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Abstract
In this supplementary material, we provide not only the proofs of the main theorems of the submitted manuscript,
and moreover numerical examples to demonstrate: proximal stochastic gradient descent has no manifold iden-
tification property, the consequence of the non-degeneracy condition being not satisfied, and rate estimations
comparison between deterministic Forward–Backward splitting algorithm and SAGA/Prox-SVRG.

1. Prox-SGD has no manifold identification properties
We present a simple example to illustrate the fact the Prox-SGD cannot have manifold identification properties in general.
Consider the following minimisation problem

min
x∈R3
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3
||x||1 +
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The optimal solution is x? = (1, 0, 0)T and writing F (x)
def
= 1

6 ||Kx− b||
2, we have that the non-degeneracy condition

−∇F (x?) =
1

3

 1√
2/3√
3/4

 ∈ ri
(1
3
∂||x?||1

)
, where (∂||x?||)i = sign(xi) =


+ 1 : xi > 0,

[−1,+1] : xi = 0,

− 1 : xi < 0,

It is straightforward to verify that ||∇fi(x)−∇F (x)|| ≥ ||∇F (x)|| for all i = 1, 2, 3. Moreover, if Prox-SGD is starting with
x0 = (µ, 0, 0)T with µ ∈ R, then with probability 2/3 the first iterate of the algorithm satisfies x1 6∈ Mx? =

{
(x, 0, 0) :

x ∈ R
}

. In fact, x1 will have 2 non-zero entries if |µ| > γ1 and i1 ∈ {2, 3}. Figure 1.1 shows the support sizes of the
Prox-SGD iterates over 106 iterations.

2. Global convergence of SAGA/Prox-SVRG
To prove Theorem 2.1 and 2.2, the lemma below is needed which is classical result from stochastic analysis (Neveu, 1975).

Lemma 2.1 (Supermartingale convergence). Let Yk, Zk and Wk, k = 0, 1, . . . , be three sequences of random variables
and let Fk, k = 0, 1, . . . , be sets of random variables such that Fk ⊂ Fk+1 for all k. Suppose that:

(i) The random variables Yk, Zk and Wk are non-negative, and are functions of the random variables in Fk.
(ii) For each k, we have E(Yk+1|Fk) ≤ Yk − Zk +Wk.
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Figure 1.1: Support identification comparison between FB and Prox-SGD. For Prox-SGD, “initial point 1” starts with an
arbitrary point with all three elements non-zero; “initial point 2” starts with the point 10x?. The maximum number of
iteration for Prox-SGD is 106, the blue and red lines are sub-sampled, one out of every 104 points.

(iii) With probability 1,
∑

kWk <∞.

Then we have
∑

k Zk <∞ and the sequence Yk converges to a non-negative random variable Y with probability 1.

Proof of Theorem 2.1. The convergence of the objective function value for γk ≡ 1
3L is already studied in (Defazio et al.,

2014), here for the completeness of the proof, we shall keep the convergence proof of the objective function.

The proof of the theorem consists of several steps. First is the convergence of the objective function value. Let φk,i be the
point such that gk,i = ∇fi(φk,i), then following the proof in the original SAGA paper (Defazio et al., 2014), define the
following Lyapunov function L,

Lk
def
= L(xk, {φk,i}mi=1)

def
=

1

m

∑m

i=1
fi(φk,i)− F (x?)− 1

m

∑m

i=1
〈∇fi(x?), φi,k − x?〉+ c||xk − x?||2

for some appropriate c > 0. Denote Ek[·] the conditional expectation on step k. Then following the Appendix C of the
supplementary material of (Defazio et al., 2014), one can show that

Ek[Lk+1] ≤ Lk −
1

4m
Ek[Φ(xk+1)− Φ(x?)]. (2.1)

Since Ek[Φ(xk+1) − Φ(x?)] is a non-negative random variable of the kth iteration, it then follows that {Lk}k∈N is
a supermartingale owing to Lemma 2.1. Therefore {Lk}k∈N converges to a non-negative random variable L? with
probability 1. At the same time, with probability 1, ||xk − x?||2 ≤ 1

cLk, hence {xk}k∈N is a bounded sequence and every
cluster point of {xk}k∈N is a global minimiser of Φ. Moreover, from Lemma 2.1 and (2.1), we have∑∞

k=0

(
Ek[Φ(xk+1)− Φ(x?)]

)
≤ L0 < +∞

holds almost surely. Define a new random variable yj
def
=
∑

k≥j Ek[Φ(xk+1) − Φ(x?)], clearly we have {yj}k∈N is
non-increasing and converges to 0 as j → +∞. As a consequence, by the monotone convergence theorem, we have

0 = E
[

lim
j→+∞

yj

]
= lim

j→+∞
E[yj ] = lim

j→+∞

∑
k≥jE[Φ(xk+1)− Φ(x?)] = lim

j→+∞
E
[∑

k≥j (Φ(xk+1)− Φ(x?))
]
,

which implies

E
[∑

k≥j
(
Φ(xk+1)− Φ(x?)

)]
< +∞ =⇒

∑
k

(
Φ(xk+1)− Φ(x?)

)
< +∞ almost surely, (2.2)

hence Φ(xk)→ Φ(x?) almost surely.
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With the boundedness of {xk}k∈N, the second step is to prove that {||xk − x?||}k∈N is convergent. Define a new sequence

wk
def
=

1

m

∑m

i=1
fi(φk,i)− F (x?)− 1

m

∑m

i=1
〈∇fi(x?), φi,k − x?〉.

Observe that
Ek[wk+1] =

1

m
F (xk)− F (x?)− 1

m
〈∇F (x?), xk − x?〉+

(
1− 1

m

)
wk.

Since x? ∈ Argmin(Φ) is a global minimiser, we have−∇F (x?) ∈ ∂R(x?) and 〈−∇F (x?), xk−x?〉 ≤ R(xk)−R(x?),
therefore from above equality we further obtain

Ek[wk+1]≤ 1

m

(
Φ(xk)− Φ(x?)

)
+
(
1− 1

m

)
wk.

Taking expectations over all previous steps for both sides and summing from k = 0 to j yields

E[wj+1] +
1

m

∑j

k=1
E[wk]≤ 1

m

∑j

k=0
E
[
Φ(xk)− Φ(x?)

]
+
(
1− 1

m

)
E[w0].

As a result, taking j to +∞ implies that E[
∑j

k=1 wk] < +∞, hence
∑j

k=1 wk < +∞ almost surely. Moreover, wk → 0
with probability 1. From the convergence result of {Lk}k∈N and {wk}k∈N, we have that almost surely {||xk − x?||}k∈N is
bounded and convergent.

Next we prove the almost sure convergence of the sequence {xk}k∈N. Let {x?i }i be a countable subset of the relative interior
ri(Argmin(Φ)) that is dense in Argmin(Φ). From the almost sure convergence of ||xk − x?||, x? ∈ Argmin(Φ), we have
that for each i, the probability Prob({||xk − x?i ||}k∈N is not convergent) = 0. Therefore

Prob
(
∀i,∃bi s.t. lim

k→+∞
||xk − x?i ||

)
= 1− Prob({||xk − x?i ||}k∈N is not convergent)

≥ 1−
∑

i
Prob({||xk − x?i ||}k∈N is not convergent) = 1,

where the inequality follows from the union bound, i.e. for each i, {||xk − x?i ||}k∈N is a convergent sequence. For a
contradiction, suppose that there are convergent sub-sequences {ukj}kj and {vkj}kj of {xk}k∈N which converge to their
limiting points u? and v? respectively, with ||u? − v?|| = r > 0. Since Φ(xk) converges to inf Φ, these two limiting points
are necessarily in Argmin(Φ). Since {x?i }i is dense in Argmin(Φ), we may assume that for all ε > 0, we have x?i1 and x?i2
are such that ||x?i1 − u

?|| < ε and ||x?i2 − v
?|| < ε. Therefore, for all kj sufficiently large,

||ukj
− x?i1 || ≤ ||ukj

− u?||+ ||u? + x?i1 || < ||ukj
− u?||+ ε.

On the other hand, for sufficiently large j, we have

||vkj
− x?i1 || ≥ ||v

? − u?|| − ||u? − x?i1 || − ||vkj
− v?|| > r − ε− ||vkj

− v?|| > r − 2ε.

This contradicts with the fact that xk − x?i1 is convergent. Therefore, we must have u? = v?, hence there exists x̄ ∈
Argmin(Φ) such that xk → x̄.

Finally, to see that εSAGA

k → 0, from Lemma 6 of (Defazio et al., 2014),

1

m

∑m

i=1
||∇fi(φk,i)−∇fi(x∗)||2 ≤ 2Lwk → 0,

therefore, combining this with the fact that∇fj is L-Lipschitz and xk → x∗, it follows that

||εSAGA

k || ≤ ||∇fik(xk)−∇fik(φk,i)||+
1

m

∑m

j=1
||∇fj(φk,i)−∇fj(xk)|| → 0,

which concludes the proof.

To prove Theorem 2.2, we require the following lemma, which is a direct consequence of Eq. (16) and Corollary 3 of (Xiao
& Zhang, 2014).
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Lemma 2.2. Assume that F is αF -strongly convex and R is αR-strongly convex. Let {x`,p}`,p be the sequence generated
by Prox-SVRG. Then, conditional on step k = `P + p− 1, we have

(1 + γαR)Ek[||x`,p − x?||2]

≤ (1− γαF )||x`,p−1 − x?||2 − 2γ
(
Φ(x`,p)− Φ(x?)

)
+ 8Lγ2 (Φ(x`,p−1)− Φ(x?) + Φ(x̃`)− Φ(x?)) .

(2.3)

Proof of Theorem 2.2. We begin with the remark that following the arguments in the proof of Theorem 2.1, to show that
x`,p → x? almost surely for some x? ∈ argmin(Φ), it is sufficient to prove that ||x`,p − x?|| is convergent. By Lemma 2.2
with αR = αF = 0, we have that conditional on step k = `P + p− 1,

Ek[||x`,p − x?||2] + 2γEk[Φ(x`,p)− Φ(x?)] ≤ ||x`,p−1 − x?||2 + 8Lγ2 (Φ(x`,p−1)− Φ(x?) + Φ(x̃`)− Φ(x?)) . (2.4)

Summing (2.4) over p = 1, . . . , P and taking expectation on the random variables i1, . . . , iP , we obtain that

E[||x`,P − x?||2] + 2γE[Φ(x`,P )− Φ(x?)] + 2γ(1− 4Lγ)
∑P−1

j=1
E[Φ(x`,j)− Φ(x?)]

≤ ||x̃` − x?||2 + 8Lγ2(P + 1)
(
Φ(x̃`)− Φ(x?)

)
.

(2.5)

Since γ ≤ 1
4L(P+2) , which yields 2γ(1− 4Lγ) ≥ γ2, we obtain from (2.5)

E[||x`,P − x?||2] + (2γ − γ2)E[Φ(x`,P )− Φ(x∗)] + γ2
∑P

j=1
E[Φ(x`,j)− Φ(x?)]

≤ ||x̃` − x?||2 + 8Lγ2(P + 1)(Φ(x̃`)− Φ(x?)).

Moreover, under “Option I”, by defining the non-negative random variables

T`
def
= ||x̃` − x?||2 + (2γ − γ2)(Φ(x̃`)− Φ(x?)) and S`+1

def
=
∑P

j=1

(
Φ(x`,j)− Φ(x?)

)
.

It follows from 8Lγ2(P + 1) ≤ 2γ − γ2 that

E[T`+1] ≤ T` − γ2E[S`+1]. (2.6)

So, by the super-martingale convergence theorem, {T`}`∈N converges to a non-negative random variable and
∑

` S` < +∞
holds almost surely. In particular, we have S` → 0 as `→∞ and hence, Φ(x̃`)→ Φ(x?) as `→∞. Therefore, ||x̃`−x?||2
converges almost surely. Following the proof of Theorem 2.1, we can then show that x̃` converges to an optimal point x?

almost surely.

Now we prove that the inner iteration sequence {x`,p}1≤p≤P, `∈N also converge to x? as `→∞. Consider the inequality
(2.4), and define the non-negative random variables

V`,p
def
= ||x`,p − x?||2 + 2γ

(
Φ(x`,p)− Φ(x?)

)
and W`,p

def
= 8Lγ2

(
Φ(x̃`)− Φ(x?)

)
. (2.7)

Equation (2.4) implies that
E[V`,p] ≤ V`,p−1 +W`,p−1,

and moreover
∑

`,pW`,p =
∑

` S` <∞ holds almost surely. Therefore, the super martingale convergence theorem implies
that {V`,p}p∈{1,··· ,P},`∈N converges to a non-negative random variable. Moreover, since Φ(x`,p)→ Φ(x?), it follows that
the sequence {||x`,p − x?||}p∈{1,··· ,P},`∈N is convergent.

To prove the ergodic convergence rate of Φ(x̄k)− Φ(x?), observe that by convexity of Φ and Jensen’s inequality, we have

E[S`+1] ≥ PE
[
Φ
(
1
P

∑P

j=1
x`,j

)
− Φ(x?)

]
,

which further implies, owing to (2.6),

Pγ2E
[
Φ
(
1

P

∑P

j=1
x`,j

)
− Φ(x?)

]
≤ E[T`]− E[T`+1].
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Summing over ` = 1, . . . , Q and telescoping the right hand of the sum we arrive at

QPγ2E
[
Φ
( 1
QP

∑Q

`=1

∑P

j=1
x`,j
)
− Φ(x?)

]
≤ QPγ2E

[
1
Q

∑Q

`=1
Φ
(
1
P

∑P

j=1
x`,j

)
− Φ(x?)

]
≤ E[T1]− E[TQ+1],

where the first inequality follows from Jensen’s inequality and convexity of Φ. Dividing both sides by kPγ2 gives the
required error bound. The convergence of εSVRG

k is a straightforward consequence of the convergence of xl,p.

Now we prove the second claim of the theorem. Taking expectation of both sides of (2.3) in Lemma 2.2 and summing from
p = 1, · · · , P yields

(1− γαR)E
[
||x`,P − x?||2

]
+ 2γE

[
Φ(x`,P )− Φ(x?)

]
≤ −(αF + αR)

∑P

p=1
E
[
||x`,p − x?||2

]
−
(
2γ − 8γ2L

)∑P−1
p=1

E
[
Φ(x`,p)− Φ(x?)

]
+ (1− γαF )E

[
||x`,0 − x?||2

]
+ 8γ2LE

[
Φ(x`,0)− Φ(x?)

]
+ 8γ2LPE

[
Φ(x̃`)− Φ(x?)

]
.

Since γL < 1
4(P+1) <

1
4 , we have 2γ − 8γ2L > 0, and we have from the above

(1− γαR)E
[
||x`,P − x?||2

]
+ 2γE

[
Φ(x`,P )− Φ(x?)

]
≤ (1− γαF )E

[
||x`,0 − x?||2

]
+ 8γ2L(P + 1)E

[
Φ(x̃`)− Φ(x?)

]
.

Define
T`

def
= (1− γαR)E

[
||x`,P − x?||2

]
+ 2γE

[
Φ(x`,P )− Φ(x?)

]
,

then there holds
E[T`] ≤ max

{
1− γαF

1 + γαR
, 4Lγ(P + 1)

}
E[T`−1]

which implies the desired result.

3. Finite manifold identification of SAGA/Prox-SVRG
3.1. Proofs for Theorem 3.2

Proof of Theorem 3.2. First of all, the definition of proximity operator (2) and the update of xk+1 (4) entail that
xk − xk+1

γk
−∇F (xk)− εk ∈ ∂R(xk+1), (3.1)

from which we get

dist
(
−∇F (x?), ∂R(xk+1)

)
≤ || 1

γk

(
xk − xk+1

)
−∇F (xk)− εk +∇F (x?)||

≤ 1
γk
||xk − xk+1||+ ||∇F (xk)−∇F (x?)||+ ||εk||

≤ 1
γ
||xk+1 − xk||+ LF ||xk − x?||+ ||εk||,

where lower boundedness of γk and the LF -Lipschitz continuity of ∇F (see assumption (A.2)) is applied to get the last
inequality. We have:

• The almost sure convergence of {xk}k∈N (condition (B.3)) ensures that LF ||xk − x?|| converges to 0 almost surely.
Owing to assumption (A.1), R is sub-differentially continuous at all the points of its domain, typically at x? for
−∇F (x?), hence we have R(xk)→ R(x?) almost surely;

• Combine the almost sure convergence of {xk}k∈N and (B.1) the bounded from below property of {γk}k∈N, we have
that 1

γ ||xk+1 − xk|| converges to 0 almost surely.

• Condition (B.2) asserts that ||εk|| → 0 almost surely.

Altogether, we have that
dist

(
−∇F (x?), ∂R(xk+1)

)
→ 0 almost surely.

To this point, all the conditions of Theorem 5.3 of (Hare & Lewis, 2004) are fulfilled almost surely on function 〈∇F (x?), ·〉+
R, hence the identification result follows.
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3.2. When non-degeneracy condition fails

In Theorem 3.2, besides the partial smoothness assumption of R, the non-degeneracy condition (ND) is crucial to the
identification of the sequence {xk}k∈N. Owing to the result of (Lewis & Zhang, 2013; Hare & Lewis, 2004; 2007), it is a
necessary condition for identification of the manifoldMx? , and moreover ensures that the manifoldMx? is minimal and
unique.

Recently, efforts are made to relax the non-degeneracy condition. In (Fadili et al., 2017), under a so-called “mirror
stratification condition”, the authors manage to relax the non-degeneracy condition, however at the price that the manifold
to be identified is no longer unique. More precisely, there will be another manifoldMx? , which includesMx? and is
determined by how (ND) is violated. The sequence {xk}k∈N will identify a manifold M̃x? such that

Mx? ⊆ M̃x? ⊆Mx? .

Furthermore, the identification of {xk}k∈N could be unstable, that is {xk}k∈N may identify several different manifolds
which are betweenMx? andMx? .

A degenerate LASSO problem We present a simple example of LASSO problem to demonstrate the unstable identifica-
tion behaviour of {xk}k∈N when the non-degeneracy conditions fails. Consider the problem

min
x∈Rn

µ||x||1 +
1

2
||Kx− b||2, (3.2)

where µ > 0 is the penalty parameter, K ∈ Rn×n is a unitary matrix, and b ∈ Rn is a vector.

-2
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(a) x? and (KT b− x?)/µ
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(b) |supp(xk)| under different starting point

Figure 3.1: Identification properties of deterministic Forward–Backward splitting method when the non-degeneracy
condition (ND) fails.

Since K is a unitary matrix, the solution of (3.2) is unique and can be given explicitly, which is

x? = sign(KT b)�max
{
|KT b| − µ, 0

}
, (3.3)

and � denotes point-wise product. Moreover, we have the gradient at x?

−∇
(
1

2
||Kx? − b||2

)
= −KT (Kx? − b) = KT b− x?.

In the experiments, we set µ = 0.5 and n = 16, and moreover the vector b is designed such that the non-degeneracy
condition (ND) is violated. The two vectors x? and (KT b− x?)/µ are shown in Figure 3.1(a), and it can be observed that
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x? has only two non-zero elements, while (KT b− x?)/µ has nine saturated elements (the saturation means that the absolute
value of corresponding element is equal to µ).

Though the solution x? can be provided in closed form (3.3), we choose to solve (3.2) with deterministic Forward–Backward
splitting with fixed step-size γ = 0.1, which is the following iteration

xk+1 = sign(wk)�max
{
|wk| − γµ, 0

}
where wk = (1− γ)xk −KT b. (3.4)

Three different initial points for (3.4) are considered. For each starting point, the size of support of the sequence {xk}k∈N,
i.e. {|supp(xk)|}k∈N, is plotted in Figure 3.1(b). For all three cases, the iterations are ran until machine accuracy is reached.
We obtain the following observations from the comparisons:

• “Initial point 1” and “Initial point 2” are unable to identify the support of the solution x?;
• “Initial point 1” identifies the largest manifold, i.e. Mx? . For “Initial point 2”, the identification is not stable in the

early iterations (e.g. k ≤ 190) compared to the other cases, and eventually (e.g. k ≥ 190) stabilises onto a manifold
M̃x? withMx? ⊂ M̃x? ⊂Mx? ;

• “Initial point 3” manages to identify the smallest manifold, i.e.Mx? .

We can conclude that the starting point is very crucial when the non-degeneracy condition (ND) fails.

4. Local linear convergence of SAGA/Prox-SVRG
4.1. An overdetermined LASSO problem

Below we present a example of overdetermined LASSO problem, to show that the practical performance of SAGA/Prox-
SVRG could be much worse than ρ

FBS
.

Consider again the LASSO problem,

min
x∈Rn

µ||x||1 +
1

m

∑m

i=1
1
2
||Kix− bi||2,

where now K ∈ Rm×n is a random Gaussian matrix with zero means and b ∈ Rm. Moreover, we choose m = 256, n = 32,
that is much more measurements than the size of the vector.

For the test example, we have L = 0.2239 and the local quadratic grow parameter α = 0.0032. The parameter choices of
SAGA and Prox-SVRG with “Option II” are:

SAGA : γ =
1

3L
; Prox-SVRG : γ =

1

10L
, P =

100L

α
.

We have P ≈ 27m which is quite large. As discussion in the original work (Xiao & Zhang, 2014), with the above parameters
choices, ρ

SVRG
≈ 5

6 .

The outcomes of the numerical experiments are shown in Figure 4.1, where the observation of {||xk − x?||}k∈N is provided
for SAGA and {||x̃` − x?||}k∈N for Prox-SVRG. The solid lines stand for practical observations of the methods, the dashed
lines are the theoretical estimation from Proposition 4.3 and 4.4, the dot-dashed lines are the estimation from ρ

FBS
. All the

lines are sub-sampled, one out of every m points for SAGA and P points for Prox-SVRG. Note also that the observation is
not in norm square.

For this example, both the convergence speeds of SAGA and Prox-SVRG are slower than ρ
FBS

. Empirically, the reason for
SAGA could be that the ratio of m/n is much larger than 1, while for Prox-SVRG the reason is that P/m is too large.

4.2. Large-scale datasets

Now we consider binary classification problem with two large-scale datasets obtained from LIBSVM1, the size of the
datasets can be found in the table below.

1https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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(a) SAGA, ||xk − x?||
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(b) Prox-SVRG “Option II”, ||x̃` − x?||

Figure 4.1: Convergence rate of SAGA and Prox-SVRG when solving an overdetermined LASSO problem. (a) convergence
behaviour of ||xk − x?|| of SAGA; (b) convergence behaviour of ||x̃` − x?|| of Prox-SVRG. The solid lines stands for
practical observations of the methods, the dashed lines are the theoretical estimation from Proposition 4.3 and 4.4, the
dot-dashed lines are the estimation from ρ

FBS
. All the lines are sub-sampled, one out of every m points for SAGA and P

points for Prox-SVRG.

Table 1: Considered datasets, number of samples m, and size of each sample n

Name mushrooms rcv1.binary
m 8124 20,242
n 112 47,236
µ 5× 10−3 10−2

Let (hi, li), i = 1, ...,m be sample and label, the LASSO problem (3.2) can be then formulated as

min
x∈Rn

µ||x||1 +
1

2m

∑m

i=1
(hTi x− li)2, (4.1)

where µ > 0 is again a trade-off parameter whose value can be found in the last row of Table 1.

The outcomes of the numerical experiments are illustrated in Figure 4.2. The step-size of both algorithms for this experiment
are chosen as the same, which is γ = 1

3L . It can be observed that the performance of both algorithms (i.e. Φ(xk)− Φ(x?))
in terms of number of paths are quite close (see Figure 4.2 (b) and (d)), while Prox-SVRG shows slightly better identification
than SAGA, for instance in Figure 4.2 (a) the small jump at k/m = 35 of the black line for SAGA.

5. Local acceleration of SAGA/Prox-SVRG
In this section, we provide details on how to implement the local acceleration technique based on the local Lipschitz
constants. The result focuses on the functions whose partly smooth manifoldMx? is an affine subspace, such functions
include `1, `1,2, `∞-norms and total variation; see Table 1.

Recall the original optimisation problem, which reads

min
x∈Rn

Φ(x)
def
= R(x) + F (x). (5.1)

Let Tx? ⊆ Rn be an affine subspace, andMx? = Tx? . Once the manifoldMx? of an x? ∈ argmin(Φ) is identified, then
the problem locally becomes

min
x∈Tx?

ΦTx? (x)
def
= R(x) + F (PTx? (x)). (5.2)
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Figure 4.2: Experiments on large-scale datasets.

This means that locally, it is a manifold constrained optimisation problem, and the properties of the functions, typically F ,
could become much better.

Denote PTx? the projection operator on to Tx? . Clearly, given any x ∈ Tx? the gradient of F (PTx? (x)) reads

∇F (PTx? (x)) = PTx? ◦ ∇F ◦ PTx? (x),

indicating that we only need to consider the Lipschitz constant of PTx? ◦ ∇F ◦ PTx? . Since the projection operator PTx? is
non-expansive, we have for any x, y ∈ Tx?

||PTx? ◦ ∇F ◦ PTx? (x)− PTx? ◦ ∇F ◦ PTx? (y)|| ≤ ||∇F ◦ PTx? (x)−∇F ◦ PTx? (y)||
≤ L||PTx? (x)− PTx? (y)||
≤ L||x− y||.

Similar result can be derived for each function fi, i = 1, ...,m.

In the following, we use R = ||x||1 and F = 1
2 ||Ax− y||

2, where A ∈ Rm×n is a linear operator and y ∈ Rm is label vector,
to demonstrate the computation. Since `1-norm is polyhedral, we have that Tx? is a subspace (Table 1),

Tx? =
{
z ∈ Rn : Iz ⊆ Ix?

}
, Ix? =

{
i : x?i 6= 0

}
.
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The projection operator PTx? then reads
PTx? = diag

(
sign(x?)

)
,

which is a diagonal matrix with ith, i ∈ Ix? diagonal element being 1 and 0 otherwise. Here, diag and sign are built-in
functions of MATLAB. Clearly, PTx? is a column selection. Denote ATx? = A ◦ PTx? , then the local Lipschitz constant of
∇F is

LF,Tx? = ||ATx? ||.

While the global Lipschitz constant is LF = ||A||. Then for each function fi, i = 1, ...,m, denote ATx? ,i the ith row of
ATx? , then

LTx? ,i = ||ATx? ,i||.

Finally, we have LTx? = maxi=1,··· ,m LTx? ,i.
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