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A. Background
A.1. Adaptive signal denoising

Assume that the goal is to estimate the signal only on [0, n], from observations (1), and consider convolution-type estimators

x̂ϕt = [ϕ ∗ y]t :=
∑
τ∈Z

ϕτyt−τ 0 ≤ t ≤ n. (32)

Here, ϕ is itself an element of C(Z) called a filter; note that if ϕ ∈ Cn(Z), (2) defines an estimator of the projection of
x ∈ C(Z) to Cn(Z) from observations (1) on C±n (Z). If the filter ϕ is fixed and does not depend on the observations,
estimator (2) is linear in observations; otherwise it is not. Now, assume, following (Ostrovsky et al., 2016), that x ∈ C(Z)
belongs to a shift-invariant linear subspace S of C(Z) – an invariant subspace of the unit shift operator

∆ : C(Z)→ C(Z), [∆x]t = xt−1.

As shown in (Ostrovsky et al., 2016), one can explicitly construct a filter φo, depending on S, such that the worst-case
`2-risk of the estimator (2) with ϕ = φo satisfies

E
1
2

{
‖x− φo ∗ y‖2n,2

}
≤ σρ√

n+ 1
∀x ∈ S, (33)

where the factor ρ = Õ(sκ) for some κ > 0, that is, is polynomial on the subspace dimension s = dim(S) and logarithmic
in the sample size (the logarithmic factor can be dropped in some situations). In fact, one even has a pointwise bound: for
any 0 ≤ τ ≤ n, with prob. ≥ 1− δ,

|xτ − [φo ∗ y]τ | ≤
Cσρ

√
1 + log

(
n+1
δ

)
√
n+ 1

∀x ∈ S. (34)

Note that for any fixed subspace S , not even a shift-invariant one, the worst-case `2-risk and pointwise risk of any estimator
can both bounded from below with c

√
s/(n+ 1) for some absolute constant c (Johnstone, 2011). Hence, x̂φ

o

= φo ∗ y is
nearly minimax on S as long as s� n: its “suboptimality factor” – the ratio of its worst-case `2-risk to that of a minimax
estimator – only depends on the subspace dimension s but not on the sample size n. Unfortunately, x̂φ

o

depends on subspace
S through the “oracle” filter φo, and hence it cannot be used in the adaptive estimation setting where the subspace S with
dim(S) = s is unknown, but one still would like to attain bounds of the type (33). However, adaptive estimators can be
found in the convolution form x̂ = ϕ̂ ∗ y where filter ϕ̂ = ϕ̂(y) is not fixed anymore, but instead is inferred from the
observations. Moreover, ϕ̂ is given as an optimal solution of a certain optimization problem. Several such problems have
been proposed, all resting upon a common principle – minimization of the Fourier-domain residual

‖Fn[y − ϕ ∗ y]‖p (35)

with regulzarization via the `1-norm ‖Fn[ϕ]‖1 of the DFT of the filter. Such regularization is motivated by the following
non-trivial fact, see (Harchaoui et al., 2015b): given an oracle filter φo ∈ Cbn/2c(Z) which satisfies (33) with n replaced
with 3n, one can point out a new filter ϕo ∈ Cn(Z) which satisfies a “slightly weaker” counterpart of (34),

|xτ − [ϕo ∗ y]τ | ≤
3σr

√
1 + log

(
n+1
δ

)
√
n+ 1

∀x ∈ S (36)

where r = 2ρ2, but also admits a bound on DFT in `1-norm:

‖Fn[ϕo]‖1 ≤
r√
n+ 1

, r = 2ρ2. (37)

see (Ostrovsky et al., 2016). In fact, (37) is the key property that allows to control the statistical performance of adaptive
convolution-type estimators. In some situtaions, polynomial upper bounds on the function ρ(s) are known. Then, adaptive
convolution-type estimators with provable statistical guarantees can be obtained by minimizing the residual (4) with
p =∞ (Harchaoui et al., 2015b) or p = 2 (Ostrovsky et al., 2016) under the constraint (37). A more practical approach is to
use penalized estimators, cf. Sec. 1, that attain similar statistical bounds, see (Ostrovsky et al., 2016) and references therein.
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A.2. Online accuracy certificates

The guarantees on the accuracy of optimization algorithms presented in Section 2 have a common shortcoming. They are
“offline” and worst-case, stated once and for all, for the worst possible problem instance. Neither do they get improved in
the course of computation, nor become more optimistic when facing an “easy” problem instance of the class. However, in
some situations, online and “opportunistic” bounds on the accuracy are available. Following the terminology introduced
in (Nemirovski et al., 2010), such bounds are called accuracy certificates. They can be used for early stopping of the
algorithm if the goal is to reach some fixed accuracy ε). One situation in which accuracy certificates are available is
saddle-point minimization (via a first-order algorithm) in the case where the domains are bounded and admit an efficiently
computable linear maximization oracle. The latter means that the optimization problems maxu∈U 〈a, u〉, maxv∈V 〈b, v〉
can be efficiently solved for any a, b. An example of such domains is the unit ball of a norm ‖ · ‖ for which the dual norm
‖ · ‖∗ is efficiently computable. Let us now demonstrate how an accuracy certificate can be computed in this situation
(see (Nemirovski et al., 2010; Harchaoui et al., 2015a) for a more detailed exposition).

A certificate is simply a sequence λt = (λtτ )tτ=1 of positive weights such that
∑t
τ=1 λ

t
τ = 1. Consider the λt-average of

the iterates zτ obtained by the algorithm,

zt = [ut, vt] =

t∑
τ=1

λtτzτ .

A trivial example of certificate corresponds to the constant stepsize, and amounts to simple averaging. However, one might
consider other choices of certificate, for which theoretical complexity bounds are preserved – for example, it might be
practically reasonable to average only the last portion of the iterates, a strategy called “suffix averaging” (Rakhlin et al.,
2012). The point is that any certificate implies a non-trivial (and easily computable) upper bound on the accuracy of the
corresponding candidate solution zt. Indeed, the duality gap of a composite saddle-point problem can be bounded as follows:

φ(ut)− φ(vt) = φ(ut)− φ(ut, vt) + φ(ut, vt)− φ(vt)

= max
v∈V

[φ(ut, v)− φ(ut, vt)]−min
u∈U

[φ(u, vt)− φ(ut, vt)]

≤ max
v∈V

[φ(ut, v)− φ(ut, vt)] + max
u∈U

[φ(ut, vt)− φ(u, vt)].

Now, using concavity of f in v, we have

φ(ut, v)− φ(ut, vt) = f(ut, v)− f(ut, vt) ≤
t∑

τ=1

λtτ 〈Fv(zτ ), vt − v〉.

On the other hand, by convexity of f and Ψ in u,

φ(ut, vt)− φ(u, vt) = f(ut, vt)− f(u, vt) + Ψ(ut)−Ψ(u) ≤
t∑

τ=1

λtτ 〈Fu(zτ ) + h(uτ ), ut − u〉

where h(uτ ) is a subgradient of Ψ(·) at uτ . Combining the above facts, we get that

φ(ut)− φ(vt) ≤ max
u∈U

[−F tu − ht] + max
v∈V

[−F tv ] +

t∑
τ=1

λtτ
[
〈Fu(zτ ) + h(uτ ), ut〉+ 〈Fv(zτ ), vt〉

]
, (38)

where

F tu =

t∑
τ=1

λtτFu(zτ ), F tv =

t∑
τ=1

λtτFv(zτ ), and ht =

t∑
τ=1

λtτh(uτ ).

Note that the corresponding averages can often be recomputed in linear time in the dimension of the problem, and then upper
bound (38) can be efficiently maintained. For example, this is the case when λt corresponds to a fixed sequence γ1, γ2, ...,

λtτ =
γτ∑

τ ′≤t γτ ′
, τ ≤ t.
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Note also that any bound on the duality gap implies bounds on the relative accuracy for the primal and the dual problem
provided that φ(vt) (and hence the optimal value φ(u∗, v∗)) is strictly positive (we used this fact in our experiments,
see Sec. 5). Indeed, let ε(t) be an upper bound on the duality gap (e.g. such as (38)), and hence also on the primal accuracy:

φ(ut)− φ(u∗, v∗) ≤ φ(ut)− φ(vt) ≤ ε(t).

Then, since φ(u∗, v∗) ≥ φ(vt) > 0, we arrive at

φ(ut)− φ(u∗, v∗)

φ(u∗, v∗)
≤ ε(t)

φ(vt)
.

A similar bound can be obtained for the relative accuracy of the dual problem.

B. Computation of prox-mappings
It suffices to consider partial proximal setups separately; the case of joint setup in saddle-point problems can be treated
using that the joint prox-mapping is separable in u and v, cf. Sec. 2.3. Recall that the possible partial setups (‖ · ‖, ω(·))
comprise the `2-setup with ‖ · ‖ = ‖ · ‖C,2 = ‖ · ‖2 and the (complex) `1-setup with ‖ · ‖ = ‖ · ‖C,1; in both cases, ω(·) is
given by (7). Computing Prox 1

LΨ,u(g), cf. (11), amounts to solving

min
ξ∈RN

{
ξT(g − ω′(u)) + ω(ξ) : ‖ξ‖C,q ≤ R

}
, (39)

in the constrained case, and

min
ξ∈RN

{
ξT(g − ω′(u)) + ω(ξ) +

λ

L
‖ξ‖qC,1

}
, (40)

in the penalized case3; in both cases, q ∈ {1, 2}. In the constrained case with `2-setup, the task is reduced to the Euclidean
projection onto the `2-ball if q = 2, and onto the `1-ball if q = 1; the latter can be done (exactly) in Õ(N) via the algorithm
from (Duchi et al., 2008) – for that, one first solves (39) for the complex phases corresponding to the pairs of components
of ξ. The constrained case with `1-setup is reduced to the penalized case by passing to the Langrangian dual problem.
Evaluation of the dual function amounts to solving a problem equivalent to (40) with q = 1, and (39) can be solved by
a simple root-finding procedure if one is able to solve (40). As for (40), below we show how to solve it explicitly when
q = 1, and reduce it to one-dimensional root search (so that it can be solved in O(n) to numerical tolerance) when q = 2.
Indeed, (40) can be recast in terms of the complex variable ζ = VecH

nξ:

min
ζ∈Cn+1

{
〈ζ, z〉+ ω(ζ) +

λ

L
‖ζ‖q1

}
, (41)

where z = VecH
n(g − ω′(u)), and ω(ζ) = ω(ξ), cf. (7), whence

ω(ζ) =
C(m, q̃, γ̃)‖ζ‖2q̃

2
, (42)

with C(m, q̃, γ̃) = 1
γ̃ (m+ 1)(q̃−1)(2−q̃)/q̃. Now, (41) can be minimized first with respect to the complex arguments, and

then to the absolute values of the components of ζ. Denoting ζ∗ a (unique) optimal solution of (41), the first minimization
results in ζ∗j = − zj

|zj | |ζ
∗
j |, 0 ≤ j ≤ n, and it remains to compute the absolute values |ζ∗j |.

Case q = 1. The first-order optimality condition implies

C(m, q̃, γ̃)‖ζ∗‖2−q̃q̃ |ζ∗j |q̃−1 +
λ

L
1{|ζ∗j | > 0} = |zj |. (43)

Denoting p̃ = q̃
q̃−1 , and using the soft-thresholding operator

SoftM (x) = (|x| −M)+ sign(x),

3For the purpose of future reference, we also consider the case of squared ‖ · ‖C,1-norm penalty.



Efficient Algorithms for Adaptive Signal Denoising

we obtain the explicit solution:

ζ∗j =
1

C(m, q̃, γ̃)

(
θj

‖θ‖2−q̃p̃

)p̃/q̃
, θj = Softλ/L(zj).

In the case of `2-setup this reduces to ζ∗j = Softλ/L(zj).

Case q = 2. Instead of (43), we arrive at

C(m, q̃, γ̃)‖ζ∗‖2−q̃q̃ |ζ∗j |q̃−1 +
2λ‖ζ∗‖1

L
1{|ζ∗j | > 0} = |zj |, (44)

which we cannot solve explicitly. However, note that a counterpart of (44), in which ‖ζ∗‖1 is replaced with parameter t ≥ 0,
can be solved explicitly similarly to (43). Let ζ∗(t) denote the corresponding solution for a fixed t, which can be obtained in
O(n) time. Clearly, ‖ζ∗(t)‖1 is a non-decreasing function on R+. Hence, (44) can be solved, up to numerical tolerance, by
any one-dimensional root search procedure, in O(1) evaluations of ζ∗(t).

C. Technical proofs
Proof of Lemma 4.1. Note that A can be expressed as follows, cf. (18):

A =
√

2n+ 1 · FnPnFH
2nDyF2nP

H
n F

H
n . (45)

By Young’s inequality, for any ψ ∈ Cn+1 we get

1

2n+ 1
‖Aψ‖22 ≤

∥∥DyF2nP
H
n F

H
n ψ
∥∥2

2

≤
∥∥F2n[y]n−n

∥∥2

∞

∥∥F2nP
H
n F

H
n ψ
∥∥2

2

≤
∥∥F2n[y]n−n

∥∥2

∞ ‖ψ‖
2
2 ,

where we used that Pn is non-expansive. �

Proof of Proposition 4.2. Consider the uniform grid on the unit circle

Un =

{
exp

(
2πij

n+ 1

)}n
j=0

,

and the twice finer grid

UN =

{
exp

(
2πij

N + 1

)}N
j=0

, N = 2n+ 1.

Note that UN is the union of Un and the shifted grid

Ũn =
{
u eiθ, u ∈ Un

}
, θ =

2π

N + 1
;

note that Ũn and Un do not overlap. One can check that for any n ∈ Z+ and x ∈ Cn(Z), the components of Fn[x]n0 form
the set {

x(ν)√
n+ 1

}
ν∈Un

,

where x(·) is the Taylor series corresponding to x:

x(ν) :=
∑
τ∈Z

xτν
τ .
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Now, let x be as in the premise of the theorem, and let x(n) ∈ Cn(Z) be such that x(n)
τ = xτ if 0 ≤ τ ≤ n and x(n)

τ = 0
otherwise. Similarly, let us introduce x(N) as x restricted on CN (Z). Then one can check that for any ν ∈ UN ,

x(N)(ν) =

{
2x(n)(ν), ν ∈ Un,
0, ν ∈ Ũn.

(46)

In particular, this implies that
‖FN [x]N0 ‖∞ =

√
2‖Fn[x]n0‖∞. (47)

Now, for any ϕ ∈ Cn(Z), let φ ∈ CN (Z) be its n+ 1-periodic extension, defined by

[φ]N0 = [[ϕ]n0 ; [ϕ]n0 ].

One can directly check that for x as in the premise of the theorem, the circular convolution of [φ]N0 and [x]N0 is simply a
one-fold repetition of 2[ϕ ∗ x]n0 . Hence, using the Fourier diagonalization property together with (47) applied for [ϕ ∗ x]n0
instead of xn0 , we obtain √

N + 1 ‖FN [x]� FN [φ]‖∞ = 2
√

2 ‖Fn[x ∗ ϕ]‖∞ (48)

where a� b is the elementwise product of a, b ∈ Cn+1.

Finally, note that since σ = 0, and, as such, x = y a.s., for any ψ ∈ Cn+1 one has:

Aψ = Fn[x ∗ ϕ], where ϕ = FH
n [ψ] ∈ Cn(Z).

Hence, using (48) with such ϕ, we arrive at

‖Aψ‖∞ = ‖Fn[x ∗ ϕ]‖∞

=

√
n+ 1

2
‖FN [x]� FN [φ]‖∞ [by (48)]

=
√
n+ 1‖Fn[x]� ψ‖∞. [by (46)]

The claim now follows by maximizing the right-hand side in ψ ∈ Cn+1 : ‖ψ‖1 ≤ 1. �
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C.1. Proof of Theorem 4.3

The proof is reduced to the following observation: in order to satisfy (24), it suffices for ϕ̃ ∈ Cn(Z) to satisfy

‖Fnϕ̃‖1 = O

(
r√
n+ 1

)
, ‖Fn[y − y ∗ ϕ̃]‖∞ = Õ (σr) , where r = 2ρ2.

This is a rather straightforward remark to the proof of Proposition 4 in (Harchaoui et al., 2015b). We give here the proof for
convenience of the reader, and also consider the case of the penalized estimator.

Preliminaries. Let ∆ be the unit lag operator such that [∆x]t = xt−1 for x ∈ C(Z). Note that for any filter ϕ ∈ Cn(Z),
one can write ϕ ∗ y = ϕ(∆)y where ϕ(∆) is the Taylor polynomial corresponding to ϕ:

ϕ(∆) :=
∑
τ∈Z

ϕτ∆τ =
∑

0≤τ≤n

ϕτ∆τ .

Besides, let us introduce the random variable

Θn(ζ) := max
0≤τ≤n

‖∆τFn[ζ]‖∞.

Note that Fn[ζ] is distributed same as [ζ]n0 by the unitary invariance of the lawCN (0, In). Using this fact, it is straightforward
to obtain that with probability at least 1− δ,

Θn(ζ) ≤ Θn := 4

√
log

(
n+ 1

δ

)
, (49)

see (Harchaoui et al., 2015b).

Constrained uniform-fit estimator. Let ϕ̂ be an optimal solution to (Con-UF) with r = r. We begin with the following
decomposition (recall that ϕ ∗ y = ϕ(∆)y):

|[x− ϕ̂(∆)y]n| ≤ σ|[ϕ̂(∆)ζ]n|+ |[x− ϕ̂(∆)x]n|
≤ σ‖Fn[ϕ̂]‖1‖Fn[ζ]‖∞ + |[x− ϕ̂(∆)x]n|

≤ σrΘn(ζ)√
n+ 1

+ |[x− ϕ̂(∆)x]n|. (50)

Here, to obtain the second line we used Young’s inequality, and for the last line we used feasibility of ϕ̂ in (Con-UF). Now
let us bound |[x− ϕ̂(∆)x]n|:

|[x− ϕ̂(∆)x]n| ≤ |[(1− ϕ̂(∆))(1− ϕo(∆))x]n| + |[ϕo(∆)(1− ϕ̂(∆))x]n|
≤ (1 + ‖ϕ̂‖1) ‖[(1− ϕo(∆))x]n0‖∞ + ‖Fn[ϕo]‖1‖Fn[(1− ϕ̂(∆))x]‖∞.

Discrepancy of the oracle ϕo in the time domain can be bounded using (36):

‖[(1− ϕo(∆))x]n0‖∞ ≤
4rσ√
n+ 1

. (51)

Indeed, for any τ ∈ Z, [(1− ϕo(∆))x]τ = [x− ϕo(∆)y]τ + σ[ϕo(∆)ζ]τ . On the other hand, using that ϕo is non-random,

E|[ϕo(∆)ζ]τ |2 = ‖ϕo‖22 = ‖Fn[ϕo]‖22 ≤ ‖Fn[ϕo]‖21 =
r2

n+ 1
.

Now, using that due to (37) oracle ϕo is feasible in (Con-UF), we can bound the Fourier-domain discrepancy of ϕ̂:

‖Fn[(1− ϕ̂(∆))x]‖∞ ≤ ‖Fn[(1− ϕ̂(∆))y]‖∞ + σ‖Fn[(1− ϕ̂(∆))ζ]‖∞
≤ ‖Fn[(1− ϕ̂(∆))y]‖∞ + σ(1 + ‖ϕ̂‖1)Θn(ζ)

≤ ‖Fn[(1− ϕo(∆))y]‖∞ + σ(1 + ‖ϕ̂‖1)Θn(ζ)
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≤ ‖Fn[(1− ϕo(∆))x]‖∞ + σ(2 + ‖ϕo‖1 + ‖ϕ̂‖1)Θn(ζ). (52)

Meanwhile, using (51), we can bound the Fourier-domain discrepancy of ϕo:

‖Fn[(1− ϕo(∆))x]‖∞ ≤ ‖Fn[(1− ϕo(∆))x]‖2
= ‖[(1− ϕo(∆))x]n0‖2 ≤ 4σr. (53)

Collecting the above, we obtain

|[x− ϕ̂(∆)x]n| ≤ (1 + ‖ϕ̂‖1)
4rσ√
n+ 1

+ σ‖Fn[ϕo]‖1 {4r + (2 + ‖ϕo‖1 + ‖ϕ̂‖1)Θn(ζ)} .

Note that ‖Fn[ϕo]‖1 is bounded by (37). It remains to bound ‖ϕo‖1 and ‖ϕ̂‖1:

‖ϕo‖1 ≤
√
n+ 1‖ϕo‖2 ≤

√
n+ 1‖Fn[ϕo]‖1 ≤ r, (54)

and similarly ‖ϕ̂‖1 ≤ r. Hence, we have

|[x− ϕ̂(∆)x]n| ≤
σr√
n+ 1

[4(1 + 2r) + 2(1 + r)Θn(ζ)] ,

and, using (50) and (49), we arrive that with probability ≥ 1− δ,

|xn − [ϕ̂(∆)y]n| ≤
Cσr2

√
1 + log

(
n+1
δ

)
√
n+ 1

. (55)

It is now straightforward to see why ϕ̃, an O(σr)-accurate solution to (Con-UF), also satisfies (55): the first change in
the above argument when replacing ϕ̂ with ϕ̃ is the additional term O(σr) in (52). Since all the remaining terms in the
right-hand side of (52) were also bounded from above by O(σr), (55) is preserved for ϕ̃ up to a constant factor. �

Penalized uniform-fit estimator. Let now ϕ̂ be an optimal solution to (Pen-UF). The proof goes along the same lines as
in the previous case; however, we must take into account a different condition for oracle feasibility. Proceeding as in (50)
and using (51), we get

|[x− ϕ̂(∆)y]n|
≤ σ‖Fn[ϕ̂]‖1‖Fn[ζ]‖∞ + |[(1− ϕ̂(∆))x]n|
≤ σ‖Fn[ϕ̂]‖1‖Fn[ζ]‖∞ + ‖Fn[ϕo]‖1‖Fn[(1− ϕ̂(∆))x]‖∞ + (1 + ‖ϕ̂‖1)‖[(1− ϕo(∆))x]n0‖∞

≤ σ‖Fn[ϕ̂]‖1Θn(ζ) +
r√
n+ 1

‖Fn[(1− ϕ̂(∆))x]‖∞ +
4rσ√
n+ 1

(1 + ‖ϕ̂‖1).

(56)

Let us condition on the event Θn(ζ) ≤ Θn the probability of which is ≥ 1− δ. Feasibility of ϕ̂ in (Pen-UF) yields

‖Fn[(1− ϕ̂(∆))y]‖∞ + λ‖Fn[ϕ̂]‖1 ≤ ‖Fn[(1− ϕo(∆))y]‖∞ + λ‖Fn[ϕo]‖1

≤ 4σr + (1 + r)σΘn(ζ) +
λr√
n+ 1

≤
(

4 + 2Θn(ζ) +
λ

σ
√
n+ 1

)
σr

≤ 2λr√
n+ 1

. (57)

Here first we used (53), (54), and the last line of (52), then that r ≥ 1, and, finally, used the choice of λ from the premise of
the theorem. Now from (57) we obtain

‖Fn[ϕ̂]‖1 ≤
2r√
n+ 1

(58)



Efficient Algorithms for Adaptive Signal Denoising

and

1 + ‖ϕ̂‖1 ≤ 1 +
√
n+ 1‖Fn[ϕ̂]‖1 ≤ 1 + 2r ≤ 3r. (59)

Further, using (57) and (59), we get

‖Fn[(1− ϕ̂(∆))x]‖∞ ≤ ‖Fn[(1− ϕ̂(∆))y]‖∞ + σ(1 + ‖ϕ̂‖1)Θn(ζ)

≤
(

2λ

σ
√
n+ 1

+ 3Θn(ζ)

)
σr (60)

Substituting (58)–(60) into (56), we arrive at

|[x− ϕ̂(∆)y]0| ≤
(

2λ

σ
√
n+ 1

+ 5Θn(ζ) + 8

)
σr2

√
n+ 1

≤ 5λr2

n+ 1

=
80r2

√
1 + log

(
n+1
δ

)
√
n+ 1

.

Similarly to the case of the constrained estimator, it is straightforward to see that the last bound is preserved (up to a constant
factor) for an ε-accurate solution ϕ̃ to (Pen-UF) with ε = O(σr). �

C.2. Proof of Theorem 4.4

Constrained least-squares estimator. Let us first summarize the original proof of (25) for the case of an exact optimal
solution ϕ̂ of (Con-LS), see Theorem 2.2 in (Ostrovsky et al., 2016) and its full version (Ostrovsky et al.). Introducing the
scaled Hermitian dot product for ϕ,ψ ∈ Cn(Z),

〈ϕ,ψ〉n =
1

n+ 1

n∑
τ=0

ϕτψτ ,

the squared `2-loss can be decomposed as follows:

‖x− ϕ̂ ∗ y‖2n,2 = ‖y − ϕ̂ ∗ y‖2n,2 − σ2‖ζ‖2n,2 − 2σ〈ζ, x− ϕ̂ ∗ y〉n
≤ ‖y − ϕo ∗ y‖2n,2 − σ2‖ζ‖2n,2 − 2σ〈ζ, x− ϕ̂ ∗ y〉n
= ‖x− ϕo ∗ y‖2n,2 + 2σ〈ζ, x− ϕo ∗ y〉n − 2σ〈ζ, x− ϕ̂ ∗ y〉n, (61)

where the inequality is due to feasibility of ϕo in (Con-LS). Now, it turns out that the dominating term in the right-hand side
is the first one (corresponding to the squared oracle loss): we know that due to (36), with probability ≥ 1− δ one has

‖x− ϕo ∗ y‖2n,2 ≤
9σ2r2 log

(
n+1
δ

)
n+ 1

. (62)

On the other hand, one can bound the next term in the right-hand side of (61) as

σ〈ζ, x− ϕo ∗ y〉n ≤
σ
√

2 log
(

3
δ

)
√
n+ 1

‖x− ϕo ∗ y‖n,2 +
12σ2r(1 + log

(
6
δ

)
)

n+ 1

≤
6σ2r log

(
3(n+1)

δ

)
n+ 1

+
12σ2r(1 + log

(
6
δ

)
)

n+ 1

≤
30σ2r log

(
6(n+1)

δ

)
n+ 1

. (63)

Here, for the first inequality we refer the reader to the original proof in (Ostrovsky et al.), eq. (44-45), where one should set
κm,n = 1 and keep in mind the absence of scaling factor 1

n+1 in the definitions of 〈φ, ψ〉n and ‖ · ‖n,2. The next inequalities
then follow by simple algebra using (62).
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Figure 4: Iteration at which the accuracy ε∗ is attained for (Con-UF), left, and (Con-LS), right, in Random-4.

Finally, the last term in the right-hand side of (61) can be bounded as follows with probability ≥ 1− δ:

2σ|〈ζ, x− ϕ̂ ∗ y〉n| ≤
2
√

2σ
(√

s+
√

log
(

2
δ

))
√
n+ 1

‖x− ϕ̂ ∗ y‖n,2 +
8
√

2σ2r
(

2 + log
(

8(n+1)
δ

))
n+ 1

. (64)

see eq. (33-40) in (Ostrovsky et al.) where one must set κ = 0 in our setting since x ∈ S . Moreover, in the proof of (64) the
optimality of ϕ̂ was not used; instead, the argument in (Ostrovsky et al.) relied only on the following facts:

(i) x ∈ S where S is a shift-invariant subspace of C(Z) with dim(S) = s;

(ii) one has a bound on the Fourier-domain `1-norm of ϕ̂: ‖Fn[ϕ̂]‖1 ≤ r√
n+1

.

Finally, collecting (61)-(64) and solving the resulting quadratic inequality, one bounds the scaled `2-loss of ϕ̂:

‖x− ϕ̂ ∗ y‖n,2 ≤
Cσ√
n+ 1

(
√
s+ r

√
log

(
n+ 1

δ

))
. (65)

(We used that r ≥ 1.) Moreover, it is now evident that an ε-accurate solution ϕ̂ to (Con-LS) with ε = O(σ2r2) still
satisfies (65). Indeed, the error decomposition (61) must now be replaced with

‖x− ϕ̃ ∗ y‖2n,2 ≤ ‖x− ϕo ∗ y‖2n,2 + 2σ〈ζ, x− ϕo ∗ y〉n − 2σ〈ζ, x− ϕ̃ ∗ y〉n +
ε

n+ 1
. (66)

Then, (62) and (63) do not depend on ϕ̃, and hence are preserved. The term ε
n+1 enters additively, and allows for the same

upper bound as (62). Finally, (64) is preserved when replacing ϕ̂ with ϕ̃ since (i) and (ii) remain true. �

Penalized least-squares estimator. Let now ϕ̃ be an ε-accurate solutions to (Pen-LS), let λn = λ√
n+1

, and let r̃ =
√
n+ 1‖Fn[ϕ̃]‖1. Similarly to (66), one has

‖x− ϕ̃ ∗ y‖2n,2 ≤ ‖x− ϕo ∗ y‖2n,2 + 2σ〈ζ, x− ϕo ∗ y〉n − 2σ〈ζ, x− ϕ̃ ∗ y〉n +
λn(r − r̃)
n+ 1

+
ε

n+ 1
. (67)

Note that (62) and (63) are still valid. Moreover, (64) is preserved for ϕ̃ if r is replaced with r̃, cf. (i) and (ii):

2σ|〈ζ, x− ϕ̃ ∗ y〉n| ≤
2
√

2σ
(√

s+
√

log
(

2
δ

))
√
n+ 1

‖x− ϕ̃ ∗ y‖n,2 +
8
√

2σ2r̃
(

2 + log
(

8(n+1)
δ

))
n+ 1

. (68)

Hence, if λ is chosen as in the premise of the theorem, the second term in the right-hand side is dominated by λnr̃
n+1 .

Combining (62), (63), and (68) with the fact that ε = O(σ2r2), plugging in the value of λ from the premise of the theorem,
and solving the resulting quadratic inequality, we conclude that (65) is preserved for ϕ̃. �

D. Additional experiments
Statistical Complexity Bound. In this experiment (see Fig. 4), we illustrate the affine dependency of the statistical
complexity T∗ from SNR predicted by our theory, see (26) and (27); note that although the signal in Random is not sparse
on the DFT grid, its DFT is likely to have only a few large spikes which would suffice for (27). For various SNR values, we
generate a signal in scenario Random-4, and define the first iteration at which ε(T ) crosses level σr for (Con-UF) solved
with Algorithm 2, and σ2r2 for (Con-LS) with Algorithm 1. We see that the log-log curves plateau for low SNR and have
unit tangent for high SNR, confirming our predictions.
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Figure 5: `2-loss and CPU time spent to compute estimators ϕcoarse, ϕfine, and Lasso.

Statistical Performance with Early Stopping. In this experiment, we present additional scenario Modulated-s-m,
in which the signal is a sum of sinusoids with polynomial modulation: xt =

∑s
k=1 pk(t)eiωkt, where pk(·) are i.i.d.

polynomials of degree r with i.i.d. coefficients sampled from CN (0, 1); note that in this case dim(S) = 2s(m+ 1). Our
goal is to study how the early stopping of an algorithm upon reaching accuracy ε∗ (using an accuracy certificate) affects
the statistical performance of the resulting estimator. For that, we generate signals in scenarios Random-4, Coherent-2,
Modulated-4-2 (quadratic modulation), and Modulated-4-4 (quartic modulation), with different SNR, and compare three
estimators: approximate solution ϕcoarse to (Con-LS) with guaranteed accuracy ε∗ = σ2r2, near-optimal solution ϕfine with
guaranteed accuracy 0.01ε∗, and the Lasso estimator, with the standard choice of parameters as described in (Bhaskar
et al., 2013), which we compute by running 3000 iterations of the FISTA algorithm (Beck & Teboulle, 2009); note that the
optimization problem in the latter case is unconstrained, and we do not have an accuracy certificate. We plot the scaled
`2-loss of an estimator and the CPU time spent to compute it (we used MacBook Pro 2013 with 2.4 GHz Intel Core i5 CPU
and 8GB of RAM). The results are shown in Fig. 5. We observe that ϕcoarse has almost the same performance as ϕfine while
being computed 1-2 orders of magnitude faster on average; both significantly outperform Lasso in all scenarios.
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