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Abstract

The recently-developed WaveNet architec-
ture (van den Oord et al., 2016a) is the current
state of the art in realistic speech synthesis,
consistently rated as more natural sounding for
many different languages than any previous
system. However, because WaveNet relies on
sequential generation of one audio sample at
a time, it is poorly suited to today’s massively
parallel computers, and therefore hard to deploy
in a real-time production setting. This paper
introduces Probability Density Distillation, a
new method for training a parallel feed-forward
network from a trained WaveNet with no
significant difference in quality. The resulting
system is capable of generating high-fidelity
speech samples at more than 20 times faster than
real-time, a 1000x speed up relative to the original
WaveNet, and capable of serving multiple English
and Japanese voices in a production setting.

1. Introduction
Recent successes of deep learning go beyond achieving
state-of-the-art results in research benchmarks, and push the
frontiers in some of the most challenging real world applica-
tions such as speech recognition (Hinton et al., 2012), image
recognition (Krizhevsky et al., 2012; Szegedy et al., 2015),
and machine translation (Wu et al., 2016). The recently pub-
lished WaveNet (van den Oord et al., 2016a) model achieves
state-of-the-art results in speech synthesis, and significantly
closes the gap with natural human speech. However, it is
not well suited for real world deployment due to its pro-
hibitive generation speed. In this paper, we present a new
algorithm for distilling WaveNet into a feed-forward neural
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network which can synthesise equally high quality speech
much more efficiently, and is deployed to millions of users.

WaveNet is one of a family of autoregressive deep genera-
tive models that have been applied with great success to data
as diverse as text (Mikolov et al., 2010), images (Larochelle
& Murray, 2011; Theis & Bethge, 2015; van den Oord
et al., 2016c;b), video (Kalchbrenner et al., 2016), hand-
writing (Graves, 2013) as well as human speech and music.
Modelling raw audio signals, as WaveNet does, represents
a particularly extreme form of autoregression, with up to
24,000 samples predicted per second. Operating at such a
high temporal resolution is not problematic during network
training, where the complete sequence of input samples is
already available and—thanks to the convolutional struc-
ture of the network—can be processed in parallel. When
generating samples, however, each input sample must be
drawn from the output distribution before it can be passed
in as input at the next time step, making parallel processing
impossible.

Inverse autoregressive flows (IAFs) (Kingma et al., 2016)
represent a kind of dual formulation of deep autoregressive
modelling, in which sampling can be performed in parallel,
while the inference procedure required for likelihood esti-
mation is sequential and slow. The goal of this paper is to
marry the best features of both models: the efficient training
of WaveNet and the efficient sampling of IAF networks.
The bridge between them is a new form of neural network
distillation (Hinton et al., 2015), which we refer to as Prob-
ability Density Distillation, where a trained WaveNet model
is used as a teacher for a feedforward IAF model.

The next section describes the original WaveNet model,
while Sections 3 and 4 define in detail the new, parallel
version of WaveNet and the distillation process used to
transfer knowledge between them. Section 5 then presents
experimental results showing no loss in perceived quality for
parallel versus original WaveNet, and continued superiority
over previous benchmarks. We also present timings for
sample generation, demonstrating more than 1000× speed-
up relative to original WaveNet.
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2. WaveNet
Autoregressive networks model the joint distribution of high-
dimensional data as a product of conditional distributions
using the probabilistic chain-rule:

p(x) =
∏
t

p(xt|x<t,θ),

where xt is the t-th variable of x and θ are the parameters
of the autoregressive model. The conditional distributions
are usually modelled with a neural network that receives
x<t as input and outputs a distribution over possible xt.

WaveNet (van den Oord et al., 2016a) is a convolutional
autoregressive model which produces all p(xt|x<t) in
one forward pass, by making use of causal—or masked—
convolutions (van den Oord et al., 2016c; Germain et al.,
2015). Every causal convolutional layer can process its in-
put in parallel, making these architectures very fast to train
compared to RNNs (van den Oord et al., 2016b), which can
only be updated sequentially. At generation time, however,
the waveform has to be synthesised in a sequential fashion
as xt must be sampled first in order to obtain x>t. Due
to this nature, real time (or faster) synthesis with a fully
autoregressive system is challenging. While sampling speed
is not a significant issue for offline generation, it is essential
for real-word applications. A version of WaveNet that gen-
erates in real-time has been developed (Paine et al., 2016),
but it required the use of a much smaller network, resulting
in severely degraded quality.

Raw audio data is typically very high-dimensional (e.g.
16,000 samples per second for 16kHz audio), and contains
complex, hierarchical structures spanning many thousands
of time steps, such as words in speech or melodies in mu-
sic. Modelling such long-term dependencies with standard
causal convolution layers would require a very deep net-
work to ensure a sufficiently broad receptive field. WaveNet
avoids this constraint by using dilated causal convolutions,
which allow the receptive field to grow exponentially with
depth.

WaveNet uses gated activation functions, together with a
simple mechanism introduced in (van den Oord et al., 2016c)
to condition on extra information such as class labels or
linguistic features:

hi = σ
(
Wg,i ∗ xi + V T

g,ic
)
� tanh

(
Wf,i ∗ xi + V T

f,ic
)
,

(1)
where ∗ denotes a convolution operator, and � denotes
an element-wise multiplication operator. σ(·) is a logistic
sigmoid function. c represents extra conditioning data. i is
the layer index. f and g denote filter and gate, respectively.
W and V are learnable weights. In cases where c encodes
spatial or sequential information (such as a sequence of
linguistic features), the matrix products (V T

f,ic and V T
g,ic)

are replaced by convolutions (Vf,i ∗ c and Vg,i ∗ c).

2.1. Higher Fidelity WaveNet

For this work we made two improvements to the basic
WaveNet model to enhance its audio quality for production
use. Unlike previous versions of WaveNet (van den Oord
et al., 2016a), where 8-bit (µ-law or PCM) audio was mod-
elled with a 256-way categorical distribution, we increased
the fidelity by modelling 16-bit audio. Since training a
65,536-way categorical distribution would be prohibitively
costly, we instead modelled the samples with the discretized
mixture of logistics distribution introduced in (Salimans
et al., 2017). We further improved fidelity by increasing the
audio sampling rate from 16kHz to 24kHz. This required a
WaveNet with a wider receptive field, which we achieved
by increasing the dilated convolution filter size from 2 to 3.
An alternative strategy would be to increase the number of
layers or add more dilation stages.

3. Parallel WaveNet
While the convolutional structure of WaveNet allows for
rapid parallel training, sample generation remains inherently
sequential and therefore slow, as it is for all autoregressive
models which use ancestral sampling. We therefore seek
an alternative architecture that will allow for rapid, parallel
generation.

Inverse-autoregressive flows (IAFs) (Kingma et al., 2016)
are stochastic generative models whose latent variables are
arranged so that all elements of a high dimensional observ-
able sample can be generated in parallel. IAFs are a special
type of normalising flow (Dinh et al., 2014; Rezende & Mo-
hamed, 2015; Dinh et al., 2016) which model a multivari-
ate distribution pX(x) as an explicit invertible non-linear
transformation x = f(z) of a simple tractable distribution
pZ(z) (such as an isotropic Gaussian distribution). Using
the change of variables formula the resulting distribution
can be written as:

log pX(x) = log pZ(z)− log
∣∣∣dx
dz

∣∣∣,
where

∣∣dx
dz

∣∣ is the determinant of the Jacobian of f . For
all normalizing flows the transformation f is chosen so
that it is invertible and its Jacobian determinant is easy to
compute. In the case of an IAF, the output is modelled by
xt = f(z≤t). Because of this strict dependency structure,
the transformation has a triangular Jacobian matrix which
makes the determinant equal to the product of the diagonal
entries:

log
∣∣∣dx
dz

∣∣∣ =∑
t

log
∂f(z≤t)

∂zt
.

To sample from an IAF, a random sample is first drawn from
z ∼ pZ(z) (we use the Logistic(0, I) distribution) which
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Figure 1. Visualisation of a WaveNet stack and its receptive field (van den Oord et al., 2016a). Starting from the inputs at the bottom, the
WaveNet architecture has increasing levels of dilation by a factor of 2, so that each output unit—shown at the top row of the figure— can
combine dependency from a large range of inputs.

is then transformed as follows:

xt = zt · s(z<t,θ) + µ(z<t,θ), (2)

where µ and s are outputs by the network. Therefore,
p(xt|z<t) follows a logistic distribution parameterised by
µt and st.

p(xt|z<t,θ) = L
(
xt
∣∣µ(z<t,θ), s(z<t,θ)

)
,

While µ(z<t,θ) and s(z<t,θ) can be any model, we use
the same convolutional network structure as the original
WaveNet (van den Oord et al., 2016a).

Autoregressive models (or flows (Papamakarios et al.,
2017)) model the data as p(xt|x<t) and IAFs as p(xt|z<t).
If these models share the same output distribution class (e.g.,
mixture of logistics or categorical) then mathematically they
should be able to model the same multivariate distributions.
However, in practice there are some differences (see Sec-
tion 3.1). To output the correct distribution for timestep xt,
the inverse autoregressive flow can implicitly infer what it
would have output at previous timesteps x1, . . . , xt−1 based
on the noise inputs z1, . . . , zt−1, which allows it to output
all xt in parallel given zt.

In general, normalising flows might require repeated itera-
tions to transform uncorrelated noise into structured sam-
ples, with the output generated by the flow at each iteration
passed in as input at the next (Rezende & Mohamed, 2015).
This is less crucial for IAFs, as the autoregressive latents can
induce significant structure in a single pass. Nonetheless we
observed that having up to 4 flow iterations did improve the
quality (the weights are not shared between the flows).

The first (bottom) network takes as input the white uncon-
ditional logistic noise: z0. Thereafter the output of each
network i is passed as input to the next network i+1 , which
again transforms it.

zi = zi−1 · si + µi (3)

Because we use the same ordering in all the flows, the final
distribution p(xt|z<t,θ) is still logistic with location µtot
and scale stot:

µtot =

N∑
i

µi

 N∏
j>i

sj

 (4)

stot =

N∏
i

si (5)

where N is the number of flows and the dependencies on t
and z are omitted for simplicity.

3.1. Autoregressive Models and Inverse-autoregressive
Flows

Although inverse-autoregressive flows (IAFs) and autore-
gressive models can in principle model the same distri-
butions (Chen et al., 2016), they have different inductive
biases and may vary greatly in their capacity to model
certain processes. As a simple example consider the Fi-
bonacci series (1, 1, 2, 3, 5, 8, 13, . . . ). For an autoregres-
sive model this is easy to model with a receptive field of
two: f(k) = f(k − 1) + f(k − 2). For an IAF, however,
the receptive field needs to be at least size k to correctly
model k terms, leading to a larger model that is less able to
generalise.

4. Probability Density Distillation
Training the parallel WaveNet model directly with maxi-
mum likelihood would be impractical, as the inference pro-
cedure required to estimate the log-likelihoods is sequential
and slow1. We therefore introduce a novel form of neural
network distillation (Hinton et al., 2015) that uses an al-

1In this sense the two architectures are dual to one another:
slow training and fast generation with parallel WaveNet versus fast
training and slow generation with WaveNet.
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ready trained WaveNet as a ‘teacher’ from which a parallel
WaveNet ‘student’ can efficiently learn. To stress the fact
that we are dealing with normalised density models, we
refer to this process as Probability Density Distillation (in
contrast to Probability Density Estimation). The basic idea
is for the student to attempt to match the probability of its
own samples under the distribution learned by the teacher.

Given a parallel WaveNet student pS(x) and WaveNet
teacher pT (x) which has been trained on a dataset of au-
dio, we define the Probability Density Distillation loss as
follows:

DKL (PS ||PT ) = H(PS , PT )−H(PS) (6)

where DKL is the Kullback–Leibler divergence, and
H(PS , PT ) is the cross-entropy between the student PS

and teacher PT , and H(PS) is the entropy of the student
distribution. When the KL divergence becomes zero, the
student distribution has fully recovered the teacher’s dis-
tribution. The entropy term (which is not present in previ-
ous distillation objectives (Hinton et al., 2015)) is vital in
that it prevents the student’s distribution from collapsing to
the mode of the teacher (which, counter-intuitively, does
not yield a good sample—see Section 4.1). Crucially, all
the operations required to estimate derivatives for this loss
(sampling from pS(x), evaluating pT (x), and evaluating
H(PS)) can be performed efficiently, as we will see.

It is worth noting the parallels to Generative Adversarial
Networks (GANs (Goodfellow et al., 2014)), with the stu-
dent playing the role of generator, and the teacher playing
the role of discriminator. As opposed to GANs, however, the
student is not attempting to fool the teacher in an adversarial
manner; rather it co-operates by attempting to match the
teacher’s probabilities. Furthermore the teacher is held con-
stant, rather than being trained in tandem with the student,
and both models yield tractable normalised distributions.

Recently (Gu et al., 2017) has presented a related idea to
train feed-forward networks for neural machine translation.
Their method is based on conditioning the feedforward de-
coder on fertility values, which require supervision by an
external alignment system. The training procedure also
involves the creation of an additional dataset as well as fine-
tuning. During inference, their model relies on re-scoring
by an auto-regressive model.

First, observe that the entropy term H(PS) in Equation 6
can be rewritten as follows:

H(PS) = E
z∼L(0,1)

[
T∑

t=1

− ln pS(xt|z<t)

]
(7)

= E
z∼L(0,1)

[
T∑

t=1

ln s(z<t,θ)

]
+ 2T, (8)

wherex = g(z) and zt are independent samples drawn from
the logistic distribution. The second equality in Equation 8
follows because the entropy of a logistic distribution L(µ, s)
is ln s + 2. We can therefore compute this term without
having to explicitly generate x.

The cross-entropy term H(PS , PT ) however explicitly de-
pends on x = g(z), and therefore requires sampling from
the student to estimate.

H(PS , PT ) =

∫
x

pS(x) ln pT (x) (9)

=

T∑
t=1

∫
x

pS(x) ln pT (xt|x<t) (10)

=

T∑
t=1

∫
x

pS(x<t)pS(x≥t|x<t) ln pT (xt|x<t) (11)

=

T∑
t=1

E
pS(x<t)

[ ∫
xt

pS(xt|x<t) ln pT (xt|x<t) (12)∫
x>t

pS(x>t|x≤t)

]
(13)

=

T∑
t=1

E
pS(x<t)

H
(
pS(xt|x<t), pT (xt|x<t)

)
. (14)

=

T∑
t=1

E
z∼L

x=g(z)

H
(
pS(xt|z<t), pT (xt|x<t)

)
. (15)

In Equation 11 we apply the chain rule to mathematicaly
decompose PS(x) into conditional distributions but they are
only explicitly constructed with a neural network to depend
on z as in Equation 15.

For every sample x we draw from the student pS we can
compute all pT (xt|x<t) in parallel with the teacher and
then evaluate H(pS(xt|z<t), pT (xt|x<t)) very efficiently
by drawing multiple different samples xt from pS(xt|z<t)
for each timestep. This unbiased estimator has a much
lower variance than naively evaluating the sample under the
teacher with Equation 9.

We parameterise the teacher’s output distribution
pT (xt|x<t) as a mixture of logistics distribution (Salimans
et al., 2017), which allows the loss term ln pT (xt|x<t)
to be differentiable with respect to both xt and x<t. A
categorical distribution, on the other hand, would only be
differentiable w.r.t. x<t.

4.1. Argument against MAP estimation

In this section we make an argument against maximum a
posteriori (MAP) estimation for distillation; similar argu-
ments have been made by previous authors in a different
setting (Sønderby et al., 2016).
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Figure 2. Overview of Probability Density Distillation. A pre-trained WaveNet teacher is used to score the samples x output by the
student. The student is trained to minimise the KL-divergence between its distribution and that of the teacher by maximising the
log-likelihood of its samples under the teacher and maximising its own entropy at the same time.

The distillation loss defined in Section 4 minimises the
KL divergence between the teacher and generator. We
could instead have minimised only the cross-entropy be-
tween the teacher and generator (the standard distillation
loss term (Hinton et al., 2015)), so that the samples by the
generator are as likely as possible according to the teacher.
Doing so would give rise to MAP estimation. Counter-
intuitively, audio samples obtained through MAP estimation
do not sound as good as typical examples from the teacher:
in fact they are almost completely silent, even if using con-
ditional information such as linguistic features. This effect
is not due to adversarial behaviour on the part of the teacher,
but rather is a fundamental property of the data distribution
which the teacher has approximated.

As an example consider the simple case where we have
audio from a white random noise source: the distribution
at every timestep is N (0, 1), regardless of the samples at
previous timesteps. White noise has a very specific and per-
ceptually recognizable sound: a continual hiss. The MAP
estimate of this data distribution, and thus of any genera-
tive model that matches it well, recovers the distribution
mode, which is 0 at every timestep: i.e. complete silence.
More generally, any highly stochastic process is liable to
have a ‘noiseless’ and therefore atypical mode. For the KL
divergence the optimum is to recover the full teacher distri-
bution. This is clearly different from any random sample
from the distribution. Furthermore, if one changes the rep-
resentation of the data (e.g., by nonlinearly pre-processing
the audio signal), then the MAP estimate changes, unlike
the KL-divergence in Equation 6, which is invariant to the
coordinate system.

4.2. Additional loss terms

Training with Probability Density Distillation alone might
not sufficiently constrain the student to generate high qual-
ity audio streams. Therefore, we also introduce additional
loss functions to guide the student distribution towards the
desired output space.

POWER LOSS

The first additional loss we propose is the power loss, which
ensures that the power in different frequency bands of the
speech are on average used as much as in human speech.
The power loss helps to avoid the student from collapsing
to a high-entropy WaveNet-mode, such as whispering.

The power-loss is defined as:

||φ(g(z, c))− φ(y)||2, (16)

where (y, c) is an example with conditioning from the train-
ing set, φ(x) = |STFT(x)|2 and STFT stands for the Short-
Term Fourier Transform. We found that φ(x) can be aver-
aged over time before taking the Euclidean distance with
little difference in effect, which means it is the average
power for various frequencies that is important.

PERCEPTUAL LOSS

In the power loss formulation given in equation 16, one can
also use a neural network instead of the STFT to conserve a
perceptual property of the signal rather than total energy. In
our case we have used a WaveNet-like classifier trained to
predict the phones from raw audio. Because such a classifier
naturally extracts high-level features that are relevant for
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Method Subjective 5-scale MOS

16kHz, 8-bit µ-law, 25h data

LSTM-RNN parametric1 3.67 ± 0.098
HMM-driven concatenative1 3.86 ± 0.137
WaveNet1 4.21 ± 0.081

24kHz, 16-bit lin. PCM, 65h data

HMM-driven concatenative 4.19 ± 0.097
Autoregressive WaveNet 4.41 ± 0.069
Distilled WaveNet 4.41 ± 0.078

Table 1. Comparison of WaveNet distillation with the autoregres-
sive teacher WaveNet, unit-selection (concatenative), and previous
results (1) from (van den Oord et al., 2016a). MOS stands for
Mean Opinion Score.

recognising the phones, this loss term penalises bad pro-
nunciations. A similar principle has been used in computer
vision for artistic style transfer (Gatys et al., 2015), or to
get better perceptual reconstruction losses, e.g., in super-
resolution (Johnson et al., 2016).

We have experimented with two different ways of using
the perceptual loss, the feature reconstruction loss (the Eu-
clidean distance between feature maps in the classifier) and
the style loss (the Euclidean distance between the Gram
matrices (Johnson et al., 2016)). The latter produced better
results in our experiments.

CONTRASTIVE LOSS

Finally, we also introduce a contrastive distillation loss as
follows:

DKL

(
PS(c1)

∣∣∣∣∣∣PT (c1)
)
−γDKL

(
PS(c1)

∣∣∣∣∣∣PT c2)
)
, (17)

which minimises the KL-divergence between the teacher
and student when both are conditioned on the same informa-
tion c1 (e.g., linguistic features, speaker ID, . . . ), but also
maximises it for different conditioning pairs c1 6= c2. In
order to implement this loss, we use the output of the stu-
dent x = g(z, c1) and evaluate the waveform twice under
the teacher: once with the same conditioning PT (x|c1)
and once with a randomly sampled conditioning input:
PT (x|c2). The weight for the contrastive term γ was set
to 0.3 in our experiments. The contrastive loss penalises
waveforms that have high likelihood regardless of the con-
ditioning vector.

5. Experiments
In all our experiments we used text-to-speech models that
were conditioned on linguistic features (similar to (van den
Oord et al., 2016a)), providing phonetic and duration in-
formation to the network. We also conditioned the models

on pitch information (logarithm of f0, the fundamental fre-
quency) predicted by a different model. We never used
ground-truth information (such as pitch or duration) ex-
tracted from human speech for generating audio samples
and the test sentences were not present (or similar to those)
in the training set.

The teacher WaveNet network was trained for 1,000,000
steps with the ADAM optimiser (Kingma & Ba, 2014) with
a minibatch size of 32 audio clips, each containing 7,680
timesteps (roughly 320ms). Remarkably, a relatively short
snippet of time is sufficient to train the parallel WaveNet to
produce long term coherent waveforms. The learning rate
was held constant at 2×10−4, and Polyak averaging (Polyak
& Juditsky, 1992) was applied over the parameters. The
model consists of 30 layers, grouped into 3 dilated residual
block stacks of 10 layers. In every stack, the dilation rate
increases by a factor of 2 in every layer, starting with rate 1
(no dilation) and reaching the maximum dilation of 512 in
the last layer. The filter size of causal dilated convolutions
is 3. The number of hidden units in the gating layers is
512 (split into two groups of 256 for the two parts of the
activation function (1)). The number of hidden units in the
residual connection is 512, and in the skip connection and
the 1× 1 convolutions before the output layer is also 256.
We used 10 mixture components for the mixture of logistics
output distribution.

The student network consisted of the same WaveNet ar-
chitecture layout, except with different inputs and outputs
and no skip connections. The student was also trained for
1,000,000 steps with the same optimisation settings. The
student typically consisted of 4 flows with 10, 10, 10, 30
layers respectively, with 64 hidden units for the residual and
gating layers.

AUDIO GENERATION SPEED

We have benchmarked the sampling speed of autoregres-
sive and distilled WaveNets on an NVIDIA P100 GPU.
Both models were implemented in Tensorflow (Abadi et al.,
2016) and compiled with XLA. The hidden layer activa-
tions from previous timesteps in the autoregressive model
were cached with circular buffers (Paine et al., 2016). The
resulting sampling speed with this implementation is 172
timesteps/second for a minibatch of size 1. The distilled
model, which is more parallelizable, achieves over 500,000
timesteps/second with same batch size of 1, resulting in
three orders of magnitude speed-up.

AUDIO FIDELITY

In our first set of experiments, we looked at the quality
of WaveNet distillation compared to the autoregressive
WaveNet teacher and other baselines on data from a profes-
sional female speaker (van den Oord et al., 2016a). Table
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Parametric Concatenative Distilled WaveNet

English speaker 1 (female - 65h data) 3.88 4.19 4.41
English speaker 2 (male - 21h data) 3.96 4.09 4.34
English speaker 3 (male - 10h data) 3.77 3.65 4.47
English speaker 4 (female - 9h data) 3.42 3.40 3.97
Japanese speaker (female - 28h data) 4.07 3.47 4.23

Table 2. Comparison of MOS scores on English and Japanese with multi-speaker distilled WaveNets. Note that some speakers sounded
less appealing to people and always get lower MOS, however distilled parallel WaveNet always achieved significantly better results.

1 gives a comparison of autoregressive WaveNet, distilled
WaveNet and current production systems in terms of mean
opinion score (MOS). There is no difference between MOS
scores of the distilled WaveNet (4.41±0.08) and autoregres-
sive WaveNet (4.41±0.07), and both are significantly better
than the concatenative unit-selection baseline (4.19± 0.1).

It is also important to note that the difference in MOS scores
of our WaveNet baseline result 4.41 compared to the previ-
ous reported result 4.21 (van den Oord et al., 2016a) is due
to the improvement in audio fidelity as explained in Section
2.1: modelling a sample rate of 24kHz instead of 16kHz
and bit-depth of 16-bit PCM instead of 8-bit µ-law.

MULTI-SPEAKER GENERATION

By conditioning on the speaker-ids we can construct a single
parallel WaveNet model that is able to generate multiple
speakers’ voices and their accents. These networks require
slightly more capacity than single speaker models and thus
had 30 layers in each flow. In Table 2 we show a comparison
of such a distilled parallel WaveNet model with two main
baselines: a parametric and a concatenative system. In the
comparison, we use a number of English speakers from a
single model (one of them, English speaker 1, is the same
speaker as in Table 1) and a Japanese speaker from another
model. For some speakers, the concatenative system gets
better results than the parametric system, while for other
speakers it is the opposite. The parallel WaveNet model, on
the other hand, significantly outperforms both baselines for
all the speakers.

ABLATION STUDIES

To analyse the importance of the loss functions introduced
in Section 4.2 we show how the quality of the distilled
WaveNet changes with different loss functions in Table 3
(top). We found that MOS scores of these models tend
to be very similar to each other (and similar to the result
in Table 1). Therefore, we report subjective preference
scores from a paired comparison test (“A/B test”), which
we found to be more reliable for noticing small (sometimes
qualitative) differences. In these tests, the subjects were

Losses used Win-Lose-Neutral

KL + Power 60% - 15% - 25%
KL + Power + Percept 66% - 10% - 24%
KL + Power + Percept + Contrast ∗ 65% - 9% - 26%

Table 3. Performance with respect to different combinations of loss
terms. We report preference comparison scores since their mean
opinion scores tend to be very close and inconclusive. Last row
(combination of KL + Power + Perceptual + Contrastive losses)is
the default model used.

asked to listen to a pair of samples and choose which they
preferred, though they could choose “neutral” if they did
not have any preference.

As mentioned before, the KL loss alone does not constrain
the distillation process enough to obtain natural sound-
ing speech (e.g., low-volume audio suffices for the KL),
therefore we do not report preference scores with only this
term. The KL loss (section 4) combined with power-loss
is enough to generate quite natural speech. Adding the
perceptual loss gives a small but noticeable improvement.
Adding the contrastive loss does not improve the prefer-
ence scores any further, but makes the generated speech less
noisy, which is something most raters do not pay attention
to, but is important for production quality speech.

As explained in Section 3, we use multiple inverse-
autoregressive flows in the parallel WaveNet architecture:
A model with a single flow gets a MOS score of 4.21, com-
pared to a MOS score of 4.41 for models with multiple
flows.

6. Conclusion
In this paper we have introduced a novel method for high-
fidelity speech synthesis based on WaveNet (van den Oord
et al., 2016a) using Probability Density Distillation. The pro-
posed model achieved several orders of magnitude speed-up
compared to the original WaveNet with no significant differ-
ence in quality. Moreover, we have successfully transferred
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this algorithm to new languages and multiple speakers.

As a result, we have been able to run a real-time speech
synthesis system, opening the door to many exciting future
developments thanks to the flexibility of deep learning mod-
els. We believe that the same method presented here can
be used in many different domains to achieve similar speed
improvements whilst maintaining output accuracy.
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