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Abstract
We address the problem of predicting spatio-
temporal processes with temporal patterns that
vary across spatial regions, when data is ob-
tained as a stream. That is, when the training
dataset is augmented sequentially. Specifically,
we develop a localized spatio-temporal covari-
ance model of the process that can capture spa-
tially varying temporal periodicities in the data.
We then apply a covariance-fitting methodology
to learn the model parameters which yields a pre-
dictor that can be updated sequentially with each
new data point. The proposed method is eval-
uated using both synthetic and real climate data
which demonstrate its ability to accurately pre-
dict data missing in spatial regions over time.

1. Introduction
Many real-world processes of interest, ranging from cli-
mate variables to brain signals, are spatio-temporal in na-
ture, cf. Cressie & Wikle (2011). That is, they can be de-
scribed as a random quantity that varies over some fixed
spatial and temporal domain. Suppose we obtain n training
points from a real-valued spatio-temporal process,

Dn =
{

(s1, t1, y1), . . . , (sn, tn, yn)
}
,

where yi denotes the quantity of interest observed at the
ith training point, with spatial coordinate si and time ti.
For notational convenience, let (s, t, y) denote an unob-
served test point in space-time where y is unknown. Then
a common goal is to predict y in unobserved space-time re-
gions (s, t) using Dn. Specifically, certain spatial regions
may have limited data coverage over extended periods of
time, as illustrated in Figure 1. In real-world applications,
Dn need not be gathered in a single batch but obtained in
parts over time from various sensors, stations, satellites,
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Figure 1. Example of training points (dots) in Dn over a bounded
space-time domain S × T with one spatial dimension. Note that
the sampling pattern may be irregular and that it is not possible to
provide complete spatial coverage at all times. A typical problem
is to predict the process in unobserved regions (shaded).

etc. That is, the dataset is augmented sequentially, i.e.,
n = 1, 2, . . . , N . In these streaming data scenarios, we
are interested in continuous refinement of the prediction of
y at (s, t) as new data is augmented into Dn+1.

The unknown data-generating process is often assumed to
belong to a class of data models indexed by a parameter
θ. Each model θ in the class yields a predictor ŷθ(s, t)
of y at test point (s, t). A specific set of model param-
eters θ̂ is learned using Dn. Examples of commonly
used model classes include Gaussian Processes (GP) (Ras-
mussen & Williams, 2006), spatio-temporal random effects
models (Cressie et al., 2010), dynamic factor analysis mod-
els (Lopes et al., 2008; Fox & Dunson, 2015), spatial ran-
dom effect models extended to incorporate time as an addi-
tional dimension (Zammit-Mangion & Cressie, 2017) (cf.
related work section below). For many spatio-temporal ap-
plications, the model class should be capable of expressing
temporal patterns that change across different spatial re-
gions. Moreover, for streaming data scenarios, the learned
parameter θ̂ and the resulting predictor ŷθ̂(s, t) should be
updated in a sequential manner.

Our contribution in this paper is two-fold:

• we develop a non-stationary, localized covariance
model capable of capturing temporal patterns that
change across space, as illustrated in Figure 2 below.

• we show how to sequentially learn the covariance
model parameters and update the predictor from
streaming spatio-temporal data, with a runtime that is
linear in n.
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In Section 2, we relate our work to already existing ap-
proaches and introduce a commonly used model class in
Section 3. In Section 4 we develop a localized spatio-
temporal covariance model to be used in conjunction with a
covariance-fitting learning approach. Finally, the proposed
method is evaluated using synthetic and real climate data in
Sections 5 and 6, respectively.

Notation: col{s1, s2} stacks both elements into a single
column vector. ⊗, δ(·), ‖ · ‖W and † denote the Kronecker
product, Kronecker delta function, weighted `2-norm and
Moore-Penrose inverse, respectively. Finally, the sample
mean is denoted by Ê[si] = 1

n

∑n
i=1 si.

2. Related work
A popular model class is the family of GPs, specified by
a mean and covariance function (Rasmussen & Williams,
2006). This approach is computationally prohibitive in
its basic form since both learning the model parameters
θ and implementing the predictor ŷθ(s, t) requires a run-
time on the order of O(N3), where N is typically large
in spatio-temporal applications. The predictor implemen-
tation can be approximated using various techniques. One
popular approach is to approximate the training data us-
ing m � N inducing points which reduces the runtime
toO(m2N) (Quiñonero-Candela & Rasmussen, 2005; Bijl
et al., 2015). Moreover, by assuming Kronecker covari-
ance functions it is possible to obtain even shorter runtimes
by utilizing the Kronecker structure of the GP covariance
matrix (Saatçi, 2012). If the model class is restricted to sta-
tionary covariance functions, the runtimes can be reduced
further, cf. (Saatçi, 2012; Wilson et al., 2014). In the space-
time domain, such models are also equivalent to dynamical
system models so that ŷθ(s, t) can be approximated using
a basis expansion and implemented by a Kalman smoother
(Särkkä et al., 2013). In the above cases, however, θ and
ŷθ(s, t) are not updated jointly when obtaining streaming
data.

The restriction to stationary covariance models is, more-
over, not always adequate to capture temporal patterns that
differ across spatial regions. This modeling limitation is
addressed by Cressie et al. (2010), where a discrete-time
model class is partially specified using a spatial basis func-
tion expansion with time-varying expansion coefficients.
These are modeled as a first-order vector auto-regressive
process. The coefficients thus determine a spatial pattern
of the process that evolves at each discrete time-instant.
This model class can capture patterns localized to specific
regions in space, unlike stationary covariance models. The
predictor ŷθ(s, t) can be viewed as a spatial fixed-rank krig-
ing method that is updated via a Kalman filter and thus
applicable to streaming data (cf. Cressie & Johannesson
(2008)). The model parameter θ, however, is learned us-

ing a moment-fitting approach and operates on batch rather
than streaming datasets. Other work using dynamic fac-
tor analysis models (Lopes et al., 2008; Fox & Dunson,
2015) similarly allow for time-varying coefficients but with
more flexible data-adaptive basis. However, they are imple-
mented using Markov Chain Monte Carlo methods which
are computationally prohibitive for the scenarios consid-
ered herein.

Moreover, a first-order auto-regressive structure may not
accurately capture more complex temporal patterns ob-
served in real spatio-temporal processes. The approach
taken by Zammit-Mangion & Cressie (2017) circumvents
this limitation using basis functions that are localized in
both space and time. Time locality cannot, however, cap-
ture periodic patterns or trends necessary for interpolation
over longer periods. The model parameters are learned us-
ing an expectation-maximization method which is not read-
ily applicable to streaming data scenarios.

3. Spatio-temporal model class
We begin by defining the data vector y =
col{y1, y2, . . . , yn} obtained from Dn. For the test
point (s, t), we consider the unbiased predictor of y as a
linear combination of the data (Stein, 2012):

ŷ(s, t) = λ>(s, t)y, (1)

where λ>(s, t) is a vector of n weights which naturally
depend on the test point (s, t). The weight vector is defined
as the minimizer of the conditional mean square prediction
error. That is,

λ(s, t) , arg min
λ

E
[

(y − λ>y)2
∣∣ s, t

]
. (2)

Since the conditional error is determined by the un-
known distribution p(y,y|s, t, s1, t1, . . . , sn, tn), we spec-
ify a class of data-generating models, using only the mean
and covariance (Cressie & Wikle, 2011):{

E[y] = u>(s, t)η,

Cov[y, y′] = φ>(s, t)Θφ(s′, t′) + θ0δ(s, s
′)δ(t, t′).

(3)
The function u(s, t) captures the expected trend of the en-
tire spatio-temporal process y, and when there is no such
general trend we set u(s, t) ≡ 1. The function φ(s, t) cap-
tures the smoothness of the process in space-time and is of
dimension p × 1. The parameter matrix Θ is diagonal and
specifies the relevance of each dimension of φ(s, t) similar
to the way in which automatic relevance determination is
sometimes used within the GP (Tipping, 2001; Faul & Tip-
ping, 2002). Taken together, (3) specifies a class of models,
each of which is indexed by the parameters (η,Θ, θ0). The
p+1 covariance parameters (Θ, θ0), which we collectively
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denote by θ = col{θ0, θ1, . . . , θp} for notational conve-
nience, determine the spatio-temporal covariance structure
Covθ[y, y

′] which depends on the function φ(s, t). In the
next section, we will specify φ(s, t) to develop a suitable
covariance model to capture local spatial and periodic tem-
poral patterns.

For a given model in the class, the optimal weights (2) are
given in closed form (Stein, 2012) as

λθ(s, t) = K−11(1>K−11)† + K−1Π⊥ΦΘφ(s, t),

where the subindex highlights the model parameter depen-
dence. The quantities in λθ(s, t) are determined by the re-
gressor matrix

Φ =
[
φ(s1, t1) . . . φ(sn, tn)

]>
and the following covariance matrix

Kθ = Cov[y,y] = ΦΘΦ> + θ0I � 0, (5)

with Π⊥ = I− 1(1>K−11)†1K−1 being an oblique pro-
jector onto span(1)⊥.

The optimal weights are invariant to the mean parameters
∼ η and to uniform scaling of the p + 1 covariance pa-
rameters θ. By learning θ up to an arbitrary scale factor,
the predictor (1) is given by the linear combiner weights
λθ(s, t). If we assume that the process is Gaussian, the
model can be learned using the maximum likelihood frame-
work. However, this yields neither a convex problem nor
one that is readily solved in a sequential manner as Dn
is augmented sequentially. In the next section, we apply
a convex covariance-fitting framework to learn the spatio-
temporal model using streaming data.

4. Proposed method
Below we specify the function φ(s, t) in (3) such that the
spatio-temporal covariance structure Covθ[y, y

′] can ex-
press local spatial patterns with varying temporal period-
icities as illustrated in Figure 2. Subsequently, we apply a
covariance-fitting methodology for learning the model pa-
rameters such that the predictor (1) can be updated sequen-
tially for each new observation (Zachariah et al., 2017).

4.1. Local-periodic space-time basis

The function φ(s, t) varies over a space-time domain S ×
T ⊂ Rd+1 and its elements can be thought of as basis
functions. It is formulated as a Kronecker product of a time
and space bases,

φ(s, t) = ψ(t)⊗ϕ(s), (6)

for compactness.

We begin by specifying the spatial function as

ϕ(s) = ϕ1(s1)⊗ · · · ⊗ϕd(sd), (7)

where the basis vector for the ith spatial dimension,

ϕi(si) = col{ ϕi,1(si), · · · , ϕi,Ns(si) } (8)

is composed of Ns localized components with a finite sup-
port L. For notational simplicity, we consider Ns and L
to be same for each dimension i. Based on their compu-
tational attractiveness and local approximation properties
we use a cubic spline basis (Rasmussen & Williams, 2006;
Wasserman, 2006). Then (8) is given by (4), where c de-
termines the location of a component. Figure 3a illustrates
the components as a function of its spatial dimension. We
place the centers c of each component uniformly across the
spatial dimensions.

Using ϕ(s) allows for covariance structures that are local-
ized in space in such a way that neighbouring points have a
nonnegative correlation and points far from each other have
no correlation as determined by the support size L. Hence
for a given L, the resulting covariance structure can cap-
ture local spatial patterns of a certain scale and can easily
be extended to cover multiple scales by replacing (6) with
for example

φ(s, t) = ψ(t)⊗
[
ϕL1

(s)
ϕL2

(s)

]
that accommodates two different support sizes L1 and L2.
The number of basis functions Ns is chosen such that adja-
cent localized components ϕi(s) have overlapping support
to cater for points in between them. This requirement is

ϕ(s) =



1
6f(s)3 (c−2)L

4 ≤ s < (c−1)L
4

−1
2 f(s)3 + 2f(s)2 − 2f(s) + 2

3
(c−1)L

4 ≤ s < Lc
4

1
2f(s)3 − 4f(s)2 + 10f(s)− 22

3
Lc
4 ≤ s <

(c+1)L
4

−1
6 f(s)3 + 2f(s)2 − 8f(s) + 32

3
(c+1)L

4 ≤ s ≤ (c+2)L
4

0 otherwise

where f(s) =
4s

L
−c+2

(4)
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Figure 2. Example illustrations of spatio-temporal covariance structures that are possible using the proposed function φ(s, t). Contour
plots of Covθ[y, y′] for y at a test point (s, t) (red cross) and y′ at all other coordinates (s′, t′) in the space-time domain. For sake of
illustration, the spatial dimension is d = 1. (a) Test point (s, t) = (9, 4). The test point is positively correlated with only neighbouring
points in space and has a constant covariance with points across time. (b) Test point (s, t) = (4.5, 0). The covariance is local in space
as in (a) but across time the covariance decays slowly. (c) Test point (s, t) = (2, 7). The covariance is periodic.

0

10

0.2

5

0.4i(s
)

4

0.6

s
2

5 3

s
1

0.8

2
1

0 0

(a)

0 1 2 3 4 5 6 7 8 9 10

time

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

i(t
)

i=1

i=4

i=10

(b)

Figure 3. (a) Components of the local spatial basis ϕ1(s1) and ϕ2(s2), respectively. Each component is centered at red crosses on the
spatial axes s1 and s2. (b) Components of the periodic temporal basis ψ(t).

fulfilled by choosing Ns > Rs
L where Rs is the range of

the spatial dimension. For example when Ns = 2Rs
L , the

adjacent component ϕi(s) have 50 percent overlap. The
maximum value of Ns is limited by the number of training
points and the computational resources that are available.

The temporal function ψ(t) is also specified by a basis

ψ(t) = col{ ψ0(t), ψ1(t), . . . , ψNt(t) }. (9)

However, to be able to predict missing data of the type illus-
trated in Figure 1 we cannot rely on a localized basis for ex-
tended interpolations over space-time. Due to its good ap-
proximating properties we instead apply the periodic basis
developed by Solin & Särkkä (2014) defined over a range
T = [0, Rt]:

ψk(t) =

{
1, k = 0,

1√
Rt

sin (kπ t+Rt2Rt
), otherwise,

(10)

Similar to a Fourier basis, ψ(t) allows for periodic covari-
ance structures that capture both fixed and periodic patterns
in the data along time with different frequencies. Moreover,
as Nt grows, any temporally stationary covariance struc-
ture can be captured, cf. (Solin & Särkkä, 2014). Using
(10), the maximum frequency in the model is Nt

4Rt
. Hence,

depending on the data and the highest frequency periodic
patterns we may expect in it, an appropriate value of Nt
can be chosen.

In summary, the proposed spatio-temporal basis φ(s, t) in
(6) is of dimension p = Nd

s (Nt+1) and yields a covariance
function Covθ[y, y

′] that may vary temporally with differ-
ent frequencies specific to different spatial regions, as illus-
trated in Figure 2. The covariance structure is determined
by the parameter θ, which we learn using a covariance-
fitting methodology considered next.

4.2. Learning method for streaming data

We describe a covariance-fitting approach for learning the
model parameter θ, up to an arbitrary scale factor, from
streaming data. Given a training dataset Dn, this approach
enables us to update the predictor ŷθ(s, t) = λ>θ (s, t)y
from (1) in a streaming fashion as n = 1, 2, . . . . We con-
sider fitting the model covariance structure of the training
data y, which is parameterized by θ in (5), to the empirical
structure. Let us first define a normalized sample covari-
ance matrix of the training data,

K̃ =
(y − 1η)(y − 1η)>

‖y − 1η‖2
.
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Here 1 corresponds to using u(s, t) ≡ 1. Then the op-
timal model parameters are given by a covariance-fitting
criterion (cf. (Cressie, 1985; Anderson, 1989; Cressie &
Johannesson, 2008; Stoica et al., 2011)) with minimizer:

θ̂ = arg min
θ

∥∥K̃−Kθ

∥∥2

K−1
θ

(11)

Here the matrix norm corresponds to a weighted norm
which penalizes correlated residuals. The learned param-
eter θ̂ is invariant with respect to the mean parameter η
and can be rescaled by an arbitrary scale factor (Zachariah
et al., 2017). Moreover, the resulting predictor correspond-
ing to θ̂ in equation (1) can be written in the equivalent
form:

ŷθ̂(s, t) ≡ α>(s, t)w? (12)

where α(s, t) = col{1,φ(s, t)}. The (p + 1)-dimensional
weight vector w? is defined as the minimizer

w? = arg min
w

√
Ê
[
|yi −α>(si, ti)w|2

]
+

1√
N
‖ζ�w‖1

(13)
where the elements of ζ are given by

ζj =

{
1√
N
‖[Φ]j−1‖2, j > 1,

0, otherwise,

For proofs of these relations and a derivation of its compu-
tational properties, see Zachariah et al. (2017).

The resulting predictor in (12) is called the SPICE (sparse
iterative covariance-based estimation) predictor. It is com-
puted via a convex and sparsifying regularized minimiza-
tion problem that can be solved using coordinate descent
with recursively updated quantities at each new training
point (sn, tn, yn). By exploiting this structure, our pre-
dictor ŷθ̂(s, t) can now be updated with streaming data as
n = 1, 2, . . . . A pseudocode implementation is provided in
Algorithm 1. The key recursively updated quantities passed
from one update to the next are the symmetric matrix Γ and
the vectors ρ and w̌ of dimension p+1 along with the scalar
∼ κ. Here w̌ is the weight vector at sample n− 1, which is
initialized at zero along with the above variables in Algo-
rithm 1. The runtime is linear in n and constant in memory.
That is, for a fixed training data sizeN , the total runtime of
the algorithm is on the order O(Np2) and its memory re-
quirement is O(p2). For further details, we refer the reader
to the supplementary material. Code available at github.

5. Synthetic data
The proposed method has been derived for predictions us-
ing large and/or streaming data sets. We now demonstrate
its predictive properties using synthetic data and for the
sake of reference compare it with a GPR (Gaussian pro-
cess regression) method using different covariance func-
tions Cov[y, y′].

Algorithm 1 Learning from streaming datasets
Input: (sn, tn, yn) and w̌
Γ := Γ +α(sn, tn)α>(sn, tn)
ρ := ρ+α(sn, tn)yn
κ := κ+ y2

n

ε := κ+ w̌>Γw̌ − 2w̌>ρ
τ := ρ− Γw̌
repeat
j = 1, . . . , p+ 1
cj := τj + Γjjw̌j
if j = 1 then
wj :=

cj
Γjj

else
aj := ε+ Γjjw̌

2
j + 2w̌jτj

ŝj := sign(cj)

r̂j :=
|cj |
Γjj
− 1

Γjj

√
ajΓjj−|cj |2

n−1

wj :=

{
ŝj r̂j

√
n− 1|cj | >

√
ajΓjj − |cj |2

0 otherwise
end if
ε := ε+ Γjj(w̌j − w?j )2 + 2(w̌j − w?j )τj
τ := τ + [Γ]j(w̌j − w?j )

until number of iterations equal L
Output: w? = w̌

5.1. Damped planar wave

To illustrate a dynamically evolving process, we consider
planar a wave in one-dimensional space and time, cf. Fig-
ure 4a. The unknown process is generated according to:

y(s, t) = cos

(
2π

λs
(s− vst)

)
exp

(
− s

20

)
+ ε, (14)

where vs is the speed of the wave along space in units per
second, λs is the wavelength in units of space and ε is
a zero-mean white Gaussian process with standard devia-
tion σ.

Note that the process decays exponentially as it propagates
through space. For our experiments, we set vs = 3 [spatial
units/sec], λs = 9 [spatial units] and σ = 0.3. Syn-
thetic data is generated over a uniform grid and a subset of
N = 700 training points are used. Different contiguous
space-time blocks are selected as test regions to resemble
realistic scenarios in which the coverage of sensors, satel-
lites or other measurement equipment is incomplete. For
example, the dashed white boxes in Figure 4 emulate cases
where data over a small region is missing most of the time.
By contrast, the dashed black boxes correspond to cases
when data over large spatial regions is missing some of the
time.

The process in these test regions as well as at other ran-
domly missing points is predicted using the proposed

https://github.com/Muhammad-Osama/Localized-Spatio-temporal-Models
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method with Nt = 25, Ns = 15 and a spatial basis sup-
port set to L = 5 spatial units. This results in φ(s, t) being
of dimension p = Ns(Nt + 1) = 390. The mean-square
error (MSE) of the prediction is shown in Figure 4b and
evaluated using 25 Monte Carlo simulations. The region
in the white box extends over almost the entire time di-
mension, hence there are very few neighbouring training
points in time to draw upon for prediction and no infor-
mation about the periodicities in the region. Instead our
method leverages the neighbouring spatial information to
obtain a good prediction resulting in a low MSE. Both
black boxes are test regions that have neighbouring training
points that provide temporal information about the process.
However, left region has training points both before and af-
ter whereas the right region only has points before, yielding
a more challenging prediction problem. Nevertheless, the
proposed method is able to learn both the periodic and the
local damping patterns to provide accurate predictions in
both regions.

We include also the MSE of GPR using two different co-
variance functions learned by a numerical maximum like-
lihood search. While this method is not applicable to
the streaming data of interest here, it provides a perfor-
mance reference. First, we use a Matérn ARD covariance
model (Rasmussen & Nickisch, 2010) to carefully adapt
both space and time dimensions. In Figure 4c it is seen
that the resulting prediction errors are markedly worse for
the large missing spatial regions and the method naturally
fails to capture the periodic pattern of the process. Next,
we use a periodic Matérn ARD covariance model to also
capture space-time periodicity. However, the MSE (Figure
4d) is degraded throughout, which is possibly due to the
non-convex optimization problem used to learn the model
parameters. It may lead to local minima issues, including
learning erroneous periods.

5.2. Varying seasonalities across space

Here we generate a process that emulates scenarios of tem-
poral periodicities which may vary across spatial regions.
This occurs e.g. in climate data. Figure 5a shows a realiza-
tion of a process generated according to

y(s, t) = cos

(
2π

T (s)
t

)
+ ε (15)

where the period T (s) differs across space and ε is zero-
mean white Gaussian process with standard deviation σ =
0.3. In the upper region of the spatial domain T (s) = ∞,
i.e., the process has a constant mean. In the middle and
bottom regions T (s) is large and small, respectively. The
data is generated over a uniform grid and a subset of N =
600 points is used for training. A contiguous space-time
block, marked by the dashed black box in Figure 5, forms a
test region to emulate scenarios where data can be missing

over a large spatial region for some time.

For the proposed method we use Nt = 35, Ns = 15
and a support of L = 3 for the spatial basis, so that
p = Ns(Nt + 1) = 540. For the GPR we use the peri-
odic Matérn ARD kernel. Figures 5b and 5c show the MSE
performance of the proposed method and GPR respectively
which were obtained using 25 Monte Carlo simulations.
The MSE of the proposed method is overall lower than that
of GPR, both in the dashed test region as well as outside
it. Unlike the proposed method, GPR has one parameter to
fit to an overall periodic pattern and is thus unable to learn
spatially localized patterns. Thus after learning, the pro-
cess is predicted to be be nearly constant along time for all
parts of the spatial region.

6. Real data
We now demonstrate the proposed method for much larger,
and possibly streaming, real-world datasets.

6.1. Pacific Sea Surface Temperature

As a first application example, we use tropical pacific Sea
Surface Temperature (SST) data (Wikle, 2011). These data
represent gridded monthly SST anomalies, in ◦C, from Jan-
uary 1970 through March 2003 over a spatial region from
29◦S to 29◦N and 124◦E to 70◦W. The spatial resolution of
the data is 2◦ in both latitude and longitude.

Here we consider data from the first 36 months, making
the total number of space-time data points equal to 36 ×
2 520 = 90 720. In the first experiment, training points are
sampled randomly across space-time and the missing data
constitute the test points. Here we set N = 63 503 as the
number of training points. For the proposed method we set
Nt = 100, Ns = 8 and the spatial support L to be half
of each spatial dimension. Then p = N2

s (Nt+ 1) = 6 464.
Figure 6a shows the prediction error histogram of all test
points across the spatio-temporal domain. We see that it
is centered around zero and its dispersion is considerably
narrower than the dynamic range of the data.

In the second experiment, we select a contiguous space-
time block as a test region in addition to other test points
to evaluate the performance in scenarios where data over
entire spatial regions are missing for a period of time. Data
falling within the spatial region marked by the black dashed
box in Figure 6c is missing beyond month 26, as indicated
by the black dashed line in Figure 6d. Here N = 18 144
are the number of training points. The prediction error his-
togram for this second experiment is shown in Figure 6b
and remains fairly narrow. Figure 6c illustrates the pre-
dicted SST anomalies [◦C] for a spatial slice at month
t = 30. We pick a spatial point in a region where the El
Niño effect, i.e., the periodic warming of the equatorial Pa-
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Figure 4. (a) Realization of the damped planar wave process y(s, t) defined in (14). (b) MSE of the proposed method. The red dots
denote training points. The white and black dashed boxes represent contiguous space-time test regions where the data is missing. (c)
MSE of GPR using the Matérn ARD covariance model. (d) MSE of GPR using using periodic Matérn ARD covariance function.
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Figure 5. (a) Realization of the process y(s, t) defined in (15) with varying periods across space. (b) MSE of the proposed method which
is able to learn different periodic temporal patterns across space. The red dots denote training points. The black dashed box marks a
contiguous test region. (c) MSE of GPR using periodic Matérn ARD covariance model.

cific Sea Surface (Sarachik & Cane, 2010), is known to be
noticeable. The prediction of the SST anomalies at this
spatial location across time along with the true SST is il-
lustrated with Figure 6d. Note that the predictor is able to
track the rising temperature deviation also for the missing
data.

6.2. Precipitation data

As a second application example, we use precipitation data
from the Climate Research Unit (CRU) time series datasets
of climate variations (Jones & Harris, 2013). The precipi-
tation data consists of monthly rainfall in millimeter over a
period from 1901 to 2012 obtained with high spatial reso-
lution (0.5 by 0.5 degree) over the whole planet. Here we
consider a five year period from 2001 to 2005 and between
spatial coordinates 95◦W to 107◦W and 40◦N to 50◦N. This
yields a total number of 28 800 data points.

The spatial region indicated by the black dashed box in Fig-
ure 7b beyond month t = 47, as seen in Figure 7c, consti-
tutes a contiguous test region, in addition to other randomly
selected test points. The remaining N = 14 400 points are
used for training.

For the proposed method we set Nt = 300, Ns = 6 and
the spatial support L to be half of each spatial dimension.
Then p = N2

s (Nt + 1) = 10 836. Figure 7a shows the

prediction error histogram for the precipitation test data. It
is centered around zero and its dispersion is narrower than
the dynamic range of the data. Figure 7b shows the contour
plot of predicted precipitation for a spatial slice at month
t = 54. The red cross and plus marker indicate spatial
points whose actual and predicted time series are compared
in Figures 7c and 7d, respectively. Note that the estimated
precipitation tracks the true precipitation well everywhere
even to the right of the black dashed line where the data was
not seen during training. Note the ability of the predictor to
track the different seasonal patterns in the missing regions.

7. Conclusion
We proposed a method in which a spatio-temporal pre-
dictor ŷθ̂(s, t) can be learned and updated sequentially as
spatio-temporal data is obtained as a stream. It is capa-
ble of capturing spatially varying temporal patterns, using
a non-stationary covariance model that is learned using a
covariance-fitting approach. We demonstrated, using both
simulated and real climate data, that it is capable of produc-
ing accurate predictions in large unobserved space-time test
regions. In future work, we intend to further improve the
computational efficiency of the method by exploiting the
spatially localized structure of the covariance model.
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Figure 6. (a) Histogram of prediction error of all test points in the
first scenario with randomly sampled training points. Note that
the dynamic range of the data is [−3.2, 3.2] ◦C.(b) Histogram of
prediction error of all test points for the second scenario with a
contiguous space-time block as test region. The plots in red are
fitted Gaussian distributions (c) Contour plot of predicted SST
for a single spatial slice at time t = 30. The red dots denote
training points and the black dashed box indicates a contiguous
test region. The red cross denotes a point of interest in which the
El Niño effect can be observed. (d) Comparison of time series of
actual and estimated SST for the point marked by the red cross
in 6c. The data to the right of the black dashed line is not seen
during training.
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Figure 7. (a) Histogram of prediction error for all test points of
precipitation data. The dynamic range of the data is [0, 226] mil-
limeters (b) Contour plot of predicted precipitation for a single
spatial slice at time t = 54. Data inside the black dashed box
marks the contiguous test region and is not seen during training.
The red dots denote training points. (c) The actual and estimated
precipitation time series for the the spatial point marked by red
cross in figure 7b. (d) The actual and estimated precipitation time
series for the the spatial point marked by red addition sign in fig-
ure 7b. The data to the right of the black dashed line is part of the
contiguous test region and is not used during training.
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