
Design of Experiments for Model Discrimination Hybridising Analytical and Data-Driven Approaches

A. Table of Notation

Table A. Summary of notation.

Symbol Description

f i Function associated with model Mi

fi,(e) Dimension e of function f i; e = 1, . . . , E

x Design variable, x ∈ X ⊂ Rd

θi Parameters of model Mi , θi ∈ Θi ⊂ RDi

M No. of models Mi; i = 1, . . . ,M

E No. of target dimensions; f i : Rd+Di → RE

Σexp Measurement noise covariance

Dexp The set of experimental observations

Dsim,i The set of simulated data for model Mi

B. Design Criteria

We let Δij = f i(x, θ̂i) − f j(x, θ̂j) and the covariance
Σi = Σexp + Σ̆i(x), where Σ̆i(x) is the covariance of
model Mi’s marginal predictive distribution due to model
parameter uncertainty.

For a single-response system, Box & Hill (1967) derive the
design criterion DBH, later generalised to a multi-response
form by Prasad & Someswara Rao (1977)
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Buzzi-Ferraris et al. (1990) derive the design criterion DBF
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designed such that if maxx DBF(x) < E, the largest differ-
ence between model predictions is too small compared to
the measurement noise variance to carry out model discrim-
ination, and design of experiments terminates.

Michalik et al. (2010) proceed from the Akaike informa-
tion criterion (AIC) as the model discrimination criterion to
derive a design criterion DAW from the Akaike weights
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yielding DAW =
�

i wip(Mi), where p(Mi) is the prior
probability of model Mi.

C. Case study from Vanlier et al. (2014)
There are nine chemical components with concentrations Ci,
i = 1, . . . , 9. The system of ordinary differential equations
has the form

dC1/dt = −g1 + g2 ,
dC2/dt = g1 − g2 ,
dC3/dt = −g3 + g4 ,
dC4/dt = g3 − g4 − g5 + g6 ,
dC5/dt = −g9 + g10 ,
dC6/dt = −g5 + g6 + g9 − g10 ,
dC7/dt = g5 − g6 ,
dC8/dt = −g7 + g8 ,
dC9/dt = g7 − g8 ,

i.e. the stoichiometry is the same for all models Mi. But
some of the fluxes g1, . . . , g10 differ for the different models.
For all models Mi the following fluxes are identical:

g2 = θi,2C2 , g7 = θi,7C8 ,
g4 = θi,4C4 , g8 = θi,8C9 ,
g5 = θi,5C4C6 , g9 = θi,10C5 ,
g6 = θi,6C7 , g10 = θi,4C6 .

For flux g1 the models differ in the following way:

Mi : g1 = θi,1C1 , i ∈ {1, 3, 4}

M2 : g1 =
θ2,1C1

θ2,9 + C7
.

For flux g3 the models differ in the following way:

M1 : g3 =
θ1,3C2C3

θ1,9+C7
, M3 : g3 =

θ3,3C2C3

θ3,9+C9
,

M2 : g3 = θ2,3C2C3 , M4 : g3 =
θ4,3C2C3

θ4,9+C8
.

We assume that the only measured states are the concentra-
tions C4 and C9, because these are the states from which
Vanlier et al. (2014) collect their initial data. Similarly, we
use the initial concentrations C4(t = 0) and C9(t = 0) as
two of our design variables, the third design variable being
the time point t at which to measure the concentrations.

Vanlier et al. (2014) look at times points in the range
t ∈ [0, 20], which we also adopt. We assume the initial
concentrations C4(t = 0), C9(t = 0) ∈ [0, 1] and fix all
other initial concentrations to

C1(t = 0) = C3(t = 0) = C5(t = 0) = C8(t = 0) = 1 ,

C2(t = 0) = C6(t = 0) = C7(t = 0) = 0.1 .

We assume the model parameter space θ ∈ [0, 1]10. Simula-
tions show that sampling from this parameter space gives a
wide range of model realisations.

With reference to models M1 and M2 being similar, we
see that the only difference between them is that the term
θi,9 + C7 divides g1 and g3 for M1 and M2, respectively.
If C7 is small compared to θi,9, then the models are nearly
identical.


