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1 Reformulating of fitting criterion

By expanding the objective function in (11), we obtain the equivalent form

ỹ>K−1θ ỹ + nθ0 +

p∑
j=1

θj‖[Φ]j‖2︸ ︷︷ ︸
=tr{Kθ}

(16)

where ỹ = y − 1η when u(s, t) ≡ 1. Next we define an auxiliary variable α
that satisfies

α ≥ ỹ>K−1ỹ

or equivalently [
α ỹ>

ỹ K

]
� 0 (17)

Using the auxiliary variable and the definition of K, we can therefore express
the objective function as:

min
α,θ

α+ nθ0 +

p∑
j=1

θj‖[Φ]j‖2, (18)

where θj are nonnegative and α satisfies the constraint. The minimizing θ̂ is the
learned model parameter. This problem is identified as a convex, semidefinite
program, cf. [1]. We may also add the following normalization constraint,

tr{K̃−Kθ} = 0,

to match the normalized covariance matrix. This merely adds a linear constraint
to problem (18) with a constrained minimizer denoted θ?. We now prove that

θ̂ ∝ θ?.
Begin by defining a constant κ > 0, such that tr{K̃K−1(θ?)} = κ2tr{K(θ?)}

at the minimum of (18). We show that κ = 1 is the only possible value and so
both terms in (18) equal each other at the minimum.

Let θ̃ = κθ?, and observe that the cost (18) is then bounded by

(κ2 + 1)tr{K(θ?)} ≤ tr{K̃K−1(θ̃)}+ tr{K(θ̃)}

= κ−1tr{K̃K−1(θ̃)}+ κtr{K(θ̃)}

= 2κtr{K(θ̃)}.

Thus κ must satisfy κ2 + 1 ≤ 2κ, or (κ − 1)2 ≤ 0. Therefore κ = 1 is the only
solution and both terms must be equal at the minimum. We can thus re-write
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the minimization of (18) as the following problem

min α

subject to tr{K̃K−1θ } = α, tr{Kθ} = α,
(19)

with minimizer θ̂ and where α > 0 is an auxiliary variable.
Next, consider an equivalent problem to (19) obtained by re-defining the vari-

ables as θ̃ = ρα−1θ. Then tr{K̃K−1(θ)} = ρα−1tr{K̃K−1(θ̃)} and tr{K(θ)} =
αρ−1tr{K(θ̃)}, so that the equivalent problem becomes

min β

subject to tr{K̃K−1} = β, tr{K} = ρ,
(20)

where β = α2ρ−1. The minimizer of the equivalent problem (20) is therefore
θ̃ ∝ θ?. Problem (20) is however identical to the constrained problem

min tr{K̃K−1}
subject to tr{K} = ρ,

(21)

whose minimizer is θ̃ = θ̂ when ρ = tr{K̃}, which follows from expanding the
cost in (11) and the normalization constraint.

Thus we proved that θ̂ ∝ θ? and since the predictor is invariant to uniform
scaling of θ, that is, ŷθ̂(s, t) = ŷθ?(s, t), we see that the normalization constraint
is not relevant for the result.

For further details, see [4].

2 Equivalent form of the predictor

Consider the following augmented problem

min
η, v, θ

θ−10 ‖y − 1η −Φv‖22 + ‖v‖2Θ−1 + tr{Kθ}. (22)

Solving for η and v yields the minimizer

w? =

[
η?

v?

]
=

[
(1>K−11)†1>K−1y
ΘΦ>K−1(y − 1η?)

]
. (23)

It can be shown that by inserting the minimizing v back into (22), we obtain a
concentrated cost function which is equal to that in (18). Thus we obtain the

sought model parameter θ̂ from the augmented problem.
Moreover, we can identify α>(s, t)w∗ = ŷθ(s, t). Thus we obtain both θ?

and the weights w? from the augmented problem. Using these facts, we may
alternatively solve for θ first. The second and third terms in (22) can be written
as

‖v‖2Θ−1 =

p∑
k=1

1

θk
w2

1+k
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and

tr{Kθ} =

p∑
k=1

‖[Φ]j‖22θk + nθ0,

respectively. Then the minimizing hyperparameters θ in (22) can be expressed
in closed-form:

θ̂?k =

{
‖y − [1 Φ]w‖2/

√
n, k = 0,

|w1+k|/‖[Φ]1+k‖2, k = 1, . . . , p.

Inserting the expression back in to (22) yields a concentrated cost function√
‖y − [1 Φ]w‖22 +

p∑
j=1

1√
n
‖[Φ]j‖2|wj+1|

which, after dividing by n−1/2, equals that in (14). Thus using minimizing
weights w∗, after concentrating the augmented problem with respect to θ, yields
α>(s, t)w∗ = ŷθ̂(s, t).

3 Comparison with Gaussian process using spec-
tral mixture kernel

In section 5 (Synthetic data) of the paper, the predictive performance of the
proposed method was compared with Gpr using the Matérn ARD covariance
function. Here, we show results of comparison with a more expressive covariance
function-the spectral mixture kernel used in [3] for the varying seasonalities
across space example of section 5.2.

Data generation, proportion of training data and other parameters (number
of basis, support) were same as described in section 5.2. The spectral mixture
kernel implemented in [2] was used with Q = 4 number of spectral components
per dimension. As in section 5.2, a contiguous space-time region was selected as
a test region to emulate scenarios where data can be missing over large spatial
region for some time. The test region is marked by black-dashed box in the
figure.

Figure 1b and 1c show the Mean Square Error(MSE) of our proposed method
and Gpr respectively. Although compared to Gpr with Matérn ARD (Figure
4c in the paper) the MSE in figure 1c is smaller outside the test region but inside
the test region the MSE is still higher compared to the MSE of the proposed
method.

3



0 5 10 15

0

1

2

3

4

5

6

7

8

9

10

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

0 5 10 15

0

1

2

3

4

5

6

7

8

9

10

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

0 5 10 15

0

1

2

3

4

5

6

7

8

9

10

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)

Figure 1: (a) Realization of the process y(s, t) defined in (15) with varying
periods across space. (b) MSE of the proposed method which is able to learn
different periodic temporal patterns across space. The red dots denote training
points. The black dashed box marks a contiguous test region. (c) MSE of
Gpr using the spectral mixture kernel with Q = 4 spectral components per
dimension.
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