
Appendix

A. Proof
Theorem 1. The relative efficiency of logistic regression to
linear discriminant analysis is

Effp(ζ,∆) = (Q1 + (p− 1)Q2)/(Q3 + (p− 1)Q4),

where Q2 = 1 + π0π1∆2, Q4 = 1
A0

and

Q1 =
(
1 ζ

∆

) [ 1 + ∆2

4 (π0 − π1)∆
2

(π0 − π1)∆
2 1 + 2π0π1∆2

] [
1
ζ
∆

]
,

Q3 =
(
1 ζ

∆

) 1

A0A2 −A2
1

[
A2 A1

A1 A0

] [
1
ζ
∆

]
.

Proof. The proof can be found in Efron (1975).

Theorem 2. If πi = πj , the expectation of the distance
d(i,j) is a function of the Mahalanobis distance ∆i,j:
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where Φ(·) is the normal cumulative distribution function.

Proof. Since d(i,j) is the distance of x(i) to the decision
boundary between class i and j decided by the Fisher’s
linear discriminant function λi,j(x) = βi,j + α>i,jx = 0,
where

βi,j = log(πi/πj) +
1

2
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α>i,j = (µi − µj)>.

We have
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Because x(i) is sampled from the conditional Gaussian dis-
tribution of class i, there is

x(i) ∼ N (µi, I).

Let Hi,j = βi,j + α>i,jx(i), and ζi,j = log(πi/πj), then
according to the property of Gaussian distribution we can
know that

Hi,j ∼ N (µ′i,j , σ
2
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i,j . Thus |Hi,j | distributes as a
Folded Gaussian (Normal) Distribution. From the property
of folded Gaussian distribution we know that
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For notation clarity, we let
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Since E[d(i,j)] = E[|Hi,j |]/∆i,j , we have
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The derivative of E[d(i,j)] to ∆i,j is
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where the Mahalanobis distance ∆i,j is non-negative. Spe-
cially, when πi = πj , i.e., ζi,j = 0, there is
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Theorem 3. Assume that
∑L
i=1 µi = 0 and ‖µ‖22 = C.

Then there has
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The equality holds if and only if
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where i, j ∈ [L] and µi, µj ∈ µ.

Proof. According to the definition of RB, we have
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Since
∑L
i=1 µi = 0 and ‖µ‖22 = C, we further have
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Note that the final equality holds if and only if all the equal-
ities hold, i.e., there are

‖µi‖22 = C,∀i ∈ [L],

and

∆i,j = constant,∀i 6= j.

Thus we can easily derive that the final equality holds if and
only if

µ>i µj =

{
C, i = j,
C/(1− L), i 6= j,

where i, j ∈ [L] and µi, µj ∈ µ.

B. More Discussions and Details
In this section we discuss more on the loss function of the
MM-LDA network, and the choice of the square norm of
C of MMD. Besides, we provide technical details of the
adversarial training methods we use in our experiments.

B.1. The Loss Function of the MM-LDA Network

Considering that the network with parameters θ induces
a joint distribution on the latent feature z and the label y
as Qθ(z, y). We denote the MMD as P (z, y), H(P,Q) as
the cross-entropy for the distributions P and Q. Then the
training objective could be designed as

H(Qθ, P ) = E(z,y)∼Qθ
[− logP (y|z)− logP (z)]

= E(z,y)∼Qθ
[− logP (y|z)] + Ez∼Q′

θ
[− logP (z)].

Here Q
′

θ is the marginal distribution of Qθ for z. Since we
are focusing on classification tasks, we assume for tractabil-
ity that the marginal distribution Q

′

θ(z) is consistent with it
of the MMD, i.e., P (z). Therefore, minimizing H(Qθ, P )
equals to minimizing E(z,y)∼Qθ

[− logP (y|z)], which fur-
ther leads to the loss function LMM under the Monte Carlo
approximation. In practice, the gap between Q

′

θ(z) and
P (z) would not influence the performance, as shown in our
experiment results.

In order to better gather the latent feature vectors to their
corresponding conditional Gaussian distributions, the loss
function of the MM-LDA network should be

LMM = −FMM(µ∗y)> logFMM(x),

where FMM(µ∗y)k = P (y = k|z = µ∗y), k ∈ [L]. FMM(µ∗y)
is the prediction vector on the mean vector µ∗y in MMD. We
further have



Max-Mahalanobis Linear Discriminant Analysis Networks
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Thus the L∞-distance between the one-hot label vector 1y
and FMM(µ∗y) is
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It is easy to see that the gap between 1y and FMM(µ∗y)
rapidly decreases w.r.t C. For instance, when C > 10,
L = 10, we numerically have ‖1y − FMM(µ∗y)‖∞ ≤ 10−8.
Therefore we use the one-hot label 1y in the loss function
because of its simplicity.

B.2. Technical Details of Adversarial Training

Our experiments are done on NVIDIA Tesla P100 GPUs.
The number of the adversarial fine-tuning steps on MNIST
is 10,000 and on CIFAR-10 is 30,000. We apply a constant
learning rate of 0.01 on both datasets. The mixing ratio of
normal examples and adversarial examples is 1:1. Averagely
the time cost to craft an adversarial example using FGSM,
BIM and ILCM is less than 0.1 seconds, while using JSMA
is around 5 seconds. This makes adversarial training on
JSMA computationally expensive.
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