Design of Experiments for Model Discrimination Hybridising Analytical and Data-Driven Approaches

A. Table of Notation

Table A. Summary of notation.

Symbol Description
i Function associated with model M,
fivce) Dimension e of function f;;e=1,..., FE
T Design variable, z € X C R¢
0, Parameters of model M, , 9, € ©, c RD:
M No. of models M;; i =1,..., M
E No. of target dimensions; f, : R¥tPi — RF
Yexp Measurement noise covariance
Dexp The set of experimental observations
Dgim,;  The set of simulated data for model M,

B. Design Criteria

We let A;; = f,(x,0;) — fj(axéj) and the covariance
3, = Yexp + iz(:c), where iz(a:) is the covariance of
model M;’s marginal predictive distribution due to model
parameter uncertainty.

For a single-response system, Box & Hill (1967) derive the
design criterion Dpgyy, later generalised to a multi-response
form by Prasad & Someswara Rao (1977)
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Buzzi-Ferraris et al. (1990) derive the design criterion Dgp
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designed such that if max, Dpr(x) < E, the largest differ-
ence between model predictions is too small compared to
the measurement noise variance to carry out model discrim-
ination, and design of experiments terminates.

Michalik et al. (2010) proceed from the Akaike informa-
tion criterion (AIC) as the model discrimination criterion to
derive a design criterion D aw from the Akaike weights
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yielding Daw = >, w;p(M;), where p(M,) is the prior
probability of model M.

C. Case study from Vanlier et al. (2014)

There are nine chemical components with concentrations C},

i =1,...,9. The system of ordinary differential equations
has the form
dCy/dt = —-g1 + g9,
dCy/dt = g1 — g2,
dCs/dt = —g3 + g4,
dCy/dt = g3 — g2 — g5 + g,
dCs/dt = —g9 + g0,
dCs/dt = —g5 + g5 + g0 — g0,
dCz/dt = g5 — gs,
dCg/dt = —g7 + gs,
dCo/dt = g7 — gs,

i.e. the stoichiometry is the same for all models M;. But
some of the fluxes g1, . . . , g19 differ for the different models.
For all models M; the following fluxes are identical:

g2 = 020, gr = 0;7Cs,
gs = 0;4Cy, gs = 0:5Co,
g5 = 0;5C4Cs, go = 0:10C5,
g6 = 0i6C7, gio = 0:4Cs.
For flux g; the models differ in the following way:
Mi: g1 =001, i€{l,3,4}
02,1C1
Mo : ==
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For flux g5 the models differ in the following way:
61,3C>C . _ 63,3C:C.
My gs = ‘911.394“2073 ’ Mz gs = 9933,395%93 ’
My g3 =023C2C3, My g3 = 644,39+2C83 .

We assume that the only measured states are the concentra-
tions C4 and (Y, because these are the states from which
Vanlier et al. (2014) collect their initial data. Similarly, we
use the initial concentrations Cy(t = 0) and Cy(t = 0) as
two of our design variables, the third design variable being
the time point ¢ at which to measure the concentrations.

Vanlier et al. (2014) look at times points in the range
t € [0,20], which we also adopt. We assume the initial
concentrations Cy(t = 0),Co(t = 0) € [0, 1] and fix all
other initial concentrations to

Ci(t=0)=Cs(t=0)=Cs5(t=0) = Cs(t =0) =1,
Ot = 0) = Gt = 0) = Cy(t = 0) = 0.1.

We assume the model parameter space 8 € [0, 1]'°. Simula-
tions show that sampling from this parameter space gives a
wide range of model realisations.

With reference to models M; and M5 being similar, we
see that the only difference between them is that the term
0;,9 + C7 divides g1 and g3 for M; and M, respectively.
If C'; is small compared to 6; o, then the models are nearly
identical.



