
Supplementary Material for
High-Quality Prediction Intervals for Deep Learning:

A Distribution-Free, Ensembled Approach

Tim Pearce 1 2 Mohamed Zaki 1 Alexandra Brintrup 1 Andy Neely 1

A. Experimental details
In this section we give full experimental details of the work
described in the main paper. Code is made available online1.
Note that whilst single-layer NNs were used to be consistent
with previous works, the developed methods may be applied
without modification to deeper architectures.

A.1. Qualitative Experiments

A.1.1. TRAINING METHOD: PSO VS. GD

For the qualitative training method comparison, PSO vs.
GD (section 5.1), NNs used ReLU activations and 50 nodes
in one hidden layer. GD was trained using LossQD−soft

and run for 2,000 epochs, PSO was trained using LossQD

and run for 50 particles over 2,000 iterations, parameters as
given in SPSO 2011 were followed (Thomas et al., 2012).
Data consisted of 200 points sampled uniformly from the
interval [−2, 2].

A.1.2. LOSS FUNCTION: QD VS. MVE

For the loss function comparison, QD vs. MVE (section
5.2), NNs used Tanh activations and 50 nodes in one hidden
layer. Both methods were trained with GD and results are
for an individual NN (not ensembled). Data consisted of
200 points sampled uniformly from the interval [−2, 2].

A.1.3. MODEL UNCERTAINTY ESTIMATION:
ENSEMBLES

For evaluation of ensembling (section 5.3), we sampled
50 points uniformly in the interval [−4,−1], and another
50 from [1, 4]. An ensemble of ten QD NNs using ReLU
activations and 50 nodes in one hidden layer was trained

1Department of Engineering, University of Cambridge, UK
2Alan Turing Institute, UK. Correspondence to: Tim Pearce
<tp424@cam.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1https://github.com/TeaPearce

with GD, using parameter resampling.

A.1.4. TRAINING METHOD / LOSS FUNCTION
PERMUTATION

We provide quantitative results in table 1 for the two syn-
thetic datasets described in sections 5.1 & 5.2. These results
cover permutations of loss function and training method
[LUBE, QD, MVE]x[GD, PSO], using individual NNs (not
ensembled).

Again, 200 training data points were sampled uniformly
from the interval [−2, 2]. Validation was on 2,000 data
points sampled from the same interval. Experiments were
repeated ten times. PIs targeted 95% coverage.

LUBE relates to the ‘softened’ version of eq. (16), and QD
to LossQD−soft. Softened versions were used for both GD
and PSO (note ‘soft’ and ‘hard’ versions were contrasted in
section 5.1).

For GD, 2,000 epochs were used, for PSO, 10 particles
were run over 2,000 epochs. This meant the computational
effort for PSO was five times that required by GD - the
computational equivalent of 2,000 forward and backward
passes for GD is 2 particles at 2,000 epochs for PSO.

NLL & RMSE metrics were computed, however should be
viewed with caution for LUBE and QD - see section A.2.2.

All training methods and loss functions slightly overfitted
the training data, producing PICP’s lower than 95%. Gen-
erally GD-trained NNs outperformed their PSO counter-
parts in terms of the primary metric of their loss function
(MPIW for LUBE and QD, NLL for MVE), although qual-
ity of other metrics was similar. QD produced comparable
results to LUBE - we note that our contributions to the loss
function were from a theoretical and usability perspective
and did not expect a large impact on performance. MVE
produced PIs of comparable width to LUBE and QD for the
case of normal noise, but PIs were significantly wider in the
exponential noise case.



High-Quality Prediction Intervals for Deep Learning

Table 1. Full permutation results of training method and loss function on synthetic data with differing noise distributions. Mean ± one
standard error.

LUBE MVE QD
GD PSO GD PSO GD PSO

NORMAL NOISE

PICP 0.90 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.93 ± 0.01 0.91 ± 0.01 0.91 ± 0.01
MPIW 1.16 ± 0.05 1.13 ± 0.04 1.11 ± 0.04 1.00 ± 0.02 0.97 ± 0.04 1.07 ± 0.04
RMSE 0.42 ± 0.01 0.43 ± 0.01 0.39 ± 0.00 0.38 ± 0.01 0.40 ± 0.01 0.41 ± 0.01
NLL 0.60 ± 0.07 0.47 ± 0.06 -0.44 ± 0.02 -0.23 ± 0.04 0.13 ± 0.08 0.37 ± 0.08

EXPONENTIAL NOISE

PICP 0.91 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.95 ± 0.00 0.91 ± 0.01 0.93 ± 0.01
MPIW 0.80 ± 0.02 0.93 ± 0.04 1.07 ± 0.04 0.99 ± 0.03 0.84 ± 0.03 0.98 ± 0.04
RMSE 0.39 ± 0.00 0.40 ± 0.01 0.38 ± 0.01 0.37 ± 0.01 0.39 ± 0.01 0.41 ± 0.01
NLL 0.36 ± 0.09 0.64 ± 0.13 -0.48 ± 0.02 -0.18 ± 0.02 0.40 ± 0.05 0.54 ± 0.13

A.2. Benchmarking Experiments

A.2.1. SET UP AND HYPERPARAMETERS

For the benchmarking section, experiments were run across
ten open-access datasets, train/test folds were randomly split
90%/10%, with experiments repeated 20 times, input and
target variables were normalised to zero mean and unit vari-
ance. NNs had 50 neurons in one hidden layer with ReLU
activations. The exceptions to this were for experiments
with the two largest datasets, Protein and Song Year, where
NNs had 100 neurons in one hidden layer, and were repeated
five times and one time respectively.

The softening factor was constant for all datasets, s = 160.0.
For the majority of the datasets λ = 15.0, but was set to
4.0 for naval, 40.0 for protein, 30.0 for wine, and 6.0 for
yacht. The Adam optimiser was used with batch sizes of
100. Five NNs were used in each ensemble, using parameter
resampling.

Hyperparameters requiring tuning were learning rate, decay
rate, λ, initialising variance, and number of training epochs.
Tuning was done on a single 80%/20% train/validation split
and using random search.

A.2.2. NLL & RMSE RESULTS

In table 2 we report NLL & RMSE in unnormalised form
to be consistent with previous works. Note that in the main
results (section 6) we found it more meaningful to leave
MPIW in normalised form so that comparisons could be
made across datasets.

To compute NLL & RMSE for QD-Ens, we used the mid-
point of the PIs as the point estimate to calculate RMSE.
We computed the equivalent Gaussian distribution of the
PIs by centering around this midpoint and using a standard
deviation of (yUi−yLi)/3.92 (since the PI represented 95%
coverage), which enabled NLL to be computed. We em-

phasise that by doing this, we break the distribution-free
assumption of the PIs, and include these purely for the pur-
pose of consistency with previous work. Unsurprisingly,
NLL & RMSE metrics for QD-Ens are poor. MVE-Ens
results are in line with previously reported work (Lakshmi-
narayanan et al., 2017).

References
Lakshminarayanan, B., Pritzel, A., and Blundell, C. Sim-

ple and Scalable Predictive Uncertainty Estimation using
Deep Ensembles. In 31st Conference on Neural Informa-
tion Processing Systems, 2017.

Thomas, P., Mansot, J., Delbe, K., Sauldubois, A., and
Bilas, P. Standard Particle Swarm Optimisation, 2012.
URL https://hal.archives-ouvertes.fr/
file/index/docid/926514/filename/
Delbe{ }9783.pdf.

https://hal.archives-ouvertes.fr/file/index/docid/926514/filename/Delbe{_}9783.pdf
https://hal.archives-ouvertes.fr/file/index/docid/926514/filename/Delbe{_}9783.pdf
https://hal.archives-ouvertes.fr/file/index/docid/926514/filename/Delbe{_}9783.pdf


High-Quality Prediction Intervals for Deep Learning

Table 2. RMSE and NLL on ten benchmarking regression datasets; mean ± one standard error, best result in bold.

RMSE NLL
n D MVE-ENS QD-ENS MVE-ENS QD-ENS

BOSTON 506 13 2.84 ± 0.19 3.38 ± 0.26 2.60 ± 0.10 2.74 ± 0.14
CONCRETE 1,030 8 5.20 ± 0.10 5.76 ± 0.10 2.95 ± 0.04 3.10 ± 0.02
ENERGY 768 8 1.67 ± 0.05 2.30 ± 0.04 1.12 ± 0.05 1.62 ± 0.06
KIN8NM 8,192 8 0.08 ± 0.00 0.09 ± 0.00 -1.28 ± 0.01 -1.14 ± 0.01
NAVAL 11,934 16 0.00 ± 0.00 0.00 ± 0.00 -5.67 ± 0.03 -5.73 ± 0.03
POWER PLANT 9,568 4 3.94 ± 0.03 4.10 ± 0.03 2.77 ± 0.01 2.83 ± 0.01
PROTEIN 45,730 9 4.35 ± 0.02 4.98 ± 0.02 2.74 ± 0.02 3.12 ± 0.02
WINE 1,599 11 0.62 ± 0.01 0.65 ± 0.01 1.07 ± 0.06 1.15 ± 0.03
YACHT 308 6 1.36 ± 0.09 1.00 ± 0.08 1.02 ± 0.05 0.76 ± 0.07
SONG YEAR 515,345 90 8.88 ± NA 9.30 ± NA 3.37 ± NA 3.58 ± NA


