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Appendix

A. Preliminaries
A.1. Table of Notation

For ease of reading, we define here key notation that will be used in this Appendix.

T : The horizon.
∆j : The gap between the mean of the optimal arm and the mean of arm j, ∆j = µ∗ − µj .

∆̃m : The approximation to ∆j at round m of the ODAAF algorithm, ∆̃m = 1
2m .

nm : The number of samples of an active arm j ODAAF needs by the end of round m.
νm : The number of times each arm is played in phase m, νm = nm − nm−1.
d : The bound on the delay in the case of bounded delay.

mj : The first round of the ODAAF algorithm where ∆̃m < ∆j/2.
Mj : The random variable representing the round arm j is eliminated in.

Tj(m) : The set of all time point where arm j is played up to (and including) round m.
Xt : The reward received at time t (from any possible past plays of the algorithm).
Rt,j : The reward generated by playing arm j at time t.
τt,j : The delay associated with playing arm j at time t.
E[τ ] : The expected delay (assuming i.i.d. delays).
V(τ) : The variance of the delay (assuming i.i.d. delays).
X̄m,j : The estimated reward of arm j in phase m. See Algorithm 1 for the definition.
Sm : The start point of the mth phase. See Appendix A.2 for more details.
Um : The end point of the mth phase. See Appendix A.2 for more details.
Sm,j : The start point of phase m of playing arm j. See Appendix A.2 for more details.
Um,j : The end point of phase m of playing arm j. See Appendix A.2 for more details.
Am : The set of active arms in round m of the ODAAF algorithm.

Ai,t, Bi,t, Ci,t : The contribution of the reward generated at time t in certain intervals relating to phase
i to the corruption. See (11) for the exact definitions.

Gt : The smallest σ-algebra containing all information up to time t, see (8) for a definition.

A.2. Beginning and End of Phases

We formalize here some notation that will be used throughout the analysis to denote the start and end points of each
phase. Define the random variables Si and Ui for each phase i = 1, . . . ,m to be the start and end points of the phase.
Then let Si,j , Ui,j denote the start and end points of playing arm j in phase i. See Figure 4 for details. By convention,
let Si,j = Ui,j = ∞ if arm j is not active in phase i, Si = Ui = ∞ if the algorithm never reaches phase i and let
S0,j = U0,j = S0 = U0 = 0 for all j. It is important to point out that nm are deterministic so at the end of any phase
m − 1, once we have eliminated sub-optimal arms, we also know which arms are in Am and consequently the start and
end points of phase m. Furthermore, since we play arms in a given order, we also know the specific rounds when we start
and finish playing each active arm in phase m. Hence, at any time step t in phase m, Sm, Um, Sm+1 and Um,j , Sm,j for
all active arms j ∈ Am will be known. More formally, define the filtration {Gt}∞t=0 where

Gt = σ(X1, . . . , Xt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . , Rt,Jt , J1, . . . , Jt) (8)

and G0 = {∅,Ω}. This means the joint events like {Si ≤ t} ∩ {Si,j = s′} ∈ Gt for all s′ ∈ N, j ∈ A.

A.3. Useful Results

For our analysis, we will need Freedman’s version of Bernstein’s inequality for the right-tail of martingales with bounded
increments:

Theorem 10 (Freedman’s version of Bernstein’s inequality; Theorem 1.6 of Freedman (1975)) Let {Yk}∞k=0 be a
real-valued martingale with respect to the filtration {Fk}∞k=0 with increments {Zk}∞k=1: E[Zk|Fk−1] = 0 and Zk =
Yk−Yk−1, for k = 1, 2, . . . . Assume that the difference sequence is uniformly bounded on the right: Zk ≤ b almost surely
for k = 1, 2, . . . . Define the predictable variation process Wk =

∑k
j=1 E[Z2

j |Fj−1] for k = 1, 2, . . . . Then, for all t ≥ 0,



Bandits with Delayed, Aggregated Anonymous Feedback

Si

Si,j Ui,j Ui,j′ + 1

Ui

Phase i

Tj(i) \ Tj(i− 1) Bridge

Figure 4: An example of phase i of our algorithm. Here j′ is the last active arm played in phase i.

σ2 > 0,

P
(
∃k ≥ 0 : Yk ≥ t and Wk ≤ σ2

)
≤ exp

{
− t2/2

σ2 + bt/3

}
.

This result implies that if for some deterministic constant, σ2, Wk ≤ σ2 holds almost surely, then P (Yk ≥ t) ≤
exp

{
− t2/2
σ2+bt/3

}
holds for any t ≥ 0.

We will also make use of the following technical lemma which combines the Hoeffding-Azuma inequality and Doob’s
optional skipping theorem (Theorem 2.3 in Chapter VII of Doob (1953))):

Lemma 11 Fix the positive integers m,n and let a, c ∈ R. Let F = {Ft}nt=0 be a filtration, (εt, Zt)t=1,2,...,n be a se-
quence of {0, 1}×R-valued random variables such that for t ∈ {1, 2, . . . , n}, εt isFt−1-measurable, Zt isFt-measurable,
E[Zt|Ft−1] = 0 and Zt ∈ [a, a+ c]. Further, assume that

∑n
s=1 εs ≤ m with probability one. Then, for any λ > 0,

P
( n∑
t=1

εtZt ≥ λ
)
≤ exp

{
− 2λ2

c2m

}
. (9)

Proof: This lemma appeared in a slightly more general form (where n = ∞ is allowed) as Lemma A.1 in the paper by
Szita & Szepesvári (2011) so we refer the reader to the proof there. �

B. Results for Known and Bounded Expected Delay
B.1. High Probability Bounds

Lemma 1 Under Assumption 1 and the choice of nm given by (2), the estimates X̄m,j constructed by Algorithm 1 satisfy
the following: For every fixed arm j and phase m, with probability 1− 3

T ∆̃2
m

, either j /∈ Am, or:

X̄m,j − µj ≤ ∆̃m/2 .

Proof: Let

wm =
4 log(T ∆̃2

m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

3mE[τ ]

nm
. (10)

We first show that with probability greater than 1− 3
T ∆̃2

m

, j /∈ Am or 1
nm

∑
t∈Tj(m)(Xt − µj) ≤ wm.

For arm j and phase m, assume j ∈ Am. For notational simplicity we will use in the following Ii{H} := I{H ∩ {j ∈
Ai}} ≤ I{H} for any event H . If j ∈ Am for a particular experiment ω then Ii(H)(ω) = I(H)(ω). Then for any phase
i ≤ m and time t, define,

Ai,t = Rt,JtI{τt,Jt + t ≥ Si}, Bi,t = Rt,JtI{τt,Jt + t ≥ Si,j}, Ci,t = Rt,JtI{τt,Jt + t > Ui,j}, (11)

and note that since Si,j = Ui,j = ∞ if arm j is not active in phase i, we have the equalities Ii{τt,Jt + t ≥ Si,j} =
I{τt,Jt + t ≥ Si,j} and Ii{τt,Jt + t > Ui,j} = I{τt,Jt + t > Ui,j}. Define the filtration {Gs}∞s=0 by G0 = {Ω, ∅} and

Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . Rt,Jt). (12)
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Then, we use the decomposition,

m∑
i=1

Ui,j∑
t=Si,j

(Xt − µj) ≤
m∑
i=1

( Si,j−1∑
t=Si−1,j

Rt,JtIi{τt,Jt + t ≥ Si,j}+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtIi{τt,Jt + t > Ui,j}
)

≤
m∑
i=1

( Si−1∑
t=Si−1,j

Rt,JtI{τt,Jt + t ≥ Si}+

Si,j−1∑
t=Si

Rt,JtI{τt,Jt + t ≥ Si,j}

+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtI{τt,Jt + t > Ui,j}
)

=

m∑
i=1

( Si−1∑
t=Si−1,j

Ai,t +

Si,j−1∑
t=Si

Bi,t +

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Ci,t

)

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) +

Sm,j∑
t=1

Qt −
Um,j∑
t=1

Pt

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj)︸ ︷︷ ︸
Term I.

+

Sm,j∑
t=1

(Qt − E[Qt|Gt−1])︸ ︷︷ ︸
Term II.

+

Um,j∑
t=1

(E[Pt|Gt−1]− Pt)︸ ︷︷ ︸
Term III.

(13)

+

( Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1]

)
,︸ ︷︷ ︸

Term IV.

where,

Qt =

m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})

Pt =

m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j}.

Recall that the filtration {Gs}∞s=0 is defined by G0 = {Ω, ∅}, Gt =
σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . Rt,Jt) and we have defined Si,j = ∞ if arm j is eliminated
before phase i and Si =∞ if the algorithm stops before reaching phase i.

Outline of proof We will bound each term of the above decomposition in (13) in turn, however first we need to prove
several intermediary results. For term II., we will use Freedman’s inequality so we first need Lemma 12 to show that
Zt = Qt − E[Qt|Gt−1] is a martingale difference and Lemma 13 to bound the variance of the sum of the Zt’s. Similarly,
for term III., in Lemma 14, we show that Z ′t = E[Pt|Gt−1] − Pt is a martingale difference and bound its variance in
Lemma 15. In Lemma 16, we consider term IV. and bound the conditional expectations of Ai,t, Bi,t, Ci,t. Finally, in
Lemma 17, we bound term I. using Lemma 11. We then combine the bounds on all terms together to conclude the proof.

Lemma 12 Let Ys =
∑s
t=1(Qt − E[Qt|Gt−1]) for all s ≥ 1, Y0 = 0. Then {Ys}∞s=0 is a martingale with respect to the

filtration {Gs}∞s=0 with increments Zs = Ys − Ys−1 = Qs −E[Qs|Gs−1] satisfying E[Zs|Gs−1] = 0, Zs ≤ 1 for all s ≥ 1.

Proof: To show {Ys}∞s=0 is a martingale with respect to {Gs}∞s=0, we need to show that Ys is Gs measurable for all s and
E[Ys|Gs−1] = Ys−1.

Measurability: First note that by definition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s. Then, for each i, either t is
in a phase later than i so Si−1,j and Si are Gt-measurable, or Si−1,j and Si are not Gt-measurable, but I{t ≥ Si,j} = 0
so I{t ≥ Si,j} is Gt-measurable. In the first case, since Si−1,j and Si are Gt-measurable Ai,tI{Si−1,j ≤ t ≤ Si − νi} is
Gt-measurable. In the second case, Ai,tI{Si−1,j ≤ t ≤ Si − 1} = Ai,tI{{Si−1,j ≤ t}I{t ≤ Si − 1} = 0 so it is also
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Gt-measurable. Similarly, if t is after Si , Si and Si,j will be G-measurable or I{Si ≤ t ≤ Si,j − 1} = 0. In both cases,
Bi,tI{Si ≤ t ≤ Si,j − 1} is Gt-measurable. Hence, Qt is Gt-measurable, and also Qt is Gs measurable for any s ≥ t. It
then follows that Ys is Gs-measurable for all s.

Expectation: Since Qt is Gs measurable for all t ≤ s,

E[Ys|Gs−1] = E
[ s∑
t=1

(Qt − E[Qt|Gt−1])|Gs−1

]

= E
[ s−1∑
t=1

(Qt − E[Qt|Gt−1])|Gs−1

]
+ E[(Qs − E[Qs|Gs−1])|Gs−1]

=

s−1∑
t=1

(Qt − E[Qt|Gt−1]) + E[Qs|Gs−1]− E[Qs|Gs−1]

=

s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Ys−1

Hence, {Ys}∞s=0 is a martingale with respect to the filtration {Gs}∞s=0.

Increments: For any s = 1, . . . , we have that

Zs = Ys − Ys−1 =

s∑
t=1

(Qt − E[Qt|Gt−1])−
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Qs − E[Qs|Gs−1].

Then,
E[Zs|Gs−1] = E[Qs − E[Qs|Gs−1]|Gs−1] = E[Qs|Gs−1]− E[Qs|Gs−1] = 0.

Lastly, since for any t, there is only one i where one of I{Si−1,j ≤ t ≤ Si−1} = 1 or I{Si ≤ t ≤ Si,j −1} = 1 (and they
cannot both be one), and since Rt,Jt ∈ [0, 1], Ai,t, Bi,t ≤ 1, so it follows that Zs = Qs − E[Qs|Gs−1] ≤ 1 for all s. �

Lemma 13 For any t, let Zt = Qt − E[Qt|Gt−1], then, for any s < Sm,j ,

s∑
t=1

E[Z2
t |Gt−1] ≤ 2mE[τ ].

Proof: First note that

s∑
t=1

E[Z2
t |Gt−1] =

s∑
t=1

V(Qt|Gt−1) ≤
s∑
t=1

E[Q2
t |Gt−1]

=

s∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})
)2∣∣∣∣Gt−1

]
.

Then, given Gt−1, all indicator terms I{Si−1,j ≤ t ≤ Si − 1} and I{Si ≤ Si,j − 1} for all i = 1, . . . ,m are measurable
and only one can be non zero. Hence, all interaction terms in the expansion of the quadratic are 0 and so we are left with

s∑
t=1

E[Z2
t |Gt−1] ≤

s∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})
)2∣∣∣∣Gt−1

]

=

s∑
t=1

E
[ m∑
i=1

(A2
i,tI{Si−1,j ≤ t ≤ Si − 1}2 +B2

i,tI{Si ≤ t ≤ Si,j − 1}2)

∣∣∣∣Gt−1

]

=

m∑
i=1

s∑
t=1

E[A2
i,tI{Si−1,j ≤ t ≤ Si − 1}|Gt−1] +

m∑
i=1

s∑
t=1

E[B2
i,tI{Si ≤ t ≤ Si,j − 1}|Gt−1]
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≤
m∑
i=1

Si−1∑
t=Si−1,j

E[A2
i,t|Gt−1] +

m∑
i=1

Si,j−1∑
t=Si

E[B2
i,t|Gt−1].

Then, for any i ≥ 1,
Si−1∑

t=Si−1,j

E[A2
i,t|Gt−1] =

Si−1∑
t=Si−1,j

E[R2
t,JtI{τt,Jt + t ≥ Si}|Gt−1]

≤
Si−1∑

t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ Si}|Gt−1]

(Since {t ≥ Si−1,j , Si = s′} ∈ Gt−1)

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

P(τt,Jt + t ≥ s′)

(Since {t ≥ Si−1,j , Si = s′} ∈ Gt−1)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑
l=0

P(τ > l)

≤ E[τ ].

Likewise, for any i ≥ 1,
Si,j−1∑
t=Si

E[B2
i,t|Gt−1] =

Si,j−1∑
t=Si

E[R2
t,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

≤
Si,j−1∑
t=Si

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑
t=s

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si = s, Si,j = s′, τt,Jt + t ≥ Si,j}|Gt−1]

(Since {t ≥ Si, Si,j = s′} ∈ Gt−1)

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si = s, Si,j = s′, τt,Jt + t ≥ s′}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑
t=s

P(τt,Jt + t ≥ s′)

(Since {t ≥ Si, Si,j = s′} ∈ Gt−1)

≤
∞∑
s=0

∞∑
s′=s

I{Si = s, Si,j = s′}
∞∑
l=0

P(τ ≥ l)
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≤ E[τ ].

Hence, combining both terms and summing over the phases m gives the result. �

Lemma 14 Let Y ′s =
∑s
t=1(E[Ps|Gs−1] − Ps) for all s ≥ 1, Y ′0 = 0. Then {Y ′s}∞s=0 is a martingale with respect to the

filtration {Gs}∞s=0 with increments Z ′s = Y ′s − Y ′s−1 = E[Ps|Gs−1]− Ps satisfying E[Z ′s|Gs−1] = 0, Z ′s ≤ 1 for all s ≥ 1.

Proof: The proof is similar to that of Lemma 12. To show {Y ′s}∞s=0 is a martingale with respect to {Gs}∞s=0, we need to
show that Y ′s is Gs measurable for all s and E[Y ′s |Gs−1] = Y ′s−1.

Measurability: As before, by definition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s. Also, we can reduce
measurability again to measurability of I{τs,Js + s ≥ Ui,j , Si,j ≤ s ≤ Ui,j}. But, {Ui,j = s′} ∩ {Si,j ≤ s} ∈ Gs for all
s′ ∈ N and Y ′s is adapted to Gs.

Increments: For any s ≥ 1, we have that

Z ′s = Y ′s − Y ′s−1 =

s∑
t=1

(E[Pt|Gt−1]− Pt)−
s−1∑
t=1

(E[Pt|Gt−1]− Pt) = E[Ps|Gs−1]− Ps.

Then,
E[Z ′s|Gs−1] = E[E[Ps|Gs−1]− Ps|Gs−1] = E[Ps|Gs−1]− E[Ps|Gs−1] = 0.

Lastly, since for any t and ω ∈ Ω, there is at most one i for which I{Si,j ≤ t ≤ Ui,j} = 1, and by definition of Rt,Jt ,
Ci,t ≤ 1, so it follows that Z ′s = E[Ps|Gs−1]− Ps ≤ 1 for all s. �

Lemma 15 For any t, let Z ′t = E[Pt|Gt−1]− Pt, then

Um,j∑
t=1

E[Z ′t
2|Gt−1] ≤ mE[τ ].

Proof: The proof is similar to that of Lemma 13. First note that

Um,j∑
t=1

E[Z ′t
2|Gt−1] =

Um,j∑
t=1

V(Pt|Gt−1) ≤
Um,j∑
t=1

E[P 2
t |Gt−1]

=

Um,j∑
t=1

E
[( m∑

i=1

(Ci,tI{Si,j ≤ t ≤ Ui,j}
)2

|Gt−1

]
.

Then, given Gt−1, all indicator terms I{Si,j ≤ t ≤ Ui,j} for i = 1, . . . ,m are measurable and at most one can be non zero.
Hence, all interaction terms are 0 and so we are left with

Um,j∑
t=1

E[Z ′t
2|Gt−1] ≤

Um,j∑
t=1

E
[( m∑

i=1

(Ci,tI{Si,j ≤ t ≤ Ui,j}
)2

|Gt−1

]

=

m∑
i=1

Um,j∑
t=1

E[C2
i,tI{Si,j ≤ t ≤ Ui,j}|Gt−1]

≤
m∑
i=1

Ui,j∑
t=Si,j

E[C2
i,t|Gt−1] (since the indicator is Gt−1-measurable)

=

m∑
i=1

Ui,j∑
t=Si,j

E[R2
t,JtI{τt,Jt + t > Ui,j}|Gt−1]
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≤
m∑
i=1

Ui,j∑
t=Si,j

E[I{τt,Jt + t > Ui,j}|Gt−1]

=

m∑
i=1

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

E[I{τt,Jt + t > Ui,j}|Gt−1]

=

m∑
i=1

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[I{Si,j = s, Ui,j = s′, τt,Jt + t > Ui,j}|Gt−1]

=

m∑
i=1

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[I{Si,j = s, Ui,j = s′, τt,Jt + t > s′}|Gt−1]

=

m∑
i=1

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

P(τt,Jt + t > s′)

≤
m∑
i=1

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
∞∑
l=0

P(τ > l)

≤
m∑
i=1

E[τ ] = mE[τ ].

�

Lemma 16 For Ai,t, Bi,t and Ci,t defined as in (11), let νi = ni − ni−1 be the number of times each arm is played in
phase i and j′i be the arm played directly before arm j in phase i. Then, it holds that, for any arm j and phase i ≥ 1,

(i)
Si−1∑

t=Si−1,j

E[Ai,t|Gt−1] ≤ E[τ ]

(ii)
Si,j−1∑
t=Si

E[Bi,t|Gt−1] ≤ E[τ ] + µj′i

νi∑
l=0

P(τ > l)

(iii)
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] = µj

νi∑
l=0

P(τ > l)

Proof: We prove each statement individually. Several of the proofs are similar to those appearing in Lemmas 13 and 15.

Statement (i):

Si−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤
Si−1∑

t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ Si}|Gt−1]

(Since {t ≥ Si−1,j , Si = s′} ∈ Gt−1)

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]
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=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

P(τt,Jt + t ≥ s′)

(Since {t ≥ Si−1,j , Si = s′} ∈ Gt−1)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑
l=0

P(τ > l)

=

∞∑
l=0

P(τ > l) = E[τ ].

Statement (iii):
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] =

Ui,j∑
t=Si,j

E[Rt,JtI{τt,Jt + t > Ui,j}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

E[Rt,JtI{τt,Jt + t > Ui,j}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[Rt,JtI{Si,j = s, Ui,j = s′, τt,Jt + t > Ui,j}|Gt−1]

(Since {Si,j = s, Ui,j = s′} ∈ Gt−1 for s ≤ t)

=

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[Rt,JtI{Si,j = s, Ui,j = s′, τt,Jt + t > s′}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

µjP(τt,Jt + t > s′)

(Since {Si,j = s, Ui,j = s′} ∈ Gt−1 and given Gt−1, Rt,Jt and τt,Jt are independent)

=

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}µj
νi∑
l=0

P(τ > l)

= µj

νi∑
l=0

P(τ > l)

Statement (ii): For statement (ii), we have that for (i, j) 6= (1, 1),

Si,j−1∑
t=Si

E[Bi,t|Gt−1] =

Si,j−νi−1−2∑
t=Si

E[Bi,t|Gt−1] +

Si,j−1∑
t=Si,j−νi−1−1

E[Bi,t|Gt−1].

Then, Si,j is Gt−1 measurable for t ≥ Si, so we can use the same technique as for statement (i) to bound the first term. For
the second term, since we will only be playing arm j′i for Si,j − νi−1 − 1, . . . , Si,j − 1, we can use the same technique as
for statement (iii). Hence,

Si,j−1∑
t=Si

E[Bi,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ > l) + µj′i

νi−1∑
l=0

P(τ > l) ≤ E[τ ] + µj′i

νi∑
l=0

P(τ > l).

Note that, for (i, j) = (1, 1), the amount seeping in will be 0, so using ν0 = 0, µ′11
= 0, the result trivially holds. Hence

the result holds for all i, j ≥ 1. �

Lemma 17 For any arm j ∈ {1, . . . ,K} and phase m, it holds that for any λ > 0,

P
( ∑
t∈Tj(m)

(Rt,j − µj) ≥ λ
)
≤ exp

{
− 2λ2

nm

}
.
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Proof: The result follows from Lemma 11. When applying this lemma, we use n = T , m = nm, for t = 0, 1, . . . , T
set Ft = σ(X1, . . . , Xt, R1,j , . . . , Rt,j) and for t = 1, 2, . . . , T define Zt = Rt,j − µj and εt = I{Jt = j, t ≤ Um,j}.
Note that Tj(m) = {t ∈ {1, . . . , T} : εt = 1} and hence

∑
t∈Tj(m)(Rt,j − µj) =

∑T
t=1 εt(Rt,j − µj). Further,∑T

t=1 εt = |Tj(m)| ≤ nm with probability one.

Fix 1 ≤ t ≤ T . We now argue that εt is Ft−1-measurable. First, notice that by the definition of ODAAF, the index M of
the phase that t belongs to can be calculated based on the observations X1, . . . , Xt−1 up to time t− 1. Since t ≤ Um,j is
equivalent to whether for this phase indexM , the inequalityM ≤ m holds, it follows that {t ≤ Um,j} isFt−1-measurable.
The same holds for {Jt = j} for the same reason. Hence, it follows that εt is indeed Ft−1-measurable.

Now, Zt is Ft-measurable as Rt,j is clearly Ft-measurable. Furthermore, by our assumptions on (Rt,j)t,j and (Xt)t,
E[Rt,j |Ft−1] = µj also holds, implying that Zt also satisfies the conditions of the lemma with a = −µj and c = 1. Thus,
the result follows by applying Lemma 11. �

We now bound each term of the decomposition in (13) in turn.

Bounding Term I.: For Term I., we use Lemma 17 to get that with probability greater than 1− 1
T ∆̃2

m

,

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) ≤

√
nm log(T ∆̃2

m)

2
.

Bounding Term II.: For Term II., we will use Freedmans inequality (Theorem 10). From Lemma 12, {Ys}∞s=0 with
Ys =

∑s
t=1(Qt−E[Qt|Gt−1]) is a martingale with respect to {Gs}∞s=0 with increments {Zs}∞s=0 satisfying E[Zs|Gs−1] = 0

and Zs ≤ 1 for all s. Further, by Lemma 13,
∑s
t=1 E[Z2

t |Gt−1] ≤ 2mE[τ ] ≤ 6m×2mE[τ ]
12 ≤ nm/12 with probability 1.

Hence we can apply Freedman’s inequality to get that with probability greater than 1− 1
T ∆̃2

m

,

Sm,j∑
t=1

(Qt − E[Qt|Gt−1]) ≤ 2

3
log(T ∆̃2

m) +

√
1

12
nm log(T ∆̃2

m).

Bounding Term III.: For Term III., we again use Freedman’s inequality (Theorem 10) but using Lemma 14 to show that
{Y ′s}∞s=0 with Y ′s =

∑s
t=1(E[Pt|Gt−1]− Pt) is a martingale with respect to {Gs}∞s=0 with increments {Z ′s}∞s=0 satisfying

E[Z ′s|Gs−1] = 0 and Z ′s ≤ 1 for all s. Further, by Lemma 15,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] ≤ nm/12 with probability 1.
Hence, with probability greater than 1− 1

T ∆̃2
m

,

Um,j∑
t=1

(E[Pt|Gt−1]− Pt) ≤
2

3
log(T ∆̃m) +

√
1

12
nm log(T ∆̃2

m).

Bounding Term IV.: We bound term IV. using Lemma 16,

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1]

=

Sm,j∑
t=1

E
[ m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})
∣∣∣∣Gt−1

]

−
Um,j∑
t=1

E
[ m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j}
∣∣∣∣Gt−1

]

=

m∑
i=1

Sm,j∑
t=1

E[Ai,tI{Si−1,j ≤ t ≤ Si − 1}|Gt−1] +

m∑
i=1

Sm,j∑
t=1

E[Bi,tI{Si ≤ t ≤ Si,j − 1}|Gt−1]

−
m∑
i=1

Um,j∑
t=1

E[Ci,tI{Si,j ≤ t ≤ Ui,j}|Gt−1]
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=

m∑
i=1

( Si−1∑
t=Si−1,j

E[Ai,t|Gt−1] +

Si,j−1∑
t=Si

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1]

)

≤
m∑
i=1

(
2E[τ ] + µj′i

νi∑
l=0

P(τ > l)− µj
νi∑
l=0

P(τ > l)

)
≤ 3mE[τ ].

since Rt,j ∈ [0, 1].

Combining all terms: To get the final high probability bound, we sum the bounds for each term I.-IV.. Then, with
probability greater than 1− 3

T ∆̃2
m

, either j /∈ Am or arm j is played nm times by the end of phase m and

1

nm

∑
t∈Tj(m)

(Xt − µj) ≤
4 log(T ∆̃2

m)

3nm
+

(
2√
12

+
1√
2

)√
log(T ∆̃2

m)

nm
+

3mE[τ ]

nm

≤ 4 log(T ∆̃2
m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

3mE[τ ]

nm
= wm.

Defining nm: Setting

nm =

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃2

m) + 6∆̃mmE[τ ]

)2⌉
. (14)

ensures that wm ≤ ∆̃m

2 which concludes the proof. �

B.2. Regret Bounds

Here we prove the regret bound in Theorem 2 under Assumption 1 and the choice of nm given by (14). Under Assump-
tion 1, the bridge period is not necessary so the results here hold for the version of Algorithm 1 with the bridge period
omitted. Note that if we were to include the bridge period, we would be playing each arm at most 2nm times by the end of
phase m so our regret would simply increase by a factor of 2.

Theorem 2 Under Assumption 1, the expected regret of Algorithm 1 is upper bounded as

E[RT ] ≤
K∑
j=1
j 6=j∗

O

(
log(T∆2

j )

∆j
+ log(1/∆j)E[τ ]

)
. (5)

Proof: Our proof is a restructuring of the proof of (Auer & Ortner, 2010). For any arm j, define Mj to be the random
variable representing the phase when arm j is eliminated in. We set Mj = ∞ if the arm did not get eliminated before
time step T . Note that if Mj is finite, j ∈ AMj

(this also means that AMj
is well-defined) and if AMj+1 is also defined

(Mj is not the last phase) then j 6∈ AMj+1. We also let mj denote the phase arm j should be eliminated in, that is
mj = min{m ≥ 1 : ∆̃m <

∆j

2 }. From the definition of ∆̃m in our algorithm, we get the relations

2mj =
1

∆̃mj

≤ 4

∆j
<

1

∆̃mj+1

and
∆j

4
≤ ∆̃mj

≤ ∆j

2
. (15)

Define Nj =
∑T
t=1 I{Jt = j} be the number of times arm j is used and let R(j)

T = Nj∆j be the “pseudo”-regret

contribution from each arm 1 ≤ j ≤ K so that E[RT ] = E
[∑K

j=1 R
(j)
T

]
. Let M∗ be the round when the optimal arm j∗

is eliminated. Hence,

E[RT ] = E
[ K∑
j=1

R
(j)
T

]
= E

[ K∑
j=1

R
(j)
T I {M∗ ≥ mj}

]
︸ ︷︷ ︸

Term I.

+E
[ K∑
j=1

R
(j)
T I {M∗ < mj}

]
︸ ︷︷ ︸

Term II.

.
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We will bound the regret in each of these cases in turn. To do so, we need the following results which consider the
probabilities of confidence bounds failing and arms being eliminated in the incorrect rounds.

Lemma 18 For any suboptimal arm j,

P(Mj > mj and M∗ ≥ mj) ≤
6

T ∆̃2
mj

.

Proof: Define
E = {X̄mj ,j ≤ µj + wmj} and H = {X̄mj ,j∗ > µ∗ − wmj} .

If both E and F occur, it follows that,

X̄mj ,j ≤ µj + wmj

= µ∗j −∆j + wmj
(since ∆j = µj∗ − µj)

≤ X̄mj ,j∗ + wmj −∆j + wmj

< X̄mj ,j∗ − 2∆̃mj
+ 2wmj

(by (15))

≤ X̄mj ,j∗ − ∆̃mj
(since nm is such that wm ≤ ∆̃m/2)

and arm j would be eliminated. Hence, on the event M∗ ≥ mj , Mj ≤ mj . Thus, M∗ ≥ mj and Mj > mj imply that
either E or H does not occur and so P(Mj > mj and M∗ ≥ mj) ≤ P({Ec ∪ Hc} ∩ {j, j∗ ∈ Amj}) ≤ P(Ec ∩ j ∈
Amj ) + P(Hc ∩ j∗ ∈ Amj ). Using Lemma 1, we then get that,

P(Mj ≥ mj and M∗ ≥ mj) ≤
6

T ∆̃2
mj

.

�

Note that the random set Am may not be defined for certain ω ∈ Ω. That is, Am is a partially defined random element.
For convenience, we modify the definition of Am so that it is an emptyset for any ω when it is not defined by the previous
definition. Define the event Fj(m) = {X̄m,j∗ < X̄m,j − ∆̃m} ∩ {j, j∗ ∈ Am} to be the event that arm j∗ is eliminated
by arm j in phase m (given our note on Am, this is well-defined). The probability of this occurring is bounded in the
following lemma.

Lemma 19 The probability that the optimal arm j∗ is eliminated in round m <∞ by the suboptimal arm j is bounded by

P(Fj(m)) ≤ 6

T ∆̃2
m

.

Proof: First note that for a suboptimal arm j to eliminate arm j∗ in round m, both j and j∗ must be active in round m and
X̄m,j − wm > X̄m,j∗ + wm. Hence,

P(Fj(m)) = P(j, j∗ ∈ Am and X̄m,j − wm > X̄m,j∗ + wm)

Then, observe that if
E = {X̄m,j ≤ µj + wm} and H = {X̄m,j∗ > µ∗ − wm}

both hold in round m, it follows that,

X̄m,j − ∆̃m ≤ µj + wm − ∆̃m ≤ µj −
∆̃m

2
≤ µj∗ −

∆̃m

2
≤ X̄m,j∗ + wm −

∆̃m

2
≤ X̄m,j∗

so arm j∗ will not be eliminated by arm j in round m. Hence, for arm j∗ to be eliminated by arm j in round m, one of E
or H must not occur and the probability of this is bounded by Lemma 1 as,

P(Fj(m)) ≤ P((EC ∪HC) ∩ (j, j∗ ∈ Am)) ≤ P(EC ∩ (j ∈ Am)) + P(HC ∩ (j∗ ∈ Am)) ≤ 6

T ∆̃2
m

.

�

We now return to bounding the expected regret in each of the two cases.
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Bounding Term I. To bound the first term, we consider the cases where arm j is eliminated in or before the correct round
(Mj ≤ mj) and where arm j is eliminated late (Mj > mj). Then, by Lemma 18,

E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}

]

= E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj ≤ mj}

]
+ E

[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj > mj}

]

≤
K∑
j=1

E[R
(j)
T I{Mj ≤ mj}] +

K∑
j=1

E[T∆jI{M∗ ≥ mj ,Mj > mj}]

≤
K∑
j=1

∆jnmj +

K∑
j=1

T∆jP(Mj > mj and M∗ ≥ mj)

≤
K∑
j=1

∆jnmj +

K∑
j=1

T∆j
6

T ∆̃2
mj

≤
K∑
j=1

(
∆jnmj

+
24

∆̃mj

)
≤

K∑
j=1

(
96

∆j
+ ∆jnmj

)
.

Bounding Term II For the second term, let mmax = maxj 6=j∗ mj . and recall that Nj is the total number of times arm j
is played. Then,

E
[ K∑
j=1

R
(j)
T I {M∗ < mj}

]
= E

[mmax∑
m=1

∑
j:m<mj

R
(j)
T I{M∗ = m}

]

=

mmax∑
m=1

E
[
I{M∗ = m}

∑
j:mj>m

R
(j)
T

]

=

mmax∑
m=1

E
[
I{M∗ = m}

∑
j:mj>m

Nj∆j

]

≤
mmax∑
m=1

E
[
I{M∗ = m}T max

j:mj>m
∆j

]

≤
mmax∑
m=1

4P(M∗ = m)T ∆̃m .

Now consider the probability that arm j∗ is eliminated in round m. This includes the probability that it is eliminated by
any suboptimal arm. For arm j∗ to be eliminated in round m by a suboptimal arm with mj < m, arm j must be active
(Mj > mj) and the optimal arm must also have been active in round mj (M∗ ≥ mj). Using this, it follows that

P(M∗ = m) =

K∑
j=1

P(Fj(m)) =
∑

j:mj<m

P(Fj(m)) +
∑

j:mj≥m

P(Fj(m))

≤
∑

j:mj<m

P(Mj > mj and M∗ ≥ mj) +
∑

j:mj≥m

P(Fj(m)).

Then, using Lemmas 18 and 19 and summing over all m ≤M gives,

mmax∑
m=1

( ∑
j:mj<m

4P(Mj > mj and M∗ ≥ mj)T ∆̃m +
∑

j:mj≥m

4P(Fj(m))T ∆̃m

)
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≤
mmax∑
m=1

( ∑
j:mj<m

4
6

T ∆̃2
mj

T
∆̃mj

2m−mj
+

∑
j:mj≥m

24

T ∆̃2
m

T ∆̃m

)

≤
K∑
j=1

24

∆̃mj

mmax∑
m=mj

2−(m−mj) +

K∑
j=1

mj∑
m=1

24

2−m

≤
K∑
j=1

96 · 2
∆j

+

K∑
j=1

24 · 2mj+1

≤
K∑
j=1

192

∆j
+

K∑
j=1

48 · 4

∆j
=

K∑
j=1

384

∆j
.

Combining the regret from terms I and II gives,

E[RT ] ≤
K∑
j=1

(
480

∆j
+ ∆jnmj

)
.

Hence, all that remains is to bound nm in terms of ∆j , T and d,

nmj
=

⌈
1

∆̃2
mj

(√
2 log(T ∆̃2

mj
) +

√
2 log(T ∆̃2

mj
) +

8

3
∆̃mj

log(T ∆̃2
mj

) + 6∆̃mj
mjE[τ ]

)2⌉

≤

⌈
1

∆̃2
mj

(
8 log(T ∆̃2

mj
) +

16

3
∆̃mj

log(T ∆̃2
mj

) + 12∆̃mj
mjE[τ ]

)⌉

≤ 1 +
8 log(T∆2

j/4)

∆̃2
mj

+
16 log(T∆2

j/4)

3∆̃mj

+
12 log2(4/∆j)E[τ ]

∆̃mj

≤ 1 +
128 log(T∆2

j )

∆2
j

+
32 log(T∆2

j )

3∆j
+

96 log(4/∆j)E[τ ]

∆j
,

where we have used (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0 and log2(x) ≤ 2 log(x) for x > 0.

Hence, the total expected regret from ODAAF with bounded delays can be bounded by,

E[Rt] ≤
K∑

j=1:j 6=j∗

(
128 log(T∆2

j )

∆j
+

32

3
log(T∆2

j ) + 96 log(4/∆j)E[τ ] +
480

∆j
+ ∆j

)
. (16)

�

We now prove the problem independent regret bound,

Corollary 3 For any problem instance satisfying Assumption 1, the expected regret of Algorithm 1 satisfies

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] log(T )).

Proof: Let

λ =

√
K log(K)e2

T

and note that for ∆ > λ, log(T∆2)/∆ is a decreasing function of ∆. Then, for some constants C1, C2, and using the
previous theorem, we can bound the regret by,

E[RT ] ≤
∑

j:∆j≤λ

E[R
(j)
t ] +

∑
j:∆j>λ

E[R
(j)
T ] ≤ KC1 log(Tλ2)

λ
+KdC2 log(1/λ) + Tλ.

Then, subsituting the above value of λ gives a worst case regret bound that scales with O(
√
KT log(K) +KE[τ ] log(T )).

�
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C. Results for Delays with Bounded Support
C.1. High Probability Bounds

Lemma 5 Under Assumptions 1 of known expected delay and 2 of bounded delays, and choice of nm given in (6), the
estimates X̄m,j obtained by Algorithm 1 satisfy the following: For any arm j and phase m, with probability at least
1− 12

T ∆̃2
m

, either j /∈ Am or

X̄m,j − µj ≤ ∆̃m/2.

Proof: Let

wm =
4 log(T ∆̃2

m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ]

nm
. (17)

We show that with probability greater than 1− 12
T ∆̃2

m

, either j /∈ Am or 1
nm

∑
t∈Tj(m)(Xt − µj) ≤ wm. For now, assume

that nm ≥ md.

For arm j and phase m, assume j ∈ Am and define pi to be the probability of the confidence bounds on arm j failing at the
end of each phase i ≤ m, ie. pi

.
= P(

∑
t∈Tj(i)(Xt − µj) ≥ niwi) with p0 = 0. Again, let Bi,t = RtI{τt,Jt + t ≥ Si,j}

and Ci,t = RtI{τt,Jt + t > Ui,j} (note that we don’t need to consider Ai,t since νi = ni − ni−1 ≥ d so all reward
entering [Si,j , Ui,j ] will be from the last νi ≥ d plays) and for any event H , let Ii{H} := I{H ∩ {j ∈ Ai}}. Recall the
filtration {Gt}∞t=0 from (12) where Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . , Rt,Jt) and G0 = {∅,Ω}.
Now, defining,

Qt =

m∑
i=1

Bi,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}),

Pt =

m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j},

we use the decomposition

∑
t∈Tj(m)

(Xt − µj) =

m∑
i=1

Ui,j∑
t=Si,j

(Xt − µj)

≤
m∑
i=1

( Si,j−1∑
t=Si−1,j

Rt,JtIi{τt,Jt + t ≥ Si,j}+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtIi{τt,Jt + t > Ui,j}
)

≤
m∑
i=1

( Si,j−1∑
t=Si,j−d

Bi,t +

Ui,j∑
t=Si,j

(Rt − µj)−
Ui,j∑
t=Si,j

Ci,t

)

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) +

Sm,j∑
t=1

Qt −
Um,j∑
t=1

Pt

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj)︸ ︷︷ ︸
Term I.

+

Sm,j∑
t=1

(Qt − E[Qt|Gt−1])︸ ︷︷ ︸
Term II.

+

Um,j∑
t=1

(E[Pt|Gt−1]− Pt)︸ ︷︷ ︸
Term III.

+

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1].︸ ︷︷ ︸
Term IV.

Outline of proof Again, the proof continues by bounding each term of this decomposition in turn. Note that we do
not have the Ai,t terms in this decomposition since there will be no reward from phase i − 1 (before the bridge period)
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received in [Si,j , Ui,j ]. We bound each of these terms with high probability. For terms I. and III., this is the same as
in the general case (see the proof of Lemma 1, Appendix B),. For term II. we need the following results to show that
Zt = Qt − E[Qs|Gt−1] is a martingale difference (Lemma 20) and to bound its variance (Lemma 21) before we can apply
Freedman’s inequality. The bound for term IV. is also different due to the bridge period and boundedness of the delay.
After bounding each term, we collect them together and recursively calculate the probability with which the bounds hold.

Lemma 20 Let Ys =
∑s
t=1(Qt − E[Qt|Gt−1]) for all s ≥ 1, and Y0 = 0. Then {Ys}∞s=0 is a martingale with respect to

the filtration {Gs}∞s=0 with increments Zs = Ys − Ys−1 = Qs − E[Qs|Gs−1] satisfying E[Zs|Gs−1] = 0, |Zs| ≤ 1 for all
s ≥ 1.

Proof: To show {Ys}∞s=0 is a martingale we need to show that Ys is Gs-measurable for all s and E[Ys|Gs−1] = Ys−1.

Measurability: We show that Bi,sI{Si,j − d − 1 ≤ s ≤ Si,j − 1} is Gs-measurable. This then suffices to show that Ys is
Gs-measurable since the filtration Gs is non-decreasing in s.

First note that by definition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s. Hence, it is sufficient to show that I{τs,Js +
s ≥ Si,j , Si,j − d − 1 ≤ s ≤ Si,j − 1} is Gs-measurable since the product of measurable functions is measurable. For
any s′ ∈ N ∪ {∞}, {Si,j = s′, s′ − d − 1 ≤ s} ∈ Gs for s ≥ Si − νi−1 and so the union

⋃
s′∈N∪{∞}{τs,Js + s ≥

s′, s′ − d− 1 ≤ s ≤ s′ − 1, Si,j = s′} = {τs,Js + s ≥ Si,j , Si,j − d− 1 ≤ s ≤ Si,j − 1} is an element of Gs.

Increments: Hence, {Ys}∞s=0 is a martingale with respect to the filtration {Gs}∞s=0 if the increments conditional on the past
are zero. For any s ≥ 1, we have that

Zs = Ys − Ys−1 =

s∑
t=1

(Qt − E[Qt|Gt−1])−
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Qs − E[Qs|Gs−1].

Then,
E[Zs|Gs−1] = E[Qs − E[Qs|Gs−1]|Gs−1] = E[Qs|Gs−1]− E[Qs|Gs−1] = 0

and so {Ys}∞s=0 is a martingale.

Lastly, since for any t and ω ∈ Ω, there is at most one i where I{Si,j − d ≤ t ≤ Si,j − 1}(ω) = 1, and by definition of
Rt,Jt , Bi,t ≤ 1, it follows that |Zs| = |Qs − E[Qs|Gs−1]| ≤ 1 for all s. �

Lemma 21 For any t ≥ 1, let Zt = Qt − E[Qt|Gt−1], then

Sm,j−1∑
t=1

E[Z2
t |Gt−1] ≤ mE[τ ].

Proof: Let us denote S′ .= Sm,j − 1. Observe that

S′∑
t=1

E[Z2
t |Gt−1] =

S′∑
t=1

V(Qt|Gt−1) ≤
S′∑
t=1

E[Q2
t |Gt−1] =

S′∑
t=1

E
[( m∑

i=1

(Bi,tI{Si,j − d ≤ t ≤ Si,j − 1})
)2∣∣∣Gt−1

]
.

Then for all i = 1, . . . ,m, all indicator terms I{Si,j − d ≤ t ≤ Si,j − 1} are Gt−1-measurable and only one can be non
zero for any ω ∈ Ω. Hence, for any i, i′ ≤ m, i 6= i′,

Bi,t × I{Si,j − d− 1 ≤ t ≤ Si,j − 1} ×Bi′,t × I{Si′,j − d− 1 ≤ t ≤ Si′,j − 1} = 0,

Using the above we see that

S′∑
t=1

E[Z2
t |Gt−1] ≤

S′∑
t=1

E
[(
Bi,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}

)2∣∣∣Gt−1

]

=

S′∑
t=1

E
[ m∑
i=1

B2
i,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}2

∣∣∣Gt−1

]
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=

m∑
i=1

S′∑
t=1

E[B2
i,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}|Gt−1]

(using that the indicator is Gt−1-measurable)

≤
m∑
i=1

Si,j−1∑
t=Si,j−d−1

E[B2
i,t|Gt−1].

Then, for any i ≥ 1,

Si,j−1∑
t=Si,j−d−1

E[B2
i,t|Gt−1] =

Si,j−1∑
t=Si,j−d−1

E[R2
t,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

≤
Si,j−1∑

t=Si,j−d−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

I{Si,j = s}
s−1∑

t=s−d−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

s−1∑
t=s−d−1

E[I{Si,j = s, τt,Jt + t ≥ Si,j}|Gt−1]

(Since Si,j ≥ Si and so, due to the bridge period, {Si,j = s} ∈ Gt−1 for any t ≥ s− d)

=

∞∑
s=0

s−1∑
t=s−d−1

E[I{Si,j = s, τt,Jt + t ≥ s}|Gt−1]

=

∞∑
s=0

I{Si,j = s}
s−1∑

t=s−d−1

P(τt,Jt + t ≥ s)

(Since {Si,j = s} ∈ Gt−1 for any t ≥ s− d)

≤
∞∑
s=0

I{Si,j = s}
∞∑
l=0

P(τ > l)

≤ E[τ ].

Combining all terms gives the result. �

We now return to bounding each term of the decomposition

Bounding Term I.: For term II., as in Lemma 1, we can use Lemma 17 to get that with probability greater than 1− 1
T ∆̃2

m

,

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) ≤

√
nm log(T ∆̃2

m)

2
.

Bounding Term II.: For Term II., we will use Freedmans inequality (Theorem 10). From Lemma 20, {Ys}∞s=0 with
Ys =

∑s
t=1(Qt−E[Qt|Gt−1]) is a martingale with respect to {Gs}∞s=0 with increments {Zs}∞s=0 satisfying E[Zs|Gs−1] = 0

and Zs ≤ 1 for all s. Further, by Lemma 21,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] ≤ 4×2mE[τ ]
8 ≤ nm/8 with probability 1. Hence

we can apply Freedman’s inequality to get that with probability greater than 1− 1
T ∆̃2

m

,

Sm,j∑
t=1

(Qt − E[Qt|Gt−1]) ≤ 2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m).
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Bounding Term III.: For Term III., we again use Freedman’s inequality (Theorem 10). As in Lemma 1, we use
Lemma 14 to show that {Y ′s}∞s=0 with Y ′s =

∑s
t=1(E[Pt|Gt−1] − Pt) is a martingale with respect to {Gs}∞s=0 with in-

crements {Z ′s}∞s=0 satisfying E[Z ′s|Gs−1] = 0 and Z ′s ≤ 1 for all s. Further, by Lemma 15,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] ≤
nm/8 with probability 1. Hence, with probability greater than 1− 1

T ∆̃2
m

,

Um,j∑
t=1

(E[Pt|Gt−1]− Pt) ≤
2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m).

Bounding Term IV.: For term IV., we consider the expected difference at each round 1 ≤ i ≤ m and exploit the
independence of τt,Jt and Rt,Jt . Consider first i ≥ 2 and let j′i be the arm played just before arm j is played in the ith
phase (allowing for j′i to be the last arm played in phase i− 1). Then, much in the same way as Lemma 21,

Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1] =

Si,j−1∑
t=Si,j−d−1

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s′=d+1

∞∑
s=s′

I{Si = s′, Si,j = s}
s−1∑
t=s−d

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s′=d+1

∞∑
s=s′

s−1∑
t=s−d

K∑
k=1

E[Rt,JtI{Si = s′, Si,j = s, τt,Jt + t ≥ Si,j , Jt = k}|Gt−1]

(Due to the bridge period {Si = s′, Si,j = s} ∈ Gt−1 for t ≥ s− d ≥ s′ − d)

=

∞∑
s′=d+1

∞∑
s=s′

s−1∑
t=s−d

K∑
k=1

I{Si = s′, Si,j = s, Jt = k}E[Rt,kI{τt,k + t ≥ s}|Gt−1]

=

∞∑
s′=d+1

∞∑
s=s′

s−1∑
t=s−d

K∑
k=1

µkI{Si = s′, Si,j = s, Jt = k}P(τ ≥ s− t)

= µj′i

d−1∑
l=0

P(τ > l).

A similar argument works for i = 1, j > 1 with the simplification that Si,j is not a random quantity but known . Finally,
for i = 1, j = 1 the sum is 0. Furthermore, using a similar argument, for all i, j,

Ui,j∑
t=Si,j

E[Ci,t|Gt−1] =

Ui,j∑
t=Ui,j−d+1

E[Ci,t|Gt−1]

=
∞∑

s′=d+1

∞∑
s=s′

s∑
t=s−d

E[Rt,jI{τt,j + t > s}I{Ui,j = s, Si = s′}|Gt−1]

= µj

∞∑
s=d+1

I{Ui,j = s, Si = s′}
s∑

t=s−d

P(τ + t > s)

= µj

d−1∑
l=0

P(τ > l).

Combining these we get the following bound for term IV for all (i, j) 6= (1, 1),

Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] ≤ µj′i
d−1∑
l=0

P(τ > l)− µj
d−1∑
l=0

P(τ > l)

≤ |µj′i − µj |E[τ ].
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If (i, j) = (1, 1) then we have the upper bounded by µ1E[τ ] ≤ E[τ ] = ∆̃0E[τ ] since no pay-off seeps in and we define
∆̃0 = 1.

Let pi be the probability that the confidence bounds for one arm hold in phase i and p0 = 0. Then, the probability that
either arm j′i or j is active in phase i when it should have been eliminated in or before phase i − 1 is less than 2pi−1. If
neither arm should have been eliminated by phase i, this means that their mean rewards are within ∆̃i−1 of each other.
Hence, with probability greater than 1− 2pi−1,

Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] ≤ ∆̃i−1E[τ ].

Then, summing over all phases gives that with probability greater than 1− 2
∑m−1
i=0 pi,

m∑
i=1

( Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1]

)
≤ E[τ ]

m∑
i=1

∆̃i−1 = E[τ ]

m−1∑
i=0

1

2i
≤ 2E[τ ].

Combining all Terms: To get the final high probability bound, we sum the bounds for each term I.-IV.. Then, with
probability greater than 1− ( 3

T ∆̃2
m

+ 2
∑m−1
i=1 pi) either j /∈ Am or arm j is played nm times by the end of phase m and

1

nm

∑
t∈Tj(m)

(Xt − µj) ≤
4 log(T ∆̃2

m)

3nm
+

(
2√
8

+
1√
2

)√
log(T ∆̃2

m)

nm
+

2E[τ ]

nm

≤ 4 log(T ∆̃2
m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ]

nm
= wm.

Using the fact that p0 = 0 and substituting the other pi’s using the recursive relationship pi = 3
T ∆̃2

i

+ 2
∑i−1
l=1 pl gives,

3

T ∆̃2
m

+ 2

m−1∑
i=0

pi =
3

T ∆̃2
m

+ 2(
3

T ∆̃2
m−1

+ 2(pm−2 + · · ·+ p1) + pm−2 + · · ·+ p1)

=
3

T ∆̃2
m

+ 2(
3

T ∆̃2
m−1

+ 3(pm−2 + · · ·+ p1))

=
3

T ∆̃2
m

+ 2(
3

T ∆̃2
m−1

+ 3(
3

T ∆̃2
m−2

+ 3(pm−3 + · · ·+ p1))

≤
m∑
i=1

3m−i
3

T ∆̃2
i

=
3

T

m∑
i=1

3m−i22i

=
3

T

m∑
i=1

3m−i4i

=
3

T

m∑
i=1

(
3

4
)m−i4m−i4i

=
3× 4m

T

m∑
i=1

(
3

4
)m−i

≤ 12

T ∆̃2
m

.

Hence, with probability greater than 1− 12
T ∆̃2

m

, either j /∈ Am or 1
nm

∑
t∈Tj(m)(Xt − µj) ≤ wm.
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Defining nm: The above results rely on the assumption that nm ≥ md, so that only the previous arm can corrupt our
observations. In practice, if d is too large then we will not want to play each active arm d times per phase because we will
end up playing sub-optimal arms too many times. In this case, it is better to ignore the bound on the delay and use the
results from Lemma 1 to set nm as in (14). Formalizing this gives

nm = max

{
md̃m,

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃2

m) + 4∆̃mE[τ ]

)2⌉}
(18)

where d̃m = min{d, (14)
m }. This ensures that if d is small, we play each active arm enough times to ensure that wm ≤ ∆̃m

2

for wm in (17). Similarly, for large d, by Lemma 1, we know that nm is suffiently large to guarantee wm ≤ ∆̃m

2 for wm
from (10). �

C.2. Regret Bounds

We now prove the regret bound given in Theorem 6. Note that for these results, it is necessary to use the bridge period of
the algorithm.

Theorem 6 Under Assumption 1 and bounded delay Assumption 2, the expected regret of Algorithm 1 satisfies

E[RT ] ≤
K∑

j=1;j 6=j∗
O

(
log(T∆2

j )

∆j
+ E[τ ]

+ min

{
d,

log(T∆2
j )

∆j
+ log(

1

∆j
)E[τ ]

})
.

Proof: For any sub-optimal arm j, define Mj to be the random variable representing the phase arm j is eliminated in
and note that if Mj is finite, j ∈ AMj

but j 6∈ AMj+1. Then let mj be the phase arm j should be eliminated in, that is
mj = min{m|∆̃m <

∆j

2 } and note that, from the definition of ∆̃m in our algorithm, we get the relations

2m =
1

∆̃m

, 2∆̃mj
= ∆̃mj−1 ≥

∆j

2
and so,

∆j

4
≤ ∆̃mj

≤ ∆j

2
. (19)

Define R
(j)
T to be the regret contribution from each arm 1 ≤ j ≤ K and let M∗ be the round where the optimal arm j∗is

eliminated. Hence,

E[RT ] = E
[ K∑
j=1

R
(j)
T

]
= E

[ ∞∑
m=0

K∑
j=1

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}+

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

I.

+E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

II.

We will bound the regret in each of these cases in turn. First, however, we need the following results.

Lemma 22 For any suboptimal arm j, if j∗ ∈ Amj , then the probability arm j is not eliminated by round mj is,

P(Mj > mj and M∗ ≥ mj) ≤
24

T ∆̃2
mj

Proof: The proof is exactly that of Lemma 18 but using Lemma 5 to bound the probability of the confidence bounds on
either arm j or j∗ failing. �

Define the event Fj(m) = {X̄m,j∗ < X̄m,j − ∆̃m} ∩ {j, j∗ ∈ Am} to be the event that arm j∗ is eliminated by arm j in
phase m. The probability of this occurring is bounded in the following lemma.
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Lemma 23 The probability that the optimal arm j∗ is eliminated in round m <∞ by the suboptimal arm j is bounded by

P(Fj(m)) ≤ 24

T ∆̃2
m

Proof: Again, the proof follows from Lemma 19 but using Lemma 5 to bound the probability of the confidence bounds
failing. �

We now return to bounding the expected regret in each of the two cases.

Bounding Term I. To bound the first term, we consider the cases where arm j is eliminated in or before the correct round
(Mj ≤ mj) and where arm j is eliminated late (Mj > mj). Then,

E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
= E

[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}

]

= E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj ≤ mj}

]
+ E

[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj > mj}

]

≤
K∑
j=1

E[R
(j)
T I{Mj ≤ mj}] +

K∑
j=1

E[T∆jI{M∗ ≥ mj ,Mj > mj}]

≤
K∑
j=1

2∆jnmj ,j +

K∑
j=1

T∆jP(Mj > mj and M∗ ≥ mj)

≤
K∑
j=1

2∆jnmj ,j +

K∑
j=1

T∆j
24

T ∆̃2
mj

≤
K∑
j=1

(
2∆jnmj ,j +

384

∆j

)
,

where the extra factor of 2 comes from the fact that each arm will be played nm times by the end of phase m to get the data
for the estimated mean, then in the worst case, arm j is chosen as the arm to be played in the bridge period of each phase
that it is active, and thus is played another nm times.

Bounding Term II For the second term, we use the results from Theorem 2, but using Lemma 22 to bound the probability
a suboptimal arm is eliminated in a later round and Lemma 23 to bound the probability j∗ is eliminated by a suboptimal
arm. Hence,

E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
≤

K∑
j=1

1536

∆j
.

Combining the regret from terms I and II gives,

E[RT ] ≤
K∑
j=1

(
1920

∆j
+ 2∆jnmj ,j

)

Hence, all that remains is to bound nm in terms of ∆j , T and d. Using Lm,T = log(T ∆̃2
m), we have that,

nmj ,j = max

{
mj d̃mj ,

⌈
1

∆̃2
m

(√
2 log(T ∆̃m) +

√
2 log(T ∆̃m) +

8

3
∆̃m log(T ∆̃m) + 4∆̃mE[τ ]

)2⌉}
≤ max

{
mj d̃mj

,

⌈
1

∆̃2
mj

(
8Lmj ,T +

16

3
∆̃mj

Lmj ,T + 8∆̃mj
E[τ ]

)⌉}
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≤ max

{
mj d̃mj , 1 +

8Lmj ,T

∆̃2
mj

+
8Lmj ,T

3∆̃mj

+
8E[τ ]

∆̃mj

}
≤ max

{
mj d̃mj

, 1 +
128Lmj ,T

∆2
j

+
32Lmj ,T

∆j
+

32E[τ ]

∆j
.

}
where we have used (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0.

Hence, using the definition of d̃m = min{d, (14)
m } and the results from Theorem 2, the total expected regret from ODAAF

with bounded delays can be bounded by,

E[Rt] ≤
K∑

j=1;j 6=j∗
max

{
min{d, (16)},

(
256 log(T∆2

j )

∆j
+ 64E[τ ] +

1920

∆j
+ 64 log(T∆2

j ) + 2∆j

)}
. (20)

≤
K∑

j=1;j 6=j∗

(
256 log(T∆2

j )

∆j
+ 64E[τ ] +

1920

∆j
+ 64 log(T∆2

j ) + 2∆j

+ min

{
d,

128 log(T∆2
j )

∆j
+ 96 log(4/∆j)E[τ ]

})
�

Note that the constants in these regret bounds can be improved by only requiring the confidence bounds in phase m to hold
with probability 1

T ∆̃m
rather than 1

T ∆̃2
m

. This comes at a cost of increasing the logarithmic term to log(T∆j). We now
prove the problem independent regret bound,

Corollary 7 For any problem instance satisfying Assumptions 1 and 2 with d ≤
√

T logK
K + E[τ ], the expected regret of

Algorithm 1 satisfies
E[RT ] ≤ O(

√
KT log(K) +KE[τ ]).

Proof: We consider the maximal value each part of the regret in (20) can take. From Corollary 3, the first term is bounded
by

O(min{Kd,
√
KT logK +K log(T )E[τ ]}).

For the first term, we again set λ =
√

K log(K)e2

T . Then, as in corollary Corollary 3, for constants C1, C2 > 0, we bound
the regret contribution by ∑

j:∆j≤λ

E[R
(j)
t ] +

∑
j:∆j>λ

E[R
(j)
T ] ≤ KC1 log(Tλ2)

λ
+ C2KE[τ ] + Tλ.

Then, substituting in for λ implies that the second term of (20) is O(
√
KT logK +KE[τ ]).

For d ≤
√

T logK
K +E[τ ], min{Kd,

√
KT logK+K log TE[τ ]} ≤

√
KT logK+KE[τ ]. Hence the bound in (20) gives

E[RT ] ≤ O(
√
KT logK +KE[τ ] +

√
KT logK +KE[τ ]) = O(

√
KT logK +KE[τ ]).

�

D. Results for Delay with Known and Bounded Variance and Expectation
D.1. High Probability Bounds

Lemma 24 Under Assumption 1 of known expected value and 3 of known (bound on) the expectation and variance of the
delay, and choice of nm given in (7), the estimates X̄m,j obtained by Algorithm 1 satisfy the following: For any arm j and
phase m, with probability at least 1− 12

T ∆̃2
m

, either j /∈ Am or

X̄m,j − µj ≤ ∆̃m/2.
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Proof: Let

wm =
4 log(T ∆̃2

m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ] + 4V(τ)

nm
. (21)

We show that with probability greater than 1− 12
T ∆̃2

m

, j /∈ Am or 1
nm

∑
t∈Tj(m)(Xt − µj) ≤ wm.

For any arm j, phase i and time t, define,

Ai,t = Rt,JtI{τt,Jt + t ≥ Si}, Bi,t = Rt,JtI{τt,Jt + t ≥ Si,j}, Ci,t = Rt,JtI{τt,Jt + t > Ui,j} (22)

as in (11) and

Qt =

m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1}),

Pt =

m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j},

where νi = ni − ni−1 is the number of times each active arm is played in phase i ≥ 1 (assume n0 = 0). Recall from
the proof of Theorem 2, Ii{H} := I{H ∩ {j ∈ Ai}} ≤ I{H} and for all arms j and phases i, Ii{τt,Jt + t ≥ Si,j} =
I{τt,Jt + t ≥ Si,j} and Ii{τt,Jt + t > Ui,j} = I{τt,Jt + t > Ui,j}.

Then, using the convention S0 = S0,j = 0 for all arms j, we use the decomposition,

m∑
i=1

Ui,j∑
t=Si,j

(Xt − µj) ≤
m∑
i=1

( Si,j−1∑
t=Si−1,j

Rt,JtIi{τt,Jt + t ≥ Si,j}+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtIi{τt,Jt + t > Ui,j}
)

≤
m∑
i=1

( Si−νi−1−1∑
t=Si−1,j

Rt,JtI{τt,Jt + t ≥ Si}+

Si,j−1∑
t=Si−νi−1

Rt,JtI{τt,Jt + t ≥ Si,j}

+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtI{τt,Jt + t > Ui,j}
)

=

m∑
i=1

( Si−νi−1−1∑
t=Si−1,j

Ai,t +

Si,j−1∑
t=Si−νi−1

Bi,t +

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Ci,t

)

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) +

Sm,j∑
t=1

Qt −
Um,j∑
t=1

Pt

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj)︸ ︷︷ ︸
Term I.

+

Sm,j∑
t=1

(Qt − E[Qt|Gt−1])︸ ︷︷ ︸
Term II.

+

Um,j∑
t=1

(E[Pt|Gt−1]− Pt)︸ ︷︷ ︸
Term III.

(23)

+

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1],︸ ︷︷ ︸
Term IV.

Recall that the filtration {Gs}∞s=0 is defined by G0 = {Ω, ∅} and

Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . Rt,Jt).

Furthermore, we have defined Si,j = ∞ if arm j is eliminated before phase i and Si = ∞ if the algorithm stops before
reaching phase i.



Bandits with Delayed, Aggregated Anonymous Feedback

Outline of proof: We will bound each term of the above decomposition in turn. We first show in Lemma 25 how the
bounded second moment information can be incorporated using Chebychev’s inequality. In Lemma 26, we show that
Zt = Qt − E[Qt|Gt−1] is a martingale difference sequence and bound its variance in Lemma 27 before using Freedman’s
inequality. Then in Lemma 28, we provide alternative (tighter) bounds on Ai,t, Bi,t, Ci,t which are used to bound term IV..
All these results are then combined to give a high probability bound on the entire decomposition.

Lemma 25 For any a > bE[τ ]c+ 1, a ∈ N,

∞∑
l=a

P(τ ≥ l) ≤ V(τ)

a− bE[τ ]c − 1
.

Proof: For any b > a, b ∈ N, and by denoting ξ .
= bE(τ)c,

b∑
l=a

P(τ ≥ l) =

b∑
l=a

P(τ − ξ ≥ l − ξ) =

b−ξ∑
l=a−ξ

P(τ − ξ ≥ l)

≤
b−ξ∑
l=a−ξ

V(τ)

l2
(by Chebychev’s inequality since l + ξ > E[τ ] for l ≥ a− ξ)

≤ V(τ)

b−ξ−1∑
l=a−ξ−1

1

l(l + 1)

= V(τ)

b−ξ−1∑
l=a−ξ−1

(
1

l
− 1

l + 1

)

= V(τ)

(
1

a− ξ − 1
− 1

b− ξ

)
.

Hence, taking b→∞ gives
∞∑
l=a

P(τ ≥ l) ≤ V(τ)
1

a− ξ − 1
.

�

Lemma 26 Let Ys =
∑s
t=1(Qt − E[Qt|Gt−1]) for all s ≥ 1, and Y0 = 0. Then {Ys}∞s=0 is a martingale with respect to

the filtration {Gs}∞s=0 with increments Zs = Ys − Ys−1 = Qs − E[Qs|Gs−1] satisfying E[Zs|Gs−1] = 0, |Zs| ≤ 1 for all
s ≥ 1.

Proof: To show {Ys}∞s=0 is a martingale we need to show that Ys is Gs-measurable for all s and E[Ys|Gs−1] = Ys−1.

Measurability: We show that Ai,sI{Si−1,j ≤ s ≤ Si− νi−1}+Bi,sI{Si− νi−1 + 1 ≤ s ≤ Si,j − 1} is Gs-measurable for
every i ≤ m. This then suffices to show that Ys is Gs-measurable since each Qt is a sum of such terms and the filtration Gs
is non-decreasing in s.

First note that by definition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s. It is sufficient to show that I{τs,Js +
s ≥ Si, Si−1,j ≤ s ≤ Si − νi} + I{τs,Js + s ≥ Si,j , Si − νi−1 + 1 ≤ s ≤ Si,j − 1} is Gs-measurable since the
product of measurable functions is measurable. The first summand is Gs measurable since {Si−1,j ≤ s} ∈ Gs and
{Si = s′, Si−1,j ≤ s} ∈ Gs for all s′ ∈ N ∪ {∞}. So the union

⋃
s′∈N∪{∞}{τs,Js + s ≥ s′, Si−1,j ≤ s ≤ s′ − νi, Si =

s′} = {τs,Js + s ≥ Si, Si−1,j ≤ s ≤ Si − νi−1} is an element of Gs. The same argument works for the second summand
since {Sij = s′, Si − νi−1 ≤ s} ∈ Gs for all s′ ∈ N ∪ {∞}

Increments: Hence, to show that {Ys}∞s=0 is a martingale with respect to the filtration {Gs}∞s=0 it just remains to show that
the increments conditional on the past are zero. For any s ≥ 1, we have that

Zs = Ys − Ys−1 =

s∑
t=1

(Qt − E[Qt|Gt−1])−
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Qs − E[Qs|Gs−1].
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Then,
E[Zs|Gs−1] = E[Qs − E[Qs|Gs−1]|Gs−1] = E[Qs|Gs−1]− E[Qs|Gs−1] = 0

and so {Ys}∞s=0 is a martingale.

Lastly, since for any t and ω ∈ Ω, there is only one i where one of I{Si−1,j ≤ t ≤ Si − νi−1} or I{Si − νi−1 + 1 ≤
t ≤ Si,j − 1} is equal to one (they cannot both be one), and by definition of Rt,Jt , Ai,t, Bi,t ≤ 1, it follows that
|Zs| = |Qs − E[Qs|Gs−1]| ≤ 1 for all s. �

Lemma 27 For any t ≥ 1, let Zt = Qt − E[Qt|Gt−1], then

Sm,j−1∑
t=1

E[Z2
t |Gt−1] ≤ mE[τ ] +mV(τ).

Proof: Let us denote S′ .= Sm,j − 1. Observe that

S′∑
t=1

E[Z2
t |Gt−1] =

S′∑
t=1

V(Qt|Gt−1) ≤
S′∑
t=1

E[Q2
t |Gt−1]

=

S′∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1})
)2∣∣∣Gt−1

]
.

Then all indicator terms I{Si−1,j ≤ t ≤ Si − νi−1 − 1} and I{Si − νi−1 ≤ t ≤ Si,j − 1} for all i = 1, . . . ,m are Gt−1-
measurable and only one can be non zero for any ω ∈ Ω. Hence, for any ω ∈ Ω, their product must be 0. Furthermore, for
any i, i′ ≤ m, i 6= i′,

Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1} ×Ai′,tI{Si′−1,j ≤ t ≤ Si′ − νi′−1 − 1} = 0,

Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1} ×Bi′,tI{Si′ − νi′−1 ≤ t ≤ Si′,j − 1} = 0,

Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1} ×Bi′,tI{Si′ − νi′−1 ≤ t ≤ Si′,j − 1} = 0,

Ai′,tI{Si′−1,j ≤ t ≤ Si′ − νi′−1 − 1} ×Bi,t × I{Si − νi−1 ≤ t ≤ Si,j − 1} = 0.

Using the above we see that,

S′∑
t=1

E[Z2
t |Gt−1] ≤

S′∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1})
)2∣∣∣Gt−1

]

=

S′∑
t=1

E
[ m∑
i=1

(A2
i,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}2 +B2

i,tI{Si − νi−1 ≤ t ≤ Si,j − 1}2)
∣∣∣Gt−1

]

=

m∑
i=2

S′∑
t=1

E[A2
i,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}|Gt−1]

+

m∑
i=1

S′∑
t=1

E[B2
i,tI{Si − νi ≤ t ≤ Si,j − 1}|Gt−1]

(using that both indicators are Gt−1-measurable)

≤
m∑
i=2

Si−νi−1−1∑
t=Si−1,j

E[A2
i,t|Gt−1] +

m∑
i=1

Si,j−1∑
t=Si−νi−1

E[B2
i,t|Gt−1].

Then, for any i ≥ 2,

Si−νi−1−1∑
t=Si−1,j

E[A2
i,t|Gt−1] =

Si−νi−1−1∑
t=Si−1,j

E[R2
t,JtI{τt,Jt + t ≥ Si}|Gt−1]



Bandits with Delayed, Aggregated Anonymous Feedback

≤
Si−νi−1−1∑
t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−νi−1−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ Si}|Gt−1]

(Since {Si = s′, Si−1,j = s} ∈ Gt−1 for t ≥ s)

=

∞∑
s=0

∞∑
s′=s

s′−νi−1−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

P(τt,Jt + t ≥ s′)

(Since {Si = s′, Si−1,j = s} ∈ Gt−1 for t ≥ s)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑

l=νi−1+1

P(τ > l)

≤ V[τ ],

by Lemma 25 since νi ≥ bE[τ ]c+ 2 for all i. Likewise, for any i ≥ 2,

Si,j−1∑
t=Si−νi−1

E[B2
i,t|Gt−1] =

Si,j−1∑
t=Si−νi−1

E[R2
t,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

≤
Si,j−1∑

t=Si−νi−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=νi−1+1

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑

t=s−νi−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=νi−1+1

∞∑
s′=s

s′−1∑
t=s−νi−1

E[I{Si = s, Si,j = s′, τt,Jt + t ≥ s′}|Gt−1]

(Since {Si,j = s′, Si = s} ∈ Gt−1 for t ≥ s− νi − 1)

=

∞∑
s=νi−1+1

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑

t=s−νi−1

P(τt,Jt + t ≥ s′)

≤
∞∑

s=νi−1+1

∞∑
s′=s

I{Si = s, Si,j = s′}
∞∑
l=0

P(τ > l)

≤ E[τ ]

and for i = 1 the derivation simplifies since we need to some over 1 to S1,j − 1 only. Combining all terms gives the result.
�

Lemma 28 For Ai,t, Bi,t and Ci,t defined as in (22), let νi = ni − ni−1 be the number of times each arm is played in
phase i and j′i be the arm played directly before arm j in phase i. Then, it holds that, for any arm j and phase i ≥ 1,

(i)
Si−νi−1−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ ≥ l).
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(ii)
Si,j−1∑

t=Si−νi−1

E[Bi,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ ≥ l) + µj′i

νi−1∑
l=0

P(τ > l).

(iii)
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] = µj

νi−1∑
l=0

P(τ > l).

Proof: The proof is very similar to that of Lemma 27. We prove each statement individually.

Statement (i): This is similar to the proof of Lemma 27,

Si−νi−1−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤
Si−νi−1−1∑
t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−νi−1−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

(Since {Si = s′, Si−1,j = s} ∈ Gt−1 for t ≥ s)

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

P(τt,Jt + t ≥ s′)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑

l=νi−1+1

P(τ > l)

=

∞∑
l=νi−1+1

P(τ > l).

Statement (ii): For statement (ii), we have that for (i, j) 6= (1, 1),

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1] =

Si,j−νi−1−2∑
t=Si−νi−1

E[Bi,t|Gt−1] +

Si,j−1∑
t=Si,j−νi−1−1

E[Bi,t|Gt−1].

Then, since{Si,j = s′} ∩ {Si − νi−1 ≤ t} ∈ Gt−1 so we can use the same technique as for statement (i) to bound the first
term. For the second term, since we will be playing only arm j′i for Si,j − νi−1 − 1, . . . , Si,j − 1, so,

Si,j−1∑
t=Si,j−νi−1−1

E[Bi,t|Gt−1] =

Si,j−1∑
t=Si,j−νi−1−1

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

I{Si,j = s}
s−1∑

t=s−νi−1−1

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

s−1∑
t=s−νi−1−1

E[Rt,JtI{Si,j = s, τt,Jt + t ≥ Si,j}|Gt−1]

(Since {Si,j = s′, Si,j − νi−1 ≤ t} ∈ Gt−1 )

=

∞∑
s=0

s−1∑
t=s−νi−1−1

E[Rt,JtI{Si,j = s, τt,Jt + t ≥ s}|Gt−1]
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=

∞∑
s=0

I{Si,j = s}
s−1∑

t=s−νi−1−1

µj′iP(τt,Jt + t ≥ s)

(Since {Si,j = s} ∈ Gt−1 for t ≥ s− νi−1 − 1 and given Gt−1, Rt,Jt and τt,Jt are independent)

=

∞∑
s=0

I{Si,j = s}µj′i

νi−1∑
l=0

P(τ > l)

= µj′i

νi−1∑
l=0

P(τ > l).

Then, for (i, j) = (1, 1), the amount seeping in will be 0, so using ν0 = 0, µ′11
= 0, the result trivially holds. Hence,

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ ≥ l) + µj′i

νi−1∑
l=0

P(τ > l).

Statement (iii): This is the same as in Lemma 16. �

We now bound each term of the decomposition in (23).

Bounding Term I.: For Term I., we can again use Lemma 17 as in the proof of Lemma 1 to get that with probability
greater than 1− 1

T ∆̃2
m

,

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) ≤

√
nm log(T ∆̃2

m)

2
.

Bounding Term II.: For Term II., we will use Freedmans inequality (Theorem 10). From Lemma 26, {Ys}∞s=0 with
Ys =

∑s
t=1(Qt−E[Qt|Gt−1]) is a martingale with respect to {Gs}∞s=0 with increments {Zs}∞s=0 satisfying E[Zs|Gs−1] = 0

and Zs ≤ 1 for all s. Further, by Lemma 27,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] +mV(τ) ≤ 4×2m

8 (E[τ ] + V(τ)) ≤ nm/8 with
probability 1. Hence we can apply Freedman’s inequality to get that with probability greater than 1− 1

T ∆̃2
m

,

Sm,j∑
t=1

(Qt − E[Qt|Gt−1]) =

∞∑
s=1

I{Sm,j = s} × Ys ≤
2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m),

using that Freedman’s inequality applies simultaneously to all s ≥ 1.

Bounding Term III.: For Term III., we again use Freedman’s inequality (Theorem 10), using Lemma 14 to show that
{Y ′s}∞s=0 with Y ′s =

∑s
t=1(E[Pt|Gt−1]− Pt) is a martingale with respect to {Gs}∞s=0 with increments {Z ′s}∞s=0 satisfying

E[Z ′s|Gs−1] = 0 and Z ′s ≤ 1 for all s. Further, by Lemma 15,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] ≤ nm/8 with probability 1.
Hence, with probability greater than 1− 1

T ∆̃2
m

,

Um,j∑
t=1

(E[Pt|Gt−1]− Pt) =

∞∑
s=1

I{Um,j = s} × Y ′s ≤
2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m).

Bounding Term IV.: To begin with, observe that,

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1]

=

Sm,j∑
t=1

E
[ m∑
i=1

(Ai,t × I{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,t × I{Si − νi−1 ≤ t ≤ Si,j − 1})
∣∣∣∣Gt−1

]
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−
Um,j∑
t=1

E
[ m∑
i=1

Ci,t × I{Si,j ≤ t ≤ Ui,j}
∣∣∣∣Gt−1

]

=

m∑
i=1

Sm,j∑
t=1

E[Ai,t × I{Si−1,j ≤ t ≤ Si − νi−1 − 1}|Gt−1]

+

m∑
i=1

Sm,j∑
t=1

E[Bi,t × I{Si − νi−1 ≤ t ≤ Si,j − 1}|Gt−1]

−
m∑
i=1

Um,j∑
t=1

E[Ci,t × I{Si,j ≤ t ≤ Ui,j}|Gt−1]

=

m∑
i=1

( Si−νi−1−1∑
t=Si−1,j

E[Ai,t|Gt−1] +

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1]

)
(using that the indicators are Gt−1-measurable)

≤
m∑
i=1

( ∞∑
l=νi−1+1

P(τ ≥ l) + µj′i

νi−1∑
l=0

P(τ > l)− µj
νi∑
l=0

P(τ > l)

)
,

≤
m∑
i=1

(
2V(τ)

νi−1 − E[τ ]
+ (µj′i − µj)

νi∑
l=0

P(τ > l)

)
,

≤
m∑
i=1

(
2V(τ)

2i−1
+ (µj′i − µj)

νi∑
l=0

P(τ > l)

)
, (24)

by Lemma 28 and Lemma 25 where we have used the fact that since nm ≤ T , the maximal number of rounds of the

algorithm is 1
2 log2(T/4) and for m ≤ 1

2 log2(T/4), log(T ∆̃2
m)

∆̃2
m

≥ 2 log(T ∆̃2
m−1)

∆̃2
m−1

so nm ≥ 2nm−1 and νm ≥ nm−1.

Then for E[τ ] ≥ 1, νi−1 − E[τ ] ≥ 2/∆̃i−1E[τ ] − E[τ ] ≥ (2 × 2i−1 − 1)E[τ ] ≥ 2i−1E[τ ] ≥ 2i−1 and for E[τ ] ≤ 1,
νi−1−E[τ ] ≥ νi−1−1 ≥ 2 log(4)/∆̃i−1−1 ≥ 2i−1 so νi−1−E[τ ] ≥ 2i−1. Then, the probability that either arm j′i or j is
active in phase i when it should have been eliminated in or before phase i−1 is less than 2pi−1, where pi is the probability
that the confidence bounds for one arm holds in phase i and p0 = 0. If neither arm should have been eliminated by phase
i, this means that their mean rewards are within ∆̃i−1 of each other. Hence, with probability greater than 1− 2pi−1,

µj′i

νi∑
l=0

P(τ > l)− µj
νi∑
l=0

P(τ > l) ≤ ∆̃i−1

νi∑
l=0

P(τ > l) ≤ ∆̃i−1E[τ ].

Then, summing over all phases gives that with probability greater than 1− 2
∑m−1
i=0 pi,

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1] ≤ 2V(τ)

m∑
i=1

1

2i−1
+ E[τ ]

m∑
i=1

∆̃i−1 = (2V(τ) + E[τ ])

m−1∑
i=0

1

2i

≤ 4V(τ) + 2E[τ ].

Combining all terms: To get the final high probability bound, we sum the bounds for each term I.-IV.. Then, with
probability greater than 1− ( 3

T ∆̃2
m

+ 2
∑m−1
i=1 pi), either j /∈ Am or arm j is played nm times by the end of phase m and

1

nm

∑
t∈Tj(m)

(Xt − µj) ≤
4 log(T ∆̃2

m)

3nm
+

(
2√
8

+
1√
2

)√
log(T ∆̃2

m)

nm
+

2E[τ ] + 4V(τ)

nm

≤ 4 log(T ∆̃2
m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ] + 4V(τ)

nm
= wm.
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Using the fact that p0 = 0 and substituting the other pi’s using the same recursive relationship pi = 3
T ∆̃2

i

+ 2
∑i−1
l=1 pl as

in the case for bounded delays (see the proof of Lemma 5) gives, pm = 12
T ∆̃2

m

so the above bound holds with probability

greater than 1− 12
T ∆̃2

m

.

Defining nm: Setting

nm =

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃2

m) + 4∆̃m(E[τ ] + 2V(τ))

)2⌉
. (25)

ensures that wm ≤ ∆̃m

2 which concludes the proof. �

Remark: Note that if E[τ ] ≥ 1, then the confidence bounds can be tightened by replacing (24) with

m∑
i=1

(
2V(τ)

2i−1E[τ ]
+ (µj′i − µj)

νi∑
l=0

P(τ > l)

)
This is obtained by noting that for E[τ ] ≥ 1. νi−1 − E[τ ] ≥ 2/∆̃i−1E[τ ]− E[τ ] ≥ (2× 2i−1 − 1)E[τ ] ≥ 2i−1E[τ ]. This
leads to replacing the V(τ) term in the definition of nm by V(τ)/E[τ ].

D.2. Regret Bounds

Theorem 8 Under Assumption 1 and Assumption 3 of known (bound on) the expectation and variance of the delay, and
choice of nm from (7), the expected regret of Algorithm 1 can be upper bounded by,

E[RT ] ≤
K∑

j=1:µj 6=µ∗
O

(
log(T∆2

j )

∆j
+ E[τ ] + V(τ)

)
.

Proof: The proof is very similar to that of Theorem 2, however, for clarity, we repeat the main arguments here. For any
sub-optimal arm j, define Mj to be the random variable representing the phase arm j is eliminated in and note that if Mj is
finite, j ∈ AMj

but j 6∈ AMj+1. Then letmj be the phase arm j should be eliminated in, that ismj = min{m|∆̃m <
∆j

2 }
and note that, from the new definition of ∆̃m in our algorithm, we get the relations

2m =
1

∆̃m

, 2∆̃mj = ∆̃mj−1 ≥
∆j

2
and so,

∆j

4
≤ ∆̃mj ≤

∆j

2
. (26)

Define R
(j)
T to be the regret contribution from each arm 1 ≤ j ≤ K and let M∗ be the round where the optimal arm j∗is

eliminated. Hence,

E[RT ] = E
[ K∑
j=1

R
(j)
T

]
= E

[ ∞∑
m=0

K∑
j=1

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}+

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

I.

+E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

II.

We will bound the regret in each of these cases in turn. First, however, we need the following results.

Lemma 29 For any suboptimal arm j, if j∗ ∈ Amj
, then the probability arm j is not eliminated by round mj is,

P(Mj > mj and M∗ ≥ mj) ≤
24

T ∆̃2
mj
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Proof: The proof is exactly that of Lemma 18 but using Lemma 24 to bound the probability of the confidence bounds on
either arm j or j∗ failing. �

Define the event Fj(m) = {X̄m,j∗ < X̄m,j − ∆̃m} ∩ {j, j∗ ∈ Am} to be the event that arm j∗ is eliminated by arm j in
phase m. The probability of this event is bounded in the following lemma.

Lemma 30 The probability that the optimal arm j∗ is eliminated in round m <∞ by the suboptimal arm j is bounded by

P(Fj(m)) ≤ 24

T ∆̃2
m

Proof: Again, the proof follows from Lemma 19 but using Lemma 24 to bound the probability of the confidence bounds
failing. �

We now return to bounding the expected regret in each of the two cases.

Bounding Term I. As in the proof of Theorem 2, to bound the first term, we consider the cases where arm j is eliminated
in or before the correct round (Mj ≤ mj) and where arm j is eliminated late (Mj > mj). Then, using Lemma 22,

E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
≤

K∑
j=1

(
2∆jnmj ,j +

384

∆j

)

Bounding Term II For the second term, we again use the results from Theorem 2, but using Lemma 29 to bound the
probability a suboptimal arm is eliminated in a later round and Lemma 30 to bound the probability j∗ is eliminated by a
suboptimal arm. Hence,

E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
≤

K∑
j=1

1920

∆j
.

Combining the regret from terms I and II gives,

E[RT ] ≤
K∑
j=1

(
1920

∆j
+ 2∆jnmj ,j

)
Hence, all that remains is to bound nm in terms of ∆j , T and E[τ ],V(τ). Using Lm,T = log(T ∆̃2

m), we have that,

nmj ,j =

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃m) + 4∆̃m(E[τ ] + 2V(τ))

)2⌉
≤

⌈
1

∆̃2
mj

(
8Lmj ,T +

16

3
∆̃mj

Lmj ,T + 8∆̃mj
E[τ ] + 16∆̃mj

V(τ)

)⌉

≤ 1 +
8Lmj ,T

∆̃2
mj

+
16Lmj ,T

3∆̃mj

+
8E[τ ]

∆̃mj

+
16V(τ)

∆̃mj

≤ 1 +
128Lmj ,T

∆2
j

+
32Lmj ,T

∆j
+

32E[τ ]

∆j
+

64V(τ)

∆j
.

where we have used (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0.

Hence, the total expected regret from ODAAF with bounded delays can be bounded by,

E[Rt] ≤
K∑
j=1

(
256 log(T∆2

j )

∆j
+ 64E[τ ] + 128V(τ) +

1920

∆j
+ 64 log(T ) + 2∆j

)
.

�

Note that again, these constants can be improved at a cost of increasing log(T∆2
j ) to log(T∆j). We now prove the problem

independent regret bound.
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Figure 5: The relative increase in regret at horizon T = 250000 for increasing mean delay when the delay is N+ with
variance 100.

Corollary 9 For any problem instance satisfying Assumptions 1 and 3, the expected regret of Algorithm 1 satisfies

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] +KV(τ)).

Proof: Let λ =
√

K log(K)e2

T and note that for ∆ > λ, log(T∆2)/∆ is decreasing in ∆. Then, for constants C1, C2 > 0

we can bound the regret in the previous theorem by

E[RT ] ≤
∑

j:∆j≤λ

E[R
(j)
t ] +

∑
j:∆j>λ

E[R
(j)
T ] ≤ KC1 log(Tλ2)

λ
+KC2(E[τ ] + V(τ)) + Tλ.

substituting in the above value of λ gives a worst case regret bound that scales with O(
√
KT log(K) +K(E[τ ] +V(τ))).

�

Remark: If E[τ ] ≥ 1, we can replace the V(τ) terms in the regret bounds with V(τ)/E[τ ]. This follows by using the
alternative definition of nm suggested in the remark at the end of Section D.1.

E. Additional Experimental Results
E.1. Increasing the Expected Delay

Here we investigate the effect of increasing the mean delay on both our algorithm and QPM-D (Joulani et al., 2013) and
demonstrate that the regret of both algorithms increases linearly with E[τ ], as indicated by our theoretical results. We use
the same experimental set up as described in Section 5. In Figure 5, we are interested in the impact of the mean delay
on the regret so we kept the delay distribution family the same, using a N+(µ, 100) (Normal distribution with mean µ,
variance 100, truncated at 0) as the delay distribution. We then ran the algorithms for increasing mean delays and plotted
the ratio of the regret at T to the regret of the same algorithm when the delay distribution was N+(0, 100). In this case,
the regret was averaged over 1000 replications for ODAAF and ODAAF-V, and 5000 for QPM-D (this was necessary since
the variance of the regret of QPM-D was significant). Here, it can be seen that increasing the mean delay causes the regret
of all three algorithms to increase linearly. This is in accordance with the regret bounds which all include a linear factor
of E[τ ] (since here log(T ) is kept constant). It can also be seen that ODAAF-V scales better with E[τ ] than ODAAF (for
constant variance). Particularly, at E[τ ] = 100, the relative increase in ODAAF-V is only 1.2 whereas that of ODAAF is 4
(QPM-D has the best relative increase of 1.05).

E.2. Comparison with Vernade et al. (2017)

Here we compare our algorithms, ODAAF, ODAAF-B and ODAAF-V, to the (non-censored) DUCB algorithm of Vernade
et al. (2017). We use the same experimental setup as described in Section 5. As in the comparison to QPM-D, in Figure 6
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(a) Bounded delays. Ratios of regret of ODAAF (solid
lines) and ODAAF-B (dotted lines) to that of DUCB.
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Figure 6: The ratios of regret of variants of our algorithm to that of DUCB for different delay distributions.

we plot the ratios of the cumulative regret of our algorithms to that of DUCB for different delay distributions. In Figure 6a,
we consider bounded delay distributions and in Figure 6b, we consider unbounded delay distributions. From these plots,
we observe that, as in the comparison to QPM-D in Figure 3, the regret ratios all converge to a constant. Thus we can
conclude that the order of regret of our algorithms match that of DUCB, even though the DUCB algorithm of Vernade
et al. (2017) has considerably more information about the delay distribution. In particular, along with knowledge on the
individual rewards of each play (non-anonymous observations), DUCB also uses complete knowledge of the cdf of the
delay distribution to re-weigh the average reward for each arm. Thus, our algorithms are able to match the rate of regret
of Vernade et al. (2017) and QPM-D of Joulani et al. (2013) while just receiving aggregated, anonymous observations and
using only knowledge of the expected delay rather than the entire cdf.

We ran the DUCB algorithm with parameter ε = 0. As pointed out in Vernade et al. (2017), the computational bottleneck in
the DUCB algorithm is evaluating the cdf at all past plays of the arms in every round. For bounded delay distributions, this
can be avoided using the fact that the cdf will be 1 for plays more than d steps ago. In the case of unbounded distributions,
in order to make our experiments computationally feasible, we used the approximation P(τ ≤ d) = 1 for d ≥ 200. Another
nuance of the DUCB algorithm is due to the fact that in the early stages, the upper confidence bounds are dominated by
the uncertainty terms, which themselves involve dividing by the cdf of the delay distributions. The arm that is played last
in the initialization period will have the highest cdf and so it’s confidence bound will be largest and DUCB will play this
arm at time K + 1 (and possibly in subsequent rounds unless the cdf increases quickly enough). In order to overcome this,
we randomize the order that we play the arms in during the initialization period in each replication of the experiment. Note
that we did not run DUCB with half normal delays as DUCB divides by the cdf of the delay distribution and in this case
the cdf would be 0 at some points.

F. Naive Approach for Bounded Delays
In this section we describe a naive approach to defining the confidence intervals when the delay is bounded by some d ≥ 0
and show that this leads to sub-optimal regret. Let

wm =

√
log(T ∆̃2

m)

2nm
+
md

nm
.

denote the width of the confidence intervals used in phasem for any arm j. We start by showing that the confidence bounds
hold with high probability:

Lemma 31 For any phase m and arm, j,

P(|X̄m,j − µj | > wm) ≤ 2

T ∆̃2
m

.
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Proof: First note that since the delay is bounded by d, at most d rewards from other arms can seep into phase i of playing
arm j and at most d rewards from arm j can be lost. Defining Si,j and Ui,j as the start and end points of playing arm j in
phase i, respectively, we have ∣∣∣∣∣∣

Ui,j∑
t=Si,j

Rj,t −
Ui,j∑
t=Si,j

Xt

∣∣∣∣∣∣ ≤ d , (27)

because we can pair up some of the missing and extra rewards, and in each pair the difference is at most one. Then, since
Tj(m) = ∪mi=1{Si,j , Si,j + 1, . . . , Ui,j} and using (27) we get

1

nm

∣∣∣∣∣∣
∑

t∈Tj(m)

Rj,t −
∑

t∈Tj(m)

Xt

∣∣∣∣∣∣ ≤ md

nm
.

Define R̄m,j = 1
|Tj(m)|

∑
t∈Tj(m)Rj,t and recall that X̄m,j = 1

|Tj(m)|
∑
t∈Tj(m)Xt. For any a > md

nm
,

P
(
|X̄m,j − µj | > a

)
≤ P

(
|X̄m,j − R̄m,j |+ |R̄m,j − µj | > a

)
≤ P

(
|R̄m,j − µj | > a− md

nm

)
≤ 2 exp

{
−2nm

(
a− md

nm

)2
}
,

where the first inequality is from the triangle inequality and the last from Hoeffding’s inequality since Rj,t ∈ [0, 1] are

independent samples from νj , the reward distribution of arm j. In particular, taking a =

√
log(T ∆̃2

m)
2nm

+ md
nm

guarantees that
P
(
|X̄j − µj | > a

)
≤ 2

T ∆̃2
m

, finishing the proof. �

Observe that setting

nm =

⌈
1

2∆̃2
m

(√
log(T ∆̃2

m) +

√
log(T ∆̃2

m) + 4∆̃mmd

)2 ⌉
. (28)

ensures that wm ≤ ∆̃m

2 . Using this, we can substitute this value of nm into Improved UCB and use the analysis from
(Auer & Ortner, 2010) to get the following bound on the regret.

Theorem 32 Assume there exists a bound d ≥ 0 on the delay. Then for all λ > 0, the expected regret of the Improved
UCB algorithm run with nm defined as in (28) can be upper bounded by

∑
j∈A

∆j>λ

(
∆j +

64 log(T∆2
j )

∆j
+ 64 log(2/∆j)d+

96

∆j

)
+

∑
j∈A

0<∆j<λ

64

λ
+ T max

j∈A
∆j≤λ

∆j

Proof: The result follows from the proof of Theorem 3.1 of (Auer & Ortner, 2010) using the above definition of nm. �

In particular, optimizing with respect to λ gives worst case regret of O(
√
KT logK + Kd log T ). This is a suboptimal

dependence on the delay, particularly when d >> E[τ ].
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