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Abstract
Proper regularization is critical for speeding up
training, improving generalization performance,
and learning compact models that are cost effi-
cient. We propose and analyze regularized gradi-
ent descent algorithms for learning shallow neural
networks. Our framework is general and cov-
ers weight-sharing (convolutional networks), spar-
sity (network pruning), and low-rank constraints
among others. We first introduce covering di-
mension to quantify the complexity of the con-
straint set and provide insights on the general-
ization properties. Then, we show that proposed
algorithms become well-behaved and local linear
convergence occurs once the amount of data ex-
ceeds the covering dimension. Overall, our results
demonstrate that near-optimal sample complexity
is sufficient for efficient learning and illustrate
how regularization can be beneficial to learn over-
parameterized networks.

1. Introduction
Deep neural networks (DNN) find ubiquitous use in large
scale machine learning systems. Applications include
speech processing, computer vision, natural language pro-
cessing, and reinforcement learning (Krizhevsky et al., 2012;
Graves et al., 2013; Hinton et al., 2012; Silver et al., 2016).
DNNs can be efficiently trained with first-order methods
and provide state of the art performance for important ma-
chine learning benchmarks such as ImageNet and TIMIT
(Russakovsky et al., 2015; Graves et al., 2013). They also
lie at the core of complex systems such as recommendation
and ranking models and self-driving cars (Covington et al.,
2016; Wang et al., 2015; Bojarski et al., 2016).

The abundance of promising applications bring a need to
understand the properties of deep learning models. Recent
literature shows a growing interest towards theoretical prop-
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erties of complex neural network models. Significant ques-
tions of interest include efficient training of such models
and their generalization abilities. Typically, neural nets are
trained with first order methods that are based on (stochas-
tic) gradient descent. The variations include Adam, Ada-
grad, and variance reduction methods (Kingma & Ba, 2014;
Duchi et al., 2011; Johnson & Zhang, 2013). The fact that
SGD is highly parallellizable is often crucial to training
large scale models. Consequently, there is a growing body
of works that focus on the theoretical understanding of gra-
dient descent algorithms (Zhong et al., 2017b; Tian, 2017;
Panigrahy et al., 2018; Soltanolkotabi et al., 2017; Ge et al.,
2017; Janzamin et al., 2015) and the generalization proper-
ties of DNNs (Zhang et al., 2016; Hardt et al., 2015; Bartlett
et al., 2017; Kawaguchi et al., 2017; Neyshabur et al., 2017).

In this work, we propose and analyze regularized gradi-
ent descent algorithms to provably learn compact neural
networks that have space-efficient representation. This is
in contrast to existing theory literature where the focus is
mostly fully-connected neural networks (FNN). Proper reg-
ularization is a critical tool for building models that are
compact and that have better generalization properties. This
is achieved by reducing degrees of freedom of the model.
Sparsifying and quantizing neural networks lead to storage
efficient compact models that will be building blocks intelli-
gent mobile devices (Han et al., 2015a;b; Courbariaux et al.,
2016; Denton et al., 2014; Jin et al., 2016; Dong et al., 2017;
Aghasi et al., 2017). The pruning idea has been around
for many years (Hassibi & Stork, 1993; Cun et al., 1990)
however it gained recent attention due to the growing size of
the state of the art DNN models. Convolutional neural nets
(CNN) are also compact models that efficiently utilize their
parameters by weight sharing (Krizhevsky et al., 2012).

We study neural network regularization and address both
generalization and optimization problems with an emphasis
on one hidden-layer networks. We introduce a machin-
ery to measure the impact of regularization, namely the
covering dimension of the constraint set. We show that
covering dimension controls generalization properties as
well as the optimization landscape. Hence, regularization
can have substantial benefit over training unconstrained
(e.g. fully-connected) models and can help with training
over-parameterized networks.
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Specifically, we consider the networks that are parametrized
as y = oTσ(Wx) where x ∈ Rp is the input data, W ∈
Rh×p is the weight matrix, o ∈ Rh is the output layer and h ≤
p. We assume W ∈ C for some constraint set C. We provide
insights on the generalization and optimization performance
by studying the tradeoff between the constraint set and the
amount of training data (n) as follows.

● Generalization error: We study the Rademacher com-
plexity and show that good generalization is achieved when
data size n is larger than the sum of the covering dimension
of C and the number of hidden nodes h.

● Regularized first order methods: We propose and ana-
lyze regularized gradient descent algorithms which incorpo-
rates the knowledge of C to iterations. We show that problem
becomes well conditioned (around ground truth parameters)
once the data size exceeds the covering dimension of the
constraint set. This implies the local linear convergence of
first order methods with near-optimal sample complexity.
Recent results (as well as our experiments) indicate that it
is not possible to do much better than this as random initial-
ization can get stuck at spurious local minima (Zhong et al.,
2017b; Safran & Shamir, 2017).

● Application to CNNs: We apply our results to CNNs and
obtain improved global convergence guarantees when com-
bined with the tensor initialization of (Zhong et al., 2017a).
We also improve existing local convergence results on un-
constrained problem (compared to (Zhong et al., 2017b)).

1.1. Related Works

Our results on the optimization landscape are closely re-
lated to the recent works on provably learning shallow neu-
ral nets (Zhong et al., 2017b; Tian, 2017; Soltanolkotabi,
2017; Panigrahy et al., 2018; Ge et al., 2017; Oymak &
Soltanolkotabi, 2018; Zhong et al., 2017a; Safran & Shamir,
2017; Arora et al., 2014; Mei et al., 2016). (Janzamin et al.,
2015) proposed tensor decomposition to learn shallow net-
works. (Tian, 2017) studies the gradient descent algorithm to
train a model assuming population gradient. (Soltanolkotabi
et al., 2017) focuses on training of shallow networks when
they are over-parameterized and analyzes the global land-
scape for quadratic loss. More recently (Ge et al., 2017)
shows global convergence of gradient descent by designing
a new objective function instead of using `2-loss.

Our algorithmic results are closest to those of (Zhong et al.,
2017b). Similar to us, authors focus on learning weights
of a ground truth model where the input data is Gaussian.
They propose a tensor based initialization followed by local
gradient descent for learning one hidden-layer FNN. While
we analyze a more general class of problems, when spe-
cialized to their setup, we improve their sample complexity
and radius of convergence for local convergence. For in-
stance, they need O (h2p) samples to learn a FNN whereas

we require O (hp) which is proportional to the degrees of
freedom of the weight matrix.

Growing list of works (Brutzkus & Globerson, 2017; Oymak
& Soltanolkotabi, 2018; Du et al., 2017b;a; Zhong et al.,
2017a) investigate CNNs with a focus on non-overlapping
structure. Unlike these, we formalize CNN as a low-
dimensional subspace constraint and show sample optimal
local convergence even with multiple kernels and overlap-
ping structure. As discussed in Section 4, we also improve
the global convergence bounds of (Zhong et al., 2017a).

Generalization properties of deep networks recently at-
tracted significant attention (Zhang et al., 2016; Hardt et al.,
2015; Bartlett et al., 2017; Konstantinos et al., 2017). Our
results are closer to (Bartlett et al., 2017; Neyshabur et al.,
2017; Konstantinos et al., 2017) which studies the prob-
lem in a learning theory framework. (Bartlett et al., 2017;
Neyshabur et al., 2017) provide generalization bounds for
deep FCNNs based on spectral norm of the individual layers.
More recently, (Konstantinos et al., 2017) specializes such
bounds to CNNs. Our result differs from these in two ways.
First, our bound reflects the impact of regularization and
secondly, we avoid the dependencies on input data length
by taking advantage of the Gaussian data model.

2. Problem Statement
Here, we describe the general problem formulation. Our
aim is learning neural networks that efficiently utilize their
parameters by using gradient descent and proper regulariza-
tion. For most of the discussion, the input/output (yi,xi)ni=1

relation is given by

yi = oTσ(W ⋆xi).

Here o ∈ Rh is the vector that connects hidden to output
layer and W ⋆ ∈ Rh×p is the weight matrix that connects
input to hidden layer. Assuming o is known we are inter-
ested in learning W ⋆ which has hp degrees of freedom.
The associated loss function for the regression problem is

L(W ) = 1

2n

n

∑
i=1

(yi − oTσ(Wxi))2.

Starting from an initial point W0, gradient descent algo-
rithms learns W ⋆ using the following iterations

Wi+1 =Wi − µ∇L(Wi).

If we have a prior on W ⋆, such as sparse weights, this
information can be incorporated by projecting W on the
constraint set. Suppose W ⋆ lies in a constraint set C. De-
note the projection on C by PC(⋅). Starting from an initial
point W0, the Projected Gradient Descent (PGD) algo-
rithm is characterized by the following iterations

Wi+1 = PC(Wi − µ∇L(Wi)). (1)
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Our goal will be to understand the impact of C on general-
ization as well as the properties of the PGD algorithm.

2.1. Compact Models and Associated Regularizers
In order to learn parameter-efficient compact networks, prac-
tical approaches include weight-sharing, weight pruning,
and quantization as explained below.

• Convolutional model (weight-sharing): Suppose we
have a CNN with k kernels of width b. Each kernel
is shifted and multiplied with length b patches of the
input data i.e. same kernel weights are used many times
across the input. In Section 4, we formulate this as
an FNN subject to a subspace constraint where the
constraint C is a kb dimensional subspace.

• Sparsity: Weight matrix W ⋆ has at most s nonzero
weights out of hp entries.

• Quantization: Weights are restricted to be discrete
values. In the extreme case, entries of W ⋆ are ±1.

• Low-rank approximation: Weight matrix W ⋆ obeys
rank(W ⋆) ≤ r for some r ≤ h.

We also consider convex regularizers which can yield
smoother optimization landscape (e.g. subspace, `1). Con-
vexified version of sparsity constraint is the `1 regularization.
Parametrized by τ > 0, the constraint set is given by

C = {W ∈ Rh×p ∣ ∥W ∥1 ≤ τ}.
Similarly, the convexified version of low-rank projection is
the nuclear norm regularization, which corresponds to the
`1 norm of singular values (Recht et al., 2010).

Finally, we remark that our results can be specialized to
the unconstrained problem where the constraint set is C =
Rh×p and PGD reduces to gradient descent.

Notation: Throughout the paper, h denotes the number of
hidden nodes, p denotes the input dimension, and n de-
notes the number of data points unless otherwise stated.
smin(⋅),smax(⋅) returns the minimum/maximum singular
values of a matrix. κ(V ) returns the condition number of
the matrix smax(V )/smin(V ). Similarly, for a vector v,
κ(v) = maxi ∣vi∣/mini ∣vi∣. Frobenius norm and spectral
norm are denoted by ∥ ⋅∥F , ∥ ⋅∥ respectively. c,C > 0 denote
absolute constants. N (0,Id) will denote a vector in Rd with
i.i.d. standard normal entries. var[⋅] returns the variance of
a random variable.

3. Main Results
We first introduce covering numbers to quantify the impact
of regularization.

3.1. Covering Dimension

If constraint set C is a d-dimensional subspace (e.g. C =
Rh×p), weight matrices W ∈ C has d degrees of freedom.

This model applies to convolutional and unconstrained prob-
lems. For subspaces, the dimension d is sufficient to capture
the problem complexity and our main results apply when
the data size n obeys n ≥ O (d). For other constraint types
such as sparsity and matrix rank, we consider the constraint
set given by

C = {W ∈ Rh×p ∣R(W ) ≤ τ}
where R is the regularizer function such as `1 norm. To
capture the impact of regularizer, we define feasible ball
which is the set of feasible directions given by

T = Bh×p⋂ cl ({αU ∈ Rh×p ∣ W ⋆ +U ∈ C, α ≥ 0}) (2)

where cl(⋅) is the set closure and Bh×p is the unit Frobenius
norm ball. For instance, when R is the `0 norm, T is a
subset of τ + ∥W ⋆∥0 sparse weight matrices.

Covering number is a standard way to measure the complex-
ity of a set (Shalev-Shwartz & Ben-David, 2014). We will
quantify the impact of regularization by using “covering
dimension” which is defined as follows.
Definition 3.1 (Covering dimension). Let T ⊂ Bh×p and
C > 0 be an absolute constant. Covering dimension of T
is denoted by cover(T ) and is defined as follows. Suppose
there exists a set S satisfying

• T ⊂ conv(S) where conv(S) is the minimal closed
convex set containing S.

• Radius of S obeys supv∈S ∥v∥`2 ≤ C.

• For all ε > 0, `2 ε-covering number of S obeys
Nε(S) ≤ (1 + B

ε
)s for some s ≥ 0,B > 1 and all

ε > 0.
Then, cover(T ) ≤ s logB. Hence cover(T ) is the infimum
of all such upper bounds.

As illustrated in Table 1, covering dimension captures the
degrees of freedom for practical regularizers. This includes
sparsity, low-rank, and weight-sharing constraints discussed
previously. Note that Table 1 is obtained by setting τ =
R(W ⋆). In practice, a good choice for τ can be found by
using cross-validation. It is also known that the performance
of PGD is robust to choice of τ (see Thm 2.6 of (Oymak
et al., 2017)). For unstructured constraint sets without a
clean covering number, one can use stronger tools from
geometric functional analysis. In the extended manuscript
(Oymak, 2018), we discuss how more general complexity
estimates can be achieved by using Gaussian width of T
(Chandrasekaran et al., 2012) and establish a connection to
covering dimension.

Our results will apply in the regime n ≳ cover(T ) where n
is the number of data points. This will allow sample size to
be proportional to the degrees of freedom of the constraint
space implying data-efficient learning. Now that we can
quantify the impact of regularization, we proceed to state
our results.
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Constraint Weight matrix model cover(T )
None W ⋆ ∈ Rh×p hp
Convolutional k kernels of b width kb
Sparsity ∥ ⋅ ∥0 s nonzero weights s log(6hp/s)
`1 norm ∥ ⋅ ∥1 s nonzero weights s log(6hp/s)
Subspace W ⋆ ∈ S, dim(S) = k k
Matrix rank rank(W ⋆) ≤ r rh

Table 1: The list of low-dimensional models and correspond-
ing covering dimensions (up to a constant factor) for the
constraint sets C = {W ∣R(W ) ≤R(W ⋆)}. If constraint
is set membership such as subspace,R(W ) = 0 inside the
set and ∞ outside.

3.2. Generalization Properties

To provide insights on generalization, we derive the
Rademacher complexity of regularized neural networks with
1-hidden layer. To be consistent with the rest of the paper,
we focus on Gaussian data distribution. Rademacher com-
plexity is a useful tool that measures the richness of a func-
tion class and that allows us to give generalization bounds.
Given sample size n, let r ∈ Rn be an i.i.d. Rademacher
vector. Let {xi}ni=1 are input data points that are i.i.d. with
xi ∼ N (0,Ip). Finally, let F be the class of neural nets we
analyze. Then, Rademacher complexity of F with respect
to Gaussian data with n samples is given by

Rad(F) = 1

n
E{xi}ni=1[Er[sup

f∈F

n

∑
i=1

rif(xi)]]

The following lemma provides the result on Rademacher
complexity of networks with low-covering numbers.

Lemma 3.2. Suppose the activation function σ is L-
Lipschitz. Consider the class of one hidden-layer networks
F where f ∈ F is parametrized by its input matrix W and
output vector o and satisfies

• input/output relation is fo,W (x) = oTσ(Wx),

• ∥W ∥ ≤ RW and W ∈ C where ε-covering number of
C obeys Nε(C) ≤ (1 +B/ε)s for some B > 0, s ≥ 0,

• ∥o∥`2 ≤ Ro.

For Gaussian input data {xi}ni=1 ∼ N (0,Ip)n, Rademacher
complexity of class F is bounded by

Rad(F) ≤ LRoRWO
⎛

⎝

(h + s) log(n + p) + s log(1 + B
RW
)

n

⎞

⎠

1/2

This result obeys typical Rademacher complexity bounds
however the ambient dimension hp is replaced by the total

degrees of freedom which is given in terms of h + s logB.
Furthermore, unlike (Bartlett et al., 2017), we do not
have dependence on the length of the input data which is
E[∥x∥`2] ≈

√
p. This is because we take advantage of the

Gaussianity of input data which allows us to escape from
the worst-case analysis that suffer from E[∥x∥`2]. Com-
bined with standard learning theory results (Shalev-Shwartz
& Ben-David, 2014), this bound shows that empirical risk
minimization achieves small generalization error as soon as
n ∼ O (h + s logB) samples. Observe that O (s) compo-
nents of Rad(F) relate to the covering dimension of C and
become dominant as soon as s ≥ h.

We remark that typically B ∼ O (RW ). For instance, if C
is a B scaled unit `2 ball, in order to ensure it contains RW

scaled spectral ball {W ∣ ∥W ∥ ≤ RW }, we need to pick
B =

√
hRW .

Our main results are dedicated to the properties of the PGD
algorithm where the aim is to learn compact neural nets effi-
ciently. We show that Rademacher complexity bounds are
highly consistent with the sample complexity requirements
of PGD which is governed by the local optimization land-
scape such as positive-definiteness of the Hessian matrix.

3.3. Local Convergence of Regularized Training

A crucial ingredient of the convergence analysis of PGD
is the positive-definiteness of Hessian along restricted di-
rections dictated by T (Negahban & Wainwright, 2012).
Denoting Hessian at the ground truth W ⋆ by HW ⋆ , we
investigate its restricted eigenvalue

H(W ⋆,T ) = inf
v∈T

vTHW ⋆v

in the regime h ≤ p. Positivity of H(W ⋆,T ) will ensure
that the problem is well conditioned around W ⋆ and is
locally convergent. However, radius of convergence is not
guaranteed to be large. Below, we present a summary of our
results to provide basic insights about the actual technical
contribution while avoiding the exact technical details.
● Sample size: Whether the constraint set C is convex or
nonconvex, we have H(W ⋆,T ) > 0 as soon as

n ≥ O (cover(T )) .

This implies sample optimal local convergence for subspace,
sparsity and rank constraints among others.

● Radius of convergence: Basin of attraction for the PGD
iterations (1) are O (h−1) neighborhood of W ⋆ i.e. we re-
quire

∥W0 −W ⋆∥F ≤ O (h−1∥W ⋆∥F ) .

As there are more hidden nodes, we require a tighter initial-
ization. However, the result is independent of p.
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● Rate of convergence: Within radius of convergence,
weight matrix distance ∥Wi −W ⋆∥2

F reduces by a factor of

ρ = 1 −O ( 1

max{1, n−1p log p}h log p
) ,

at each iteration, which implies linear convergence. As
long as the problem is not extremely overparametrized (i.e.
n ≥ p log p), ignoring log terms, rate of convergence is
1−O (1/h). This implies accurate learning inO (h log ε−1)
steps given target precision ε.

We are now in a place to state the main results. We place
the following assumptions on the activation function for our
results. It is a combination of smoothness and nonlinearity
conditions.
Assumption 1 (Activation function). σ(⋅) obeys following
properties:

• σ(⋅) is differentiable, σ′(⋅) is an L-Lipschitz function
and ∣σ′(0)∣ ≤ L0 for some L,L0 > 0.

• Given g ∼ N (0,1) and θ > 0, define ζ(θ) as

ζ(θ) = min{var[σ′(θg)] − E[σ′(θg)g]2,
var[σ′(θg)g] − E[σ′(θg)g2]2}

where expectations are with respect to g. ζ(θ) > 0.

Example functions that satisfy the assumptions are

• Sigmoid and hyperbolic tangent,

• Error function σ(x) = ∫
x

0 exp(−t2)dt,

• Squared ReLU σ(x) = max{0, x}2,

• Softplus σ(x) = log(1+exp(x)) (for sufficiently large
θ).

While ReLU does not satisfy the criteria, a smooth ReLU
approximation such as softplus works. In general, definition
of ζ(⋅) reveals that our assumptions are satisfied if σ i) is
nonlinear, ii) is increasing, iii) has bounded second deriva-
tive, and iv) has symmetric first derivative (see Theorem 5.3
of (Zhong et al., 2017b)).

The ζ(θ) quantity is a measure of the nonlinearity of the
activation function. It will be used to control the minimum
eigenvalue of Hessian. A very similar quantity is used by
(Zhong et al., 2017b) where they have an extra term which
is not needed by us. This implies, our ζ(θ) is positive under
milder conditions.
Definition 3.3 (Critical quantities). Θ will be used to lower
bound H(W ⋆,T ) and Ω will control the learning rate.
They are defined as follows

Θ = L
2s2

maxκ
2(o)κh+2(W ⋆)
ζ(smin)

, Ω = h(log p + L2
0

L2s2
max

)

Θ will be a measure of the conditioning of the problem.
It is essentially unitless and obeys Θ ≥ 1 since L2s2

max ≥
ζ(smin). Ω will be inversely related to the radius of conver-
gence and learning rate. If L0 = 0 (e.g. quadratic activation),
Ω simplifies to h log p

3.3.1. RESTRICTED EIGENVALUE OF HESSIAN

Our first result is a sample complexity bound for the re-
stricted positive definiteness of the Hessian matrix at W ⋆.
It implies that problem is locally well-conditioned with min-
imal data (n ∼ cover(T )).

Theorem 3.4. Suppose C is a closed set that includes W ⋆,
h ≤ p, and let {xi}ni=1 be i.i.d. N (0,Ip) data points. Set
ῡ = CΘ log2(CΘ) and suppose

n ≥ O ((
√

cover(T ) + t)2ῡ4) .

With probability 1 − exp(−n/ῡ2) −
2 exp(−O (min{t√n, t2})), we have that1

H(W ⋆,T ) ≥ ζ(smin)o2
min

κh+2(W ⋆)ῡ3
.

Proof sketch. Given a data point x ∈ Rp, we define d(x) =
o⊙σ′(W ⋆x) ∈ Rh where σ′ is the entrywise deriva-
tive and ⊙ is entrywise product. Then, define ρ(x) =
d(x)⊗x ∈ Rhp where ⊗ is the Kronecker product. At
ground truth, we have

HW ⋆ = n−1
n

∑
i=1

ρ(xi)ρ(xi)T . (3)

After showing Σ = E[ρ(x)ρ(x)T ] is positive definite, we
need to ensure that

H(W ⋆,T ) ≥ O (smin(Σ)) , (4)

with finite sample size n. This boils down to a high-
dimensional statistics problem. We first show that ρ(x)
has subexponential tail for x ∼ N (0,Ip) i.e. for all unit vec-
tors v, P(∣vT (ρ(x) − E[ρ(x)])∣ ≥ t) ≤ 2 exp(−Cσ,o,W ⋆t).
Next, we prove a novel restricted eigenvalue result for ran-
dom matrices with subexponential rows as in (3). This is
done by combining Mendelson’s small-ball argument with
tools from generic chaining (Mendelson, 2014; Talagrand,
2006). Careful treatment is necessary to address the facts
that ρ(xi) is not zero-mean and its tail depends on σ,o,W ⋆.
Our final result ensures (4) with n ≥ O (cover(T )) samples
where O () has the dependencies on the aforementioned
variables.

1If W ⋆ has orthogonal rows, κh+2
(W ⋆

) term can be removed
from Θ by utilizing a more involved analysis that uses an alterna-
tive definition of ζ. The reader is referred to the supplementary
material.



Learning Compact Neural Networks with Regularization

3.3.2. LINEAR CONVERGENCE OF PGD

Our next result utilizes Theorem 3.4 to characterize PGD
around O (1/h) neighborhood of the ground truth.

Theorem 3.5. Suppose C is a convex and closed set that
includes W ⋆ and let {xi}ni=1 be i.i.d. N (0,Ip) data points.
Set ῡ = CΘ log2(CΘ) and suppose

n ≥ O ((
√

cover(T ) + t)2ῡ4) , (5)

Set q = max{1,8n−1p log p}. Define learning rate µ and
rate of convergence ρ as

µ = 1

6qo2
maxL

2Ω
, ρ = 1 − 1

12qῡ4Ω
(6)

Given W (independent of data points), consider the PGD
iteration

Ŵ = PC(W − µ∇L(W ))

Suppose W satisfies ∥W −W ⋆∥F ≤ O ( ∥W ⋆∥F
q
√
hΩ log pῡ4

).

Then, Ŵ obeys

∥Ŵ −W ⋆∥2
F ≤ ρ∥W −W ⋆∥2

F ,

with probability 1 − P where P = exp(−n/ῡ2) +
2 exp(−O (min{t√n, t2})) + 8(n exp(−p/2) + np−10 +
exp(−qn/4p)).

3.3.3. CONVERGENCE TO THE GROUND TRUTH

Theorem 3.5 shows the improvement of a single iteration.
Unfortunately, it requires the existence of fresh data points
at every iteration. Once the initialization radius becomes
tighter (O (p−1/2h−1) rather than O (h−1)), we can show
a uniform convergence result that allows W to depend
on data points. Combining both, the following corollary
shows that repeated applications of projected gradient con-
verges in O (h log ε−1) steps to ε neighborhood of W ⋆

using O (cover(T )h log2 p) samples. This is in contrast to
related works (Zhong et al., 2017b;a) which always require
fresh data points.

Theorem 3.6. Consider the setup of Theorem 3.5. Let K =
O (qῡ4Ω log p). Given n̄ = Kn independent data points
(where n obeys (5)), split dataset into K equal batches.

Starting from a point ∥W0 −W ⋆∥F ≤ O ( ∥W ⋆∥F
q
√
hΩ log pῡ4

),

apply the PGD iterations

Wi+1 =Wi − µ∇Lmin{i,K}(Wi),

where Li is the loss function associated with ith batch. With
probability 1 −KP , all Wi for i ≥ 1 obey

∥Wi −W ⋆∥2
F ≤ ρi∥W0 −W ⋆∥2

F .

4. Application to Convolutional Neural Nets
We now illustrate how CNNs can be treated under our frame-
work. To describe shallow CNN, suppose we have k kernels
{ki}ki=1 each with width b. Set K = [k1 . . . kk]T ∈ Rk×b.
Denote stride size by s and set r = ⌊p/s⌋.
To describe our argument, we introduce some notation spe-
cific to the convolutional model. Let v` ∈ Rb denote ith sub-
vector of v ∈ Rp corresponding to entries from `s+1 to `s+b
for 0 ≤ ` ≤ r − 1. Also given b ∈ Rb, let v = map`(b) ∈ Rp

be the vector obtained by mapping b to the ith subvector i.e.
vj = b if j = ` and 0 otherwise.

For each data point xj , we consider its r subvectors {xlj}rl=1

and filter each subvector with each of the kernels. Then,
the input/output relation has the following form (assuming
output layer weights oi,l)

yCNN(K,xj) =
k

∑
i=1

r

∑
l=1

oi,lσ(kTi xlj)

Given labels {yi}ni=1, the gradient of `22-loss with respect to
ki and jth label, takes the form

∇LCNN,j(ki) =
r

∑
l=1

oi,l(yCNN(K,xj) − yj)σ′(kTi xj,l)xj,l

We will show that a CNN can be transformed into a FNN
combined with a subspace constraint. This will allow us
to apply Theorem 3.5 to CNNs which will yield near op-
timal local convergence guarantees. We start by writing
convolutional model as a fully-connected network.
Definition 4.1 (Convolutional weight matrix structure). Set
h = kr. Given kernels {ki}ki=1, we construct the fully-
connected weight matrix W = FC(K) ∈ Rh×p as follows:
Representing {1, . . . , h} as cartesian product of {1, . . . , k}
and {1, . . . , r}, define the h = kr rows {wi,j}(k,r)(i,j)=(1,1) of
the weight matrix W as wi,j = mapj(ki) for 1 ≤ i ≤ r and
1 ≤ l ≤ k. Finally let C be the space of all convolutional
weight matrices defined as

C = {FC(K) ∣ {ki}ki=1 ∈ Rb}.

This model yields a matrix W that has double structure:

• Each row of W has at most b = p/r nonzero entries.

• For fixed i, the weight vectors {wi,l}rl=1 are just shifted
copies of each other.

This implies the total degrees of freedom is same as {ki}ki=1

and convolutional constraint C is a kb dimensional subspace.

Next, given W = FC(K), observe the equality of the pre-
dictions i.e.

yFC(W ,xj) =
k

∑
i=1

r

∑
l=1

oi,lσ(wT
i,lx) = yCNN(K,xj)
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Similarly for W = FC(K), one can also show the equality
of the CNN gradient and projected FNN gradient. Consider-
ing the following CNN and FNN gradient iterations

K̂ = K − µ
r
∇LCNN(K), Ŵ = PC(W − µ∇LFC(W )),

we have the equality FC(K̂) = Ŵ . This relation yields the
following corollary of Theorem 3.5.

Corollary 4.2. Let {xi}ni=1 be i.i.d. N (0,Ip) data points.
Given k kernels K⋆ = [k⋆1 . . . k⋆k]T and generate the labels

yj = yCNN(K⋆,xj)

Assume FC(K⋆) is full row-rank and let Θ,Ω, ῡ, q, µ, ρ,P
be same as in Theorem 3.5 defined with respect to the matrix
FC(K⋆). Suppose n ≥ O ((

√
kb + t)2/ῡ4) and consider

the convolutional iteration

K̂ = K − µ
r
∇LCNN(K).

Suppose the initial point K = [k1 . . . kk]T satisfies

∥K −K⋆∥F ≤ O ( ∥K⋆∥F
q
√
hΩ log pῡ4

). Then, with 1 − P prob-

ability,
∥K̂ −K⋆∥2

F ≤ ρ∥K −K⋆∥2
F .

This corollary can be combined with the results of (Zhong
et al., 2017a) to obtain a globally convergent CNN learning
algorithm using n ∼ O (poly(k, t, log p)) samples. In par-
ticular, for local convergence (Zhong et al., 2017a) needed
n ≥ O (p) samples whereas we show that there is no depen-
dence on the data length p.

5. Numerical Results
To support our theoretical findings, we present numerical
performance of sparsity and convolutional constraints for
neural network training. We consider synthetic simulations
where o is a vector of all ones and weight matrix W ⋆ ∈ Rh×p

is sparse or corresponds to a CNN.

5.1. Sparsity Constraint

We generate W ⋆ matrices with exactly s nonzero entries
at each row and nonzero pattern is distributed uniformly
at random. Each entry of W ⋆ is N (0, p

hs
) to ensure

E[∥W ⋆x∥2
`2
] = ∥x∥2

`2
. We set the learning rate to µ = 5.

We verified that smaller learning rate leads to similar results
with slower convergence. We declare the estimate Ŵ to
be the output of PGD algorithm after 2000 iterations. We
consider two sets of simulations using ReLU activations.

• Good initialization: We set W0 =W ⋆ +Z where Z
has i.i.d. N (0, 1

h
) entries. Note that noise Z satisfies

E[∥Z∥2
F ] = E[∥W ⋆∥2

F ].

Figure 1: Experiments with good initialization W0 =W ⋆
+Z.

Figure 2: Experiments with random initialization W0 = Z.

• Random initialization: We set W0 = Z where Z has
i.i.d. N (0, 1

h
) entries.

Each set of experiments consider three algorithms.

• Unconstrained: Only uses gradient descent.

• `1-regularization: Projects W to `1 ball scaled by the
`1 norm of W ⋆.

• `0-regularization: Projects W to set of sh sparse
matrices.

For our experiments, we picked p = 80, h = 20 and
s = p/10 = 8. For training, we use n data points which
varies from 100 to 1000. Test error is obtained by averag-
ing ntest = 1000 independent data points. For each point in
the plots, we averaged the outcomes of 20 random trials.
The total degrees of freedom is the number of nonzeros
equal to sh = 160. Our theorems imply good estimation via
O (sh log p/s) data points when initialization is sufficiently
close. Figure 1 summarizes the outcome of the experiments
with good initialization. Suppose y is the label and ŷ is
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Figure 3: Experiments for convolutional constraint.

the prediction. We define the (normalized) test and train
losses as the ratio of empirical variances that approximates
the population var[y−ŷ]

var[y] . Centering (i.e. variance) is used to
eliminate the contribution of trivial but large E[y] term due
to nonnegative ReLU outputs. First, we observe that `1 is
slightly better than `0 constraint however both approach ≈ 0
test loss when n ≥ 600. Unregularized model has significant
test error for all 100 ≤ n ≤ 1000 while perfectly overfitting
training set for all n values. We also consider the recovery
of ground truth W ⋆. Since there is permutation invariance
(permuting rows of W doesn’t change the prediction), we
define the correlation between W ⋆ and Ŵ as follows,

corr(W ⋆,Ŵ ) = 1

h

h

∑
i=1

max
1≤j≤h

⟨w⋆
i , ŵj⟩

∥w⋆
i ∥`2∥ŵj∥`2

where wi is the ith row of W . In words, each row of
W ⋆ is matched to the highest correlated row from Ŵ and
correlations are averaged over h rows. Observe that, if Ŵ
and W ⋆ have matching permutations, corr(W ⋆,Ŵ ) = 1.
We see that corr(W ⋆,Ŵ ) ≈ 1 once n ≥ 600 which is the
moment test error hits 0.

Figure 2 summarizes the outcome of the experiments with
random initialization. In this case, we vary n from 200
to 2000 but the rest of the setup is the same. We ob-
serve that unlike good initialization, `0 test error and
1 − corr(W ⋆,Ŵ ) does not hit 0 and `1 approaches 0 only
at n = 2000. On the other hand, both metrics demonstrate
the clear benefit of sparsity regularization. The performance
gap between `1 and `0 is surprisingly high however it is
consistent with Theorem 3.5 which only applies to convex
regularizers. The performance difference between good and
random initialization implies that initialization indeed plays
a big role not only for finding the ground truth solution W ⋆

but also for achieving good test errors.

5.2. Convolutional Constraint

For the CNN experiment, we picked the following config-
uration. Problem parameters are input dimension p = 81,

kernel width b = 15, stride s = 6, number of kernels k = 4
and learning rate µ = 1. We did not use zero-padding hence
r = (p − b)/s + 1 = 12. This implies kr = 48 hidden layers
for fully-connected representation. The subspace dimension
and degrees of freedom is kb = 60. We generate kernel
entries with i.i.d. N (0, p

hb
) and the random matrix Z with

i.i.d. N (0, p
bk

) entries. The noise variance is chosen higher
to ensure E[∥PC(Z)∥2

F ] = E[∥FC(K)∥2
F ] i.e. Z projected

onto convolutional space has the same variance as the kernel
matrix. We compare three models.

• Unconstrained model with W0 = Z initialization:
Uses only gradient descent.

• CNN subspace constraint with W0 = Z initialization:
Weights are shared via CNN backpropagation.

• CNN subspace constraint with with W0 = W ⋆ + Z
initialization.

Figures 1 illustrates the outcome of CNN experiments. Un-
constrained model barely makes it into the test loss figure
due to low signal-to-noise ratio. Focusing on CNN con-
straints, we observe that good initialization greatly helps
and quickly achieves ≈ 0 test error. However random initial-
ization has respectable test and correlation performance and
gracefully improves as the data amount n increases.

6. Conclusions
In this work, we studied neural network regularization in
order to reduce the storage cost and to improve general-
ization properties. We introduced covering dimension to
quantify the impact of regularization and the richness of
the constraint set. We proposed projected gradient descent
algorithms to efficiently learn compact neural networks
and showed that, if initialized reasonably close, PGD lin-
early converges to the ground truth while requiring mini-
mal amount of training data. The sample complexity of
the algorithm is governed by the covering dimension. We
also specialized our results to convolutional neural nets and
demonstrated how CNNs can be efficiently learned within
our framework. Numerical experiments support the substan-
tial benefit of regularization over training fully-connected
neural nets.

Global convergence of the projected gradient descent ap-
pears to be a more challenging problem. In Section 5, we
observed that gradient descent with random initialization
can get stuck at local minima. For fully-connected networks,
this is a well-known issue and the best known global conver-
gence results are based on tensor initialization (Zhong et al.,
2017b; Safran & Shamir, 2017; Janzamin et al., 2015). Inter-
esting future directions include developing data-efficient ini-
tialization algorithms that can take advantage of the network
priors (weight-sharing, sparsity, low-rank) and studying the
properties of PGD from random initialization.
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