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1. Special Treatment of the center point

In Section3.3, we propose the special treatment on the center point to correct the problem resulting from over-expansion of
the center point. We provide a justification for the positive semi-definiteness of K,;.

Since the cylindrical kernel K, is a tensor product of the kernel K, from the radius component, and the kernel K, from
the angular component, if we can show that both K. and K are proper kernels (i.e. positive semi-definite), then we can
conclude that K, is also a proper kernel (Rasmussen & Williams, 2006).

Let us denote with 7' : B(0, R) — C(0, R; 0, 1) the transformation from a ball to a cylinder, and with 7, the projection to
angle component in a cylinder. For a given set D = D U{0}, we denote the angle component 7, (7 (D)) as D,,. Then the
gram matrix of K, on D can be represented by

Kcyl(Da: Da) Ka (Daa aarbitrary)
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In the special treatment, we set aqrpitrary = a% = X /|| X, ||. This is nothing but the gram matrix of K, on the dataset
aj,as, - - ,an,a, Aslong as, K, is proper kernel, using the special treatment does break the positive semi-definiteness of
kernel.

The special treatment assumes x, # 0. A single point is of measure zero under any non-atomic measure. This assumption
can be safely made, theoretically. In our experiments, we start with data including O as an initial data point, thus the
acquisition function does not need to go over x,. = 0 anymore.

Interestingly, this special treatment bears similarity to Bayesian Optimization using treed Gaussian Processes (Assael et al.,
2014). When there is 0 in our training data set, at each prediction, we have a Gaussian Process on the same data set but
one point. Namely, one can view this as having different Gaussian Processes at different prediction points, in the sense
that the data conditioning the Gaussian Process change (not the kernel parameters). As the treed Bayesian Optimization
guarantees continuity between the regions having the different Gaussian Processes is also, the cylindrical kernel with the
special treatment also has continuity since the Gram matrix is a continuous function of b, rbitrary.

However, at different prediction points we have different gram matrices. Hence, a naive implementation of the above idea
makes the maximization of the acquisition function infeasible. In Gaussian process prediction, main computation bottle is to
calculate a quadratic form as below
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Fortunately, we can calculate the quadratic form eq (2) efficiently by using block matrix inversion. Once we calculate

K.y (D, D)~!, by using pre-calculated, K., (D, D)~ ", calculating eq (2) for different x, requires marginal computation.
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2. Implementation Detail

Parts of implementation details is provided in Section 4 except for the prior distribution we use for radius kernel warping
eq 8. In order to make BOCK focus more on the center, we make prior concave and non-decreasing by using spike and slab
prior (Ishwaran et al., 2005). In eq 8, log(«) has spike and slab prior on positive real line. log(/) has spike and slab prior on
negative real line.

3. Benchmark functions

The suggested search space for below benchmark functions are adjusted to be [—1, 1] in our experiments.

3.1. Repeated Branin
D [D/2]
frep—branin(xh T2, ,$D) = I/LEJ Zl .fbranin(IQi—l; 1:21') (3)

where fprqnin 1S branin function whose formula can be found in (Laguna & Marti, 2005). The original search space of
branin function is [—5, 10] x [0, 15]

3.2. Repeated Hartmann6

LD/6)
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where fhartmanne 1S hartmann6 function whose formula can be found in (Laguna & Marti, 2005). The original search
space of hartmann6 function is [0, 1]

3.3. Rosenbrock (Laguna & Marti, 2005)

D—1
frosenbrock(-rlax% c ;J)D) = Z [100(331-1-1 - x?)2 + (331' - 1)2] 4)
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The original search space is [—5, 10]”

3.4. Levy (Laguna & Marti, 2005)
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The original search space is [—10, 10]?

4. Efficiency vs accuracy

We conduct the same analysis for efficiency vs accuracy with other benchmark functions on 20 dimensional case. In all
cases, BOCK is the closest to the optimum operating point (0, 0) 1. Matern is also accurate enough, although considerably
slower, while SMAC and additive BO are faster but considerably less accurate.
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Figure 1. Accuracy of Bayesian Optimization methods vs wall clock time efficiency for the 20-dimensional Repeated Branin, Repeated
Hartmann6, Levy benchmark. BOCK is the closest to the optimum operating point (0, 0). Matern is also accurate enough, although
considerably slower, while SMAC and additive BO are faster but considerably less accurate.

5. Scalability

We also conduct the experiment to check the scalability of algorithms with other benchmark functions on 20 and 100 dim.
The same observation that BOCK is clearly more efficient and less effected by the increasing dimensionality can be made 2.
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Figure 2. Wall clock time(hours) on the Repeated Branin, Repeated Hartmann6, Levy benchmark for an increasing the number of
dimensions (20 and 100 dimensions, using 200 and 600 function evaluations respectively for all methods). The solid lines and colored
regions represent the mean wall clock time and one standard deviation over these 5 runs. As obtaining the evaluation score y = f(x4) on
these benchmark functions is instantaneous, the wall clock time is directly related to the computational efficiency of algorithms. In this
figure, we compare BOCK and BOs with relative high accuracy in all benchmark functions, such as Spearmint and Matern. BOCK 1is
clearly more efficient, all the while being less affected by the increasing number of dimensions.
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