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1. Linear Heuristic Function
In section 3.1 of the main paper we show that greedy search
combined with the priority function p(v) = g(v) + h∗(v)
will lead to the exact solution of the original ILP (Eqs. (3)
to (5) in the main paper), under the condition that there is
no duality gap. For convenience we repeat the definition of
the optimal heuristic function h∗(v) here:

h∗(v) = −
∑

(k,i)∈v

∑
j

Akjiu
∗
j (x) (1)

In this section we show that the heuristic function in Eq. (1)
can be written as a linear function of the form −w · φ(v).

First, let us recap the meanings and ranges of indices k, i,
and j in Eq. (1):

• index k (from 1 to K): the kth categorical variable.

• index i (from 1 to n): the ith label.

• index j (from 1 to m): the jth constraint.

Second, recall that a search node v is just a set of pairs
{(k, i)}, each element of which specifies that the variable
yk is assigned the ith label.

Now we can define a K×n×m dimensional feature vector
φ(v), the component of which is labeled by a tuple of indices
(k, i, j). Let the (k, i, j)th component of the feature vector
be

φkij(v) =

{
u∗j (x), if (k, i) ∈ v
0, otherwise

(2)

Also define the corresponding weight parameter

wkij = Akji (3)

Clearly the heuristic function in Eq. (1) is just −w · φ(v),
where φ and w is defined in Eq. (2) and Eq. (3), respectively.
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2. Proof of Mistake Bound Theorem
The goal of this section is to prove Theorem 1 in the main
paper. We will prove two lemmas which will lead to the final
proof of the theorem. Before introducing the two lemmas,
we repeat the relevant definitions here for convenience.

LetRφ be a constant such that for every pair of search nodes
(v, v′), ‖φ(v)−φ(v′)‖ ≤ Rφ. LetRg be a constant such that
for every pair of search nodes (v, v′), |g(v)− g(v′)| ≤ Rg .
Finally we define the level margin of a weight vector w for
a training set as

γ = min
{(v,v′)}

w ·
(
φ(v)− φ(v′)

)
(4)

Here, the set {(v, v′)} contains any pair such that v is y-
good, v′ is not y-good, and v and v′ are at the same search
level. The priority functin used to rank the search nodes is
defined as pw(v) = g(v)−w · φ(v). Smaller priority func-
tion value ranks higher during search. With these definitions
we have the following two lemmas:

Lemma 1. Let wk be the weights before the kth mistake is
made (w1 = 0). Right after the kth mistake is made, the
norm of the weight vector wk+1 has the following upper
bound:

‖wk+1‖2 ≤ ‖wk‖2 +R2
φ + 2Rg

Proof. When the kth mistake is made, we get wk+1 by using
the update rule in either line 11 or line 14 of the algorithm.
Let us consider the case of updating using line 11 first. We
have

‖wk+1‖2 = ‖wk + φ(v∗)− 1

|B|
∑
v∈B

φ(v)‖2

= ‖wk‖2 + ‖φ(v∗)− 1

|B|
∑
v∈B

φ(v)‖2

+ 2wk ·
(
φ(v∗)− 1

|B|
∑
v∈B

φ(v)
)

(5)

We will upper bound each term separately on the right side
of Eq. (5). To bound the second term we use the definition
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of Rφ and the properties of vector dot product:

‖φ(v∗)− 1

|B|
∑
v∈B

φ(v)‖2

=
1

|B|2
‖
∑
v∈B

(φ(v∗)− φ(v))‖2

=
1

|B|2
∑
v∈B

(φ(v∗)− φ(v)) ·
∑
v′∈B

(φ(v∗)− φ(v′))

=
1

|B|2
∑

v,v′∈B
(φ(v∗)− φ(v)) · (φ(v∗)− φ(v′))

≤ 1

|B|2
∑

v,v′∈B
‖φ(v∗)− φ(v)‖‖φ(v∗)− φ(v′)‖

≤ 1

|B|2
∑

v,v′∈B
R2
φ

= R2
φ (6)

To bound the third term on the right side of Eq. (5), note that
the update is happening because of the kth mistake is being
made. Therefore for any node v ∈ B, we have (smaller
priority function value ranks higher)

pwk(v∗) ≥ pwk(v)

Using the definitions of pwk(v) and Rg:

wk ·
(
φ(v∗)− φ(v)

)
≤ g(v∗)− g(v) ≤ Rg

Now we have the upper bound for the third term on the right
side of Eq. (5):

2wk ·
(
φ(v∗)− 1

|B|
∑
v∈B

φ(v)
)

=
2

|B|
wk ·

∑
v∈B

(
φ(v∗)− φ(v)

)
=

2

|B|
∑
v∈B

wk ·
(
φ(v∗)− φ(v)

)
≤ 2

|B|
∑
v∈B

Rg

= 2Rg (7)

Combining Eqs. (5), (6) and (7) leads to:

‖wk+1‖2 ≤ ‖wk‖2 +R2
φ + 2Rg

Next we consider the case of updating using line 14 of the
algorithm, in which we have

‖wk+1‖2 = ‖wk + φ(v∗)− φ(v̂)‖2

= ‖wk‖2 + ‖φ(v∗)− φ(v̂)‖2

+ 2wk ·
(
φ(v∗)− φ(v̂)

)
(8)

Using the definition of Rφ:

‖φ(v∗)− φ(v̂)‖2 ≤ R2
φ. (9)

Also, since a mistake is made by the weight wk, we know
pwk(v∗) ≥ pwk(v̂), which implies

wk ·
(
φ(v∗)− φ(v̂)

)
≤ g(v∗)− g(v̂) ≤ Rg (10)

Combining Eqs (8), (9) and (10) again leads to

‖wk+1‖2 ≤ ‖wk‖2 +R2
φ + 2Rg

Lemma 2. Let wk be the weights before the kth mistake is
made (w1 = 0). Let w be a weight vector with level margin
γ as defined in Eq. (4). Then

w ·wk+1 ≥ w ·wk + γ

Proof. First consider the update rule of line 11 of the algo-
rithm,

w ·wk+1 = w ·
(
wk + φ(v∗)− 1

|B|
∑
v∈B

φ(v)
)

= w ·wk +
1

|B|
∑
v∈B

w ·
(
φ(v∗)− φ(v)

)
≥ w ·wk +

1

|B|
∑
v∈B

γ

= w ·wk + γ,

where we use the definition of the level margin γ. Next
consider the update rule of line 14 of the algorithm,

w ·wk+1 = w ·
(
wk + φ(v∗)− φ(v̂)

)
= w ·wk + w ·

(
φ(v∗)− φ(v̂)

)
≥ w ·wk + γ

Now we are ready to prove Theorem 1 of the main paper,
which is repeated here for convenience.

Theorem 1 (Speedup mistake bound). Given a training set
such that there exists a weight vector w with level margin
γ > 0 and ‖w‖ = 1, the speedup learning algorithm
(Algorithm 1) will converge with a consistent weight vector

after making no more than
R2
φ+2Rg
γ2 weight updates.

Proof. Let wk be the weights before the kth mistake is made
(w1 = 0). Using Lemma 1 repetitively (induction on k)
gives us

‖wk+1‖2 ≤ k(R2
φ + 2Rg)
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Similarly, induction on k using Lemma 2,

w ·wk+1 ≥ kγ.

Finally we have

1 ≥ w ·wk+1

‖w‖‖wk+1‖
≥ kγ√

k(R2
φ + 2Rg)

which gives us

k ≤
R2
φ + 2Rg

γ2

3. Proof of Theorem 2 of the Main Paper
In this section we prove Theorem 2 of the main paper. We
repeat the relevant definitions and the theorem here for con-
venience.

Given a fixed beam size b and the beam candidates Ct at
step t from which we need to select the beam Bt, we can
rank the nodes in Ct from smallest to largest according to
the heuristic function h(v). Denote the bth smallest node as
vb and the (b + 1)th smallest node as vb+1, we define the
heuristic gap ∆t as

∆t = h(vb+1)− h(vb) (11)

If the beam Bt is selected from Ct only according to heuris-
tic function, then ∆t is the gap between the last node in the
beam and the first node outside the beam. Next we define
the path-cost gap δt as

δt = max
v,v′∈Ct

(v − v′) (12)

With these definitions we have the following theorem:

Theorem 2. Given the beam candidates Ct with heuristic
gap ∆t and path-cost gap δt, if ∆t > δt, then using only
heuristic function to select the beam Bt will have the same
set of nodes selected as using the full priority function up to
their ordering in the beam.

Proof. Let v∗ ∈ Ct be any node that is ranked within top-b
nodes by the heuristic function h(·), and let v ∈ Ct be an
arbitrary node that is not within top-b nodes. By definitions
of vb and vb+1 we have

h(v∗) ≤ h(vb) ≤ h(vb+1) ≤ h(v)

Therefore,

h(v)− h(v∗) ≥ h(vb+1)− h(vb) = ∆t. (13)

Also by definition of δt we have

g(v)− g(v∗) ≥ −δt (14)

Combining Eqs. (13) and (14),

p(v)− p(v∗) =
(
g(v) + h(v)

)
−
(
g(v∗) + h(v∗)

)
=
(
h(v)− h(v∗)

)
+
(
g(v)− g(v∗)

)
≥ ∆t − δt
> 0.

Thus for any node v∗ ∈ Ct, if it is selected in the beam
Bt (ranked top b) by the heuristic funciton h(·), it will
be selected in the beam Bt by the full priority funciton
p(·).


