trade-off:
Should the agent investigate poorly understood states and
actions to improve future performance or instead take ac-

1DeepMind. Correspondence to: Brendan O’Donoghue
<bodonoghue@google.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

tions that maximize rewards given its current knowledge?

Separating estimation and control in RL via ‘greedy’ algo-
rithms can lead to premature and suboptimal exploitation.
To offset this, the majority of practical implementations in-
troduce some random noise or dithering into their action
selection (such as ε-greedy). These algorithms will even-
tually explore every reachable state and action infinitely
often, but can take exponentially long to learn the opti-
mal policy (Kakade, 2003). By contrast, for any set of
prior beliefs the optimal exploration policy can be com-
puted directly by dynamic programming in the Bayesian
belief space. However, this approach can be computation-
ally intractable for even very small problems (Guez et al.,
2012) while direct computational approximations can fail
spectacularly badly (Munos, 2014).

For this reason, most provably-efficient approaches to re-
inforcement learning rely upon the optimism in the face of
uncertainty (OFU) principle (Lai & Robbins, 1985; Kearns
& Singh, 2002; Brafman & Tennenholtz, 2002). These al-
gorithms give a bonus to poorly-understood states and ac-
tions and subsequently follow the policy that is optimal
for this augmented optimistic MDP. This optimism incen-
tivizes exploration but, as the agent learns more about the
environment, the scale of the bonus should decrease and
the agent’s performance should approach optimality. At
a high level these approaches to OFU-RL build up confi-
dence sets that contain the true MDP with high probability
(Strehl & Littman, 2004; Lattimore & Hutter, 2012; Jaksch
et al., 2010). These techniques can provide performance
guarantees that are ‘near-optimal’ in terms of the problem
parameters. However, apart from the simple ‘multi-armed
bandit’ setting with only one state, there is still a signif-
icant gap between the upper and lower bounds for these
algorithms (Lattimore, 2016; Jaksch et al., 2010; Osband
& Van Roy, 2016).

One inefficiency in these algorithms is that, although the
concentration may be tight at each state and action inde-
pendently, the combination of simultaneously optimistic
estimates may result in an extremely over-optimistic esti-
mate for the MDP as a whole (Osband & Van Roy, 2017).
Other works have suggested that a Bayesian posterior sam-
pling approach may not suffer from these inefficiencies and
can lead to performance improvements over OFU methods
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(Strens, 2000; Osband et al., 2013; Grande et al., 2014).
In this paper we explore a related approach that harnesses
the simple relationship of the uncertainty Bellman equa-
tion (UBE), where we define uncertainty to be the vari-
ance of the Bayesian posterior of the Q-values of a policy
conditioned on the data the agent has collected, in a sense
similar to the parametric variance of Mannor et al. (2007).
Intuitively speaking, if the agent has high uncertainty (as
measured by high posterior variance) in a region of the
state-space then it should explore there, in order to get a
better estimate of those Q-values. We show that, just as
the Bellman equation relates the value of a policy beyond a
single time-step, so too does the uncertainty Bellman equa-
tion propagate uncertainty values over multiple time-steps,
thereby facilitating ‘deep exploration’ (Osband et al., 2017;
Moerland et al., 2017).

The benefit of our approach (which learns the solution
to the UBE and uses this to guide exploration) is that
we can harness the existing machinery for deep reinforce-
ment learning with minimal change to existing network ar-
chitectures. The resulting algorithm shares a connection
to the existing literature of both OFU and intrinsic moti-
vation (Singh et al., 2004; Schmidhuber, 2009; White &
White, 2010). Recent work has further connected these ap-
proaches through the notion of ‘pseudo-count’ (Bellemare
et al., 2016; Ostrovski et al., 2017), a generalization of the
number of visits to a state and action. Rather than adding a
pseudo-count based bonus to the rewards, our work builds
upon the idea that the more fundamental quantity is the un-
certainty of the value function and that naively compound-
ing count-based bonuses may lead to inefficient confidence
sets (Osband & Van Roy, 2017). The key difference is that
the UBE compounds the variances at each step, rather than
standard deviation.

The observation that the higher moments of a value func-
tion also satisfy a form of Bellman equation is not new and
has been observed by some of the early papers on the sub-
ject (Sobel, 1982). Unlike most prior work, we focus upon
the epistemic uncertainty over the value function, as cap-
tured by the Bayesian posterior, i.e., the uncertainty due
to estimating a parameter using a finite amount of data,
rather than the higher moments of the reward-to-go (Lat-
timore & Hutter, 2012; Azar et al., 2012; Mannor & Tsit-
siklis, 2011; Bellemare et al., 2017). For application to rich
environments with complex generalization we will use a
deep learning architecture to learn a solution to the UBE,
in the style of (Tamar et al., 2016).

2. Problem formulation
We consider a finite horizon, finite state and action space
MDP, with horizon length H ∈ N, state space S, action
space A and rewards at time period h denoted by rh ∈ R.

A policy π = (π1, . . . , πH) is a sequence of functions
where each πh : S × A → R+ is a mapping from state-
action pair to the probability of taking that action at that
state, i.e., πhsa is the probability of taking action a at state
s at time-step h and

∑
a π

h
sa = 1 for all s ∈ S. At each

time-step h the agent receives a state sh and a reward rh

and selects an action ah from the policy πh, and the agent
moves to the next state sh+1, which is sampled with prob-
ability Phsh+1shah , where Phs′sa is the probability of tran-
sitioning from state s to state s′ after taking action a at
time-step h. The goal of the agent is to maximize the ex-
pected total discounted return J under its policy π, where
J(π) = E

[∑H
h=1 r

h | π
]
. Here the expectation is with

respect to the initial state distribution, the state-transition
probabilities, the rewards, and the policy π.

The action-value, or Q-value, at time step l of a particular
state under policy π is the expected total return from tak-
ing that action at that state and following π thereafter, i.e.,
Qlsa = E

[∑H
h=l r

h | sl = s, al = a, π
]

(we suppress the
dependence on π in this notation). The value of state s un-
der policy π at time-step h, V h(s) = Ea∼πh

s
Qhsa, is the

expected total discounted return of policy π from state s.

The Bellman operator T h for policy π at each time-step h
relates the value at each time-step to the value at subsequent
time-steps via dynamic programming (Bellman, 1957),

T hQh+1
sa = µhsa +

∑
s′,a′

πhs′a′P
h
s′saQ

h+1
s′a′ (1)

for all (s, a), where µ = E r is the mean reward. The
Q-values are the unique fixed point of equation (1), i.e., the
solution to T hQh+1 = Qh for h = 1, . . . ,H , whereQH+1

is defined to be zero. Several reinforcement learning algo-
rithms have been designed around minimizing the residual
of equation (1) to propagate knowledge of immediate re-
wards to long term value (Sutton, 1988; Watkins, 1989).
In the next section we examine a similar relationship for
propagating the uncertainties of the Q-values, we call this
relationship the uncertainty Bellman equation.

3. The uncertainty Bellman equation
In this section we derive a Bellman-style relationship that
propagates the uncertainty (variance) of the Bayesian pos-
terior distribution over Q-values across multiple time-steps.
Propagating the potential value of exploration over many
time-steps, or deep exploration, is important for statisti-
cally efficient RL (Kearns & Singh, 2002; Osband et al.,
2017). Our main result, which we state in Theorem 1, is
based upon nothing more than the dynamic programming
recursion in equation (1) and some crude upper bounds of
several intermediate terms. We will show that even in very
simple settings this approach can result in well-calibrated
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uncertainty estimates where common count-based bonuses
are inefficient (Osband & Van Roy, 2017).

3.1. Posterior variance estimation

We consider the Bayesian case, where we have priors over
the mean reward µ and the transition probability matrix
P which we denote by φµ and φP respectively. We col-
lect some data generated by the policy π and use it to de-
rive posterior distributions over µ and P , given the data.
We denote by Ft the sigma-algebra generated by all the
history up to episode t (e.g., all the rewards, actions, and
state transitions for all episodes), and let the posteriors over
the mean reward and transition probabilities be denoted by
φµ|Ft

and φP |Ft
respectively. If we sample µ̂ ∼ φµ|Ft

and
P̂ ∼ φP |Ft

, then the resulting Q-values that satisfy

Q̂hsa = µ̂hsa +
∑
s′,a′

πhs′a′ P̂
h
s′saQ̂

h+1
s′a′ , h = 1, . . . ,H,

where Q̂H+1 = 0, are a sample from the implicit poste-
rior over Q-values, conditioned on the history Ft (Strens,
2000). In this section we compute a bound on the variance
(uncertainty) of the random variable Q̂. For the analysis we
will require some additional assumptions.
Assumption 1. The MDP is a directed acyclic graph.

This assumption means that the agent cannot revisit a state
within the same episode, and is a common assumption in
the literature (Osband et al., 2014). Note that any finite
horizon MDP that doesn’t satisfy this assumption can be
converted into one that does by ‘unrolling’ the MDP so that
each state s is replaced by H copies of the state, one for
each step in the episode.
Assumption 2. The mean rewards are bounded in a known
interval, i.e., µhsa ∈ [−Rmax, Rmax] for all (s, a).

This assumption means we can bound the absolute value of
the Q-values as |Qhsa| ≤ Qmax = HRmax. We will use
this quantity in the bound we derive below. This brings us
to our first lemma.
Lemma 1. For any random variable x let

vartx = E((x−E(x|Ft))2|Ft)

denote the variance of x conditioned on Ft. Under the as-
sumptions listed above, the variance of the Q-values under
the posterior satisfies the Bellman inequality

vartQ̂
h
sa ≤ νhsa +

∑
s′,a′

πhs′a′ E(Phs′sa|Ft)vartQ̂h+1
s′a′

for all (s, a) and h = 1, . . . ,H , where vartQ̂H+1 = 0 and
where we call νhsa the local uncertainty at (s, a), and it is
given by

νhsa = vartµ̂
h
sa +Q2

max

∑
s′ vartP̂

h
s′sa.

Proof. See the appendix.

We refer to ν in the above lemma as the local uncertainty
since it depends only on locally available quantities, and
so can be calculated (in principle) at each state-action inde-
pendently. With this lemma we are ready to prove our main
theorem.

Theorem 1 (Solution of the uncertainty Bellman equation).
Under assumptions 1 and 2, for any policy π there exists a
unique u that satisfies the uncertainty Bellman equation

uhsa = νhsa +
∑
s′,a′

πhs′a′ E(Phs′sa|Ft)uh+1
s′a′ (2)

for all (s, a) and h = 1, . . . ,H , where uH+1 = 0, and
furthermore u ≥ vartQ̂ pointwise.

Proof. Let Uh be the Bellman operator that defines the un-
certainty Bellman equation, i.e., rewrite equation (2) as

uh = Uhuh+1,

then to prove the result we use two essential properties of
the Bellman operator for a fixed policy. Firstly, the solution
to the Bellman equation exists and is unique, and secondly
the Bellman operator is monotonically non-decreasing in
its argument, i.e., if x ≥ y pointwise then Uhx ≥ Uhy
pointwise (Bertsekas, 2005). The proof proceeds by induc-
tion; assume that for some h we have vartQ̂

h+1 ≤ uh+1,
then we have

vartQ̂
h ≤ UhvartQ̂h+1 ≤ Uhuh+1 = uh,

where we have used the fact that the variance satisfies the
Bellman inequality from lemma 1, and the base case holds
because vartQ̂

H+1 = uH+1 = 0.

We conclude with a brief discussion on why the variance
of the posterior is useful for exploration. If we had ac-
cess to the true posterior distribution over the Q-values then
we could take actions that lead to states with higher uncer-
tainty by, for example, using Thompson sampling (Thomp-
son, 1933; Strens, 2000), or constructing Q-values that are
high probability upper bounds on the true Q-values and
using the OFU principle (Kaufmann et al., 2012). How-
ever, calculating the true posterior is intractable for all but
very small problems. Due to this difficulty prior work
has sought to approximate the posterior distribution (Os-
band et al., 2017), and use that to drive exploration. In
that spirit we develop another approximation of the pos-
terior, in this case it is motivated by the Bayesian central
limit theorem which states that, under some mild condi-
tions, the posterior distribution converges to a Gaussian as
the amount of data increases (Berger, 2013). With that in
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mind, rather than computing the full posterior we approx-
imate it as N (Q̄,diag(u)) where u is the solution to the
uncertainty Bellman equation (2), and consequently is a
guaranteed upper bound on the true variance of the poste-
rior, and Q̄ denotes the mean Q-values under the posterior
at episode t, i.e., the unique solution to

Q̄hsa = E(µ̂hsa|Ft) +
∑
s′,a′

πhs′a′ E(P̂hs′sa|Ft)Q̄h+1
s′a′ ,

for h = 1, . . . ,H , and Q̄H+1 = 0. With this approximate
posterior we can perform Thompson sampling as an explo-
ration heuristic. Specifically, at state s and time-step h we
select the action using

a = argmax
b

(Q̄hsb + ζb(u
h
sb)

1/2) (3)

where ζb is sampled fromN (0, 1). Our goal is for the agent
to explore states and actions where it has higher uncer-
tainty. This is in contrast to the commonly used ε-greedy
(Mnih et al., 2013) and Boltzmann exploration strategies
(Mnih et al., 2016; O’Donoghue et al., 2017; Haarnoja
et al., 2017) which simply inject noise into the agents ac-
tions. We shall see in the experiments that our strategy can
dramatically outperform these naive heuristics.

3.2. Comparison to traditional exploration bonus

Consider a simple decision problem with known determin-
istic transitions, unknown rewards, and two actions at a root
node, as depicted in Figure 1. The first action leads to a sin-
gle reward r1 sampled from N (µ1, σ

2) at which point the
episode terminates, and the second action leads to an chain
of lengthH consisting of states each having random reward
r2 independently sampled from N (µ2/H, σ

2/H).

Take the case where each action at the root has been taken
n times and where the uncertainty over the rewards at each
state concentrates like 1/n (e.g., when the prior is an im-
proper Gaussian). In this case the true uncertainty about
the value of each action is identical and given by σ2/n.
This is also the answer we get from the uncertainty Bell-
man equation, since for action 1 we obtain u1 = σ2/n
(since vart P = 0) and for action 2 the uncertainty about
the reward at each state along the chain is given by σ2/Hn

and so we have u2 =
∑H
h=1 σ

2/Hn = σ2/n.

Rather than considering the variance of the value as a
whole, the majority of existing approaches to OFU provide
exploration bonuses at each state and action independently
and then combine these estimates via union bound. In this
context, even a state of the art algorithm such as UCRL2
(Jaksch et al., 2010) would augment the rewards at each
state with a bonus proportional to the standard deviation of
the reward estimate at each state (Bellemare et al., 2016).
For the first action this would be ExpBonus1 = σ/

√
n, but

for the second action this would be accumulated along the
chain to be

ExpBonus2 =

H∑
h=1

σ√
Hn

= σ

√
H

n

In other words, the bonus afforded to the second action is
a factor of

√
H larger than the true uncertainty. The agent

would have to take the second action a factor of H more
times than the first action in order to have the same effective
bonus given to each one. If the first action was actually su-
perior in terms of expected reward, it would take the agent
far longer to discover that than an agent using the correct
uncertainties to select actions. The essential issue is that,
unlike the variance, the standard deviations do not obey a
Bellman-style relationship.

In Figure 2 we show the results of an experiment showing
this phenomenon. Action 1 had expected reward µ1 = 1,
and action 2 had expected reward µ2 = 0. We set σ = 1
and H = 10, and the results are averaged over 500 seeds.
We compare two agents, one using the uncertainty Bell-
man equation to drive exploration and the other agent us-
ing a count-based reward bonus. Both agents take actions
and use the results to update their beliefs about the value
of each action. The agent using the UBE takes the action
yielded by Thompson sampling as in equation (3). The
exploration-bonus agent takes the action i that maximizes
Q̂i + β log(t)ExpBonusi (the log(t) term is required to
achieve a regret bound (Jaksch et al., 2010), but doesn’t
materially affect the previous argument) where β > 0 is
a hyper-parameter chosen by a sweep and where Q̂i is the
estimate of the value of action i. Figure 2 shows the regret
of each agent vs number of episodes. Regret measures how
sub-optimal the rewards the agent has received so far are,
relative to the (unknown) optimal policy, and lower regret
is better (Cesa-Bianchi & Lugosi, 2006).

The agent using the uncertainty Bellman equation has well
calibrated uncertainty estimates and consequently quickly
figures out that the first action is better. By contrast, the
exploration bonus agent takes significantly longer to deter-
mine that the first action is better due to the fact that the
bonus afforded to the second action is too large, and conse-
quently it suffers significantly higher regret.

4. Estimating the local uncertainty
Section 3 outlined how the uncertainty Bellman equation
can be used to propagate local estimates of the variance of
Q̂ to global estimates for the uncertainty. In this section we
present some pragmatic approaches to estimating the local
uncertainty ν that we can then use for practical learning
algorithms inspired by Theorem 1. We do not claim that
these approaches are the only approaches to estimating the
local uncertainty, or even that these simple approximations
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r2 r2 r2

h=1 h=2 h=H

Figure 1: Simple tabular MDP.

Figure 2: Regret over time for the simple tabular MDP.

are in any sense the ‘best’. Investigating these choices is an
important area of future research, but outside the scope of
this short paper. We present a simple progression from tab-
ular representations, to linear function approximation and
then to non-linear neural network architectures.

Tabular value estimate. Consider the case where the
posterior over the mean rewards concentrates at least as fast
the reciprocal of the visit count, i.e.,

vartµ̂
h
sa ≤ σ2

r/n
h
sa

where σr is the variance of the reward process and nhsa is
the visit count of the agent to state s and action a at time-
step h, up to episode t. This is the case when, for example,
the rewards and the prior over the mean reward are both
Gaussian. Furthermore, if we assume that the prior over
the transition function is Dirichlet then it is straightforward
to show that ∑

s′

vartP̂
h
s′sa ≤ 1/nhsa

since the likelihood of the transition function is a categor-
ical distribution, which is conjugate to the Dirichlet distri-
bution and the variance of a Dirichlet concentrates like the
reciprocal of the sum of the counts of each category. Under
these assumptions we can bound the local uncertainty as

νhsa ≤ (σ2
r +Q2

max)/nhsa.

In other words, the local uncertainty can be modeled under
these assumptions as a constant divided by the visit count.

Linear value estimate. In the non-tabular case we need
some way to estimate the inverse counts in order to approx-
imate the local uncertainty. Consider a linear value func-
tion estimator Q̂hsa = φ(s)Twa for each state and action
with fixed basis functions φ(s) : S → RD and learned
weights wa ∈ RD, one for each action. This setting allows
for some generalization between states and actions through
the basis functions. For any fixed dataset we can find the
least squares solution for each action a (Boyan, 1999),

minimizewa

∑N
i=1(φ(si)

Twa − yi)22,

where each yi ∈ R is a regression target (e.g., a Monte
Carlo return from that state-action). The solution to this
problem is w?a = (ΦTaΦa)−1ΦTa y, where Φa is the matrix
consisting of the φ(si) vectors stacked row-wise (we use
the subscript a to denote the fact that action a was taken
at these states). We can compute the variance of this es-
timator, which will provide a proxy for the inverse counts
(Bellemare et al., 2016). If we model the targets yi as IID
with unit variance, then vart w

?
a = (ΦTaΦa)−1. Given a

new state vector φs, the variance of the Q-value estimate
at (s, a) is then vartφ

T
s w

?
a = φTs (ΦTaΦa)−1φs, which we

can take to be our estimate of the inverse counts, i.e., set
(n̂hsa)−1 = φTs (ΦTaΦa)−1φs. Now we can estimate the lo-
cal uncertainty as

ν̂hsa = β2(n̂hsa)−1 = β2φTs (ΦTaΦa)−1φs (4)

for some β, which in the tabular case (i.e., where φ(s) = es
and D = |S|) is equal to β2/nhsa, as expected.

An agent using this notion of uncertainty must maintain
and update the matrix Σa = (ΦTaΦa)−1 as it receives new
data. Given new sample φ, the updated matrix Σ+

a is given
by

Σ+
a =

([
Φa
φT

]T [
Φa
φT

])−1
= (ΦTaΦa + φφT )−1

= Σa − (Σaφφ
TΣa)/(1 + φTΣaφ)

(5)
by the Sherman-Morrison-Woodbury formula (Golub &
Van Loan, 2012), the cost of this update is one matrix mul-
tiply and one matrix-matrix subtraction per step.

Neural networks value estimate. If we are approximat-
ing our Q-value function using a neural network then the
above analysis does not hold. However if the last layer of
the network is linear, then the Q-values are approximated as
Qhsa = φ(s)Twa, where wa are the weights of the last layer
associated with action a and φ(s) is the output of the net-
work up to the last layer for state s. In other words we can
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think of a neural network as learning a useful set of basis
functions such that a linear combination of them approxi-
mates the Q-values. Then, if we ignore the uncertainty in
the φ mapping, we can reuse the analysis for the purely
linear case to derive an approximate measure of local un-
certainty that might be useful in practice.

This scheme has some advantages. As the agent progresses
it is learning a state representation that helps it achieve the
goal of maximizing the return. The agent will learn to
pay attention to small but important details (e.g., the ball
in Atari ‘breakout’) and learn to ignore large but irrelevant
changes (e.g., if the background suddenly changes). This is
a desirable property from the point of view of using these
features to drive exploration, because the states that differ
only in irrelevant ways will be aliased to (roughly) the same
state representation, and states that differ is small but im-
portant ways will be mapped to quite different state vectors,
permitting a more task-relevant measure of uncertainty.

5. Deep Reinforcement Learning
Previously we proved that under certain conditions we can
bound the variance of the posterior distribution of the Q-
values, and we used the resulting uncertainty values to de-
rive an exploration strategy. Here we discuss the applica-
tion of that strategy to deep-RL. In this case several of
the assumptions we have made to derive theorem 1 are
violated. This puts us firmly in the territory of heuristic.
Specifically, the MDPs we apply this to will not be directed
acyclic graphs, the policy that we are estimating the uncer-
tainty over will not be fixed, we cannot exactly compute
the local uncertainty, and we won’t be solving the UBE
exactly. However, empirically, we demonstrate that this
heuristic can perform well in practice, despite the under-
lying assumptions being violated.

Our strategy involves learning the uncertainty estimates,
and then using them to sample Q-values from the approx-
imate posterior, as in equation (3). The technique is de-
scribed in pseudo-code in Algorithm 1. We refer to the
technique as ‘one-step’ since the uncertainty values are up-
dated using a one-step SARSA Bellman backup, but it is
easily extendable to the n-step case. The algorithm takes as
input a neural network which has two output ‘heads’, one
which is attempting to learn the optimal Q-values as nor-
mal, the other is attempting to learn the uncertainty values
of the current policy (which is constantly changing). We do
not allow the gradients from the uncertainty output head to
flow into the trunk of the network; this ensures the Q-value
estimates are not perturbed by the changing uncertainty sig-
nal. For the local uncertainty measure we use the linear
basis approximation described in section 4. Algorithm 1
incorporates a discount factor γ ∈ (0, 1), since deep RL
often uses a discount even in the purely episodic case. In

Algorithm 1 One-step UBE exploration with linear uncer-
tainty estimates.

Require: Neural network outputting Q and u estimates,
Q-value learning subroutine qlearn, Thompson sam-
pling hyper-parameter β > 0
Initialize Σa = µI for each a, where µ > 0
Get initial state s, take initial action a
for episode t = 1, . . . , do

for time-step h = 2, . . . ,H + 1 do
Retrieve φ(s) from input to last network layer
Receive new state s′ and reward r
Calculate Q̂hs′b and uhs′b for each action b
Sample ζb ∼ N (0, 1) for each b and calculate

a′ = argmax
b

(Q̂hs′b + βζb(u
h
s′b)

1/2)

Calculate

y =

{
φ(s)TΣaφ(s), if h = H + 1
φ(s)TΣaφ(s) + γ2uhs′a′ , o.w.

Take gradient step with respect to error

(y − uh−1sa )2

Update Q-values using qlearn(s, a, r, s′, a′)
Update Σa according to eq. (5)
Take action a′

Set s← s′, a← a′

end for
end for

this case the Q-learning update uses a γ discount and the
Uncertainty Bellman equation (2) is augmented with a γ2

discount factor.

5.1. Experimental results

Here we present results of Algorithm (1) on the Atari suite
of games (Bellemare et al., 2012), where the network is
attempting to learn the Q-values as in DQN (Mnih et al.,
2013; 2015) and the uncertainties simultaneously. The only
change to vanilla DQN we made was to replace the ε-
greedy policy with Thompson sampling over the learned
uncertainty values, where the β constant in (3) was cho-
sen to be 0.01 for all games, by a parameter sweep. We
used the exact same network architecture, learning rate, op-
timizer, pre-processing and replay scheme as described in
Mnih et al. (2015). For the uncertainty sub-network we
used a single fully connected hidden layer with 512 hidden
units followed by the output layer. We trained the uncer-
tainty head using a separate RMSProp optimizer (Tieleman
& Hinton, 2012) with learning rate 10−3. The addition of
the uncertainty head and the computation associated with
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it, only reduced the frame-rate compared to vanilla DQN
by about 10% on a GPU, so the additional computational
cost of the approach is negligible.

We compare two versions of our approach: a 1-step method
and an n-step method where we set n to 150. The n-step
method accumulates the uncertainty signal over n time-
steps before performing an update which should lead to
the uncertainty signal propagating to earlier encountered
states faster, at the expense of increased variance of the sig-
nal. Note that in all cases the Q-learning update is always
1-step; our n-step implementation only affects the uncer-
tainty update.

We compare our approaches to vanilla DQN, and also to an
exploration bonus intrinsic motivation approach, where the
agent receives an augmented reward consisting of the ex-
trinsic reward and the square root of the linear uncertainty
in equation (4), which was scaled by a hyper-parameter
chosen to be 0.1 by a sweep. In this case a stochastic pol-
icy was still required for good performance and so we used
ε-greedy with the DQN annealing schedule.

We trained all strategies for 200M frames (about 8 days
on a GPU). Each game and strategy was tested three times
per method with the same hyper-parameters but with dif-
ferent random seeds, and all plots and scores correspond
to an average over the seeds. All scores were normal-
ized by subtracting the average score achieved by an agent
that takes actions uniformly at random. Every 1M frames
the agents were saved and evaluated (without learning) on
0.5M frames, where each episode is started from the ran-
dom start condition described in (Mnih et al., 2015). The
final scores presented correspond to first averaging the eva-
lution score in each period across seeds, then taking the
max average episodic score observed during any evalution
period. Of the tested strategies the n-step UBE approach
was the highest performer in 32 out of 57 games, the 1-step
UBE approach in 14 games, DQN in 1 game, the explo-
ration bonus strategy in 7 games, and there were 3 ties. In
Table 1 we give the mean and median normalized scores
as percentage of an expert human normalized score across
all games, and the number of games where the agent is
‘super-human’, for each tested algorithm. Note that the
mean scores are significantly affected by a single outlier
with very high score (‘Atlantis’), and therefore the median
score is a better indicator of agent performance. In Figure 3
we plot the number of games at super-human performance
against frames for each method, and in Figure 4 we plot
the median performance across all games versus frames,
where a score of 1.0 denotes human performance. The re-
sults across all 57 games, as well as the learning curves for
all 57 games, are given in the appendix.

Of particular interest is the game ‘Montezuma’s Revenge’,
a notoriously difficult exploration game where no one-step

algorithm has managed to learn anything useful. Our 1-
step strategy learns in 200M frames a policy that is able
to consistently get about 500 points, which is the score the
agent gets for picking up the first key and moving into the
second room. In Figure 5 we show the learning progress
of the agents for 500M frames where we set the Thompson
sampling parameter slightly higher; 0.016 instead of 0.01
(since this game is a challenging exploration task it stands
to reason that a higher exploration parameter is required).
By the end of 500M frames the n-step agent is consis-
tently getting around 3000 points, which is several rooms
of progress. These scores are close to state-of-the-art, and
are state-of-the-art for one-step methods (like DQN) to the
best of our knowledge.

In the recent work by Bellemare et al. (2016), and the
follow-up work by Ostrovski et al. (2017), the authors add
an intrinsic motivation signal to a DQN-style agent that has
been modified to use the full Monte Carlo return of the
episode when learning the Q-values. Using Monte Carlo
returns dramatically improves the performance of DQN in
a way unrelated to exploration, and due to that change we
cannot compare the numerical results directly. In order to
have a point of comparison we implemented our own in-
trinisic motivation exploration signal, as discussed above.
Similarly, we cannot compare directly to the numerical re-
sults obtained by Bootstrap DQN (Osband et al., 2016)
since that agent is using Double-DQN, a variant of DQN
that achieves a higher performance in a way unrelated to
exploration. However, we note that our approach achieves
a higher evaluation score in 27 out of the 48 games tested
in the Bootstrap DQN paper despite using an inferior base
DQN implementation, and it runs at a significantly lower
computational and memory cost.

mean median > human
DQN 688.60 79.41 21

DQN Intrinsic Motivation 472.93 76.73 24
DQN UBE 1-step 776.40 94.54 26
DQN UBE n-step 439.88 126.41 35

Table 1: Scores for the Atari suite, as a percentage of hu-
man score.

6. Conclusion
In this paper we derived a Bellman equation for the uncer-
tainty over the Q-values of a policy. This allows an agent to
propagate uncertainty across many time-steps in the same
way that value propagates through time in the standard dy-
namic programming recursion. This uncertainty can be
used by the agent to make decisions about which states and
actions to explore, in order to gather more data about the
environment and learn a better policy. Since the uncertainty
satisfies a Bellman recursion, the agent can learn it using
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Figure 3: Number of games at super-human performance.

Figure 4: Normalized median performance across all
games, a score of 1.0 is human-level performance.

Figure 5: Montezuma’s Revenge performance.

the same reinforcement learning machinery that has been
developed for value functions. We showed that a heuristic
algorithm based on this learned uncertainty can boost the
performance of standard deep-RL techniques. Our tech-
nique was able to significantly improve the performance
of DQN across the Atari suite of games, when compared
against naive strategies like ε-greedy.
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