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Abstract
The multicategory SVM (MSVM) of Lee et al.
(2004) is a natural generalization of the classical,
binary support vector machines (SVM). However,
its use has been limited by computational diffi-
culties. The simplex-cone SVM (SCSVM) of
Mroueh et al. (2012) is a computationally ef-
ficient multicategory classifier, but its use has
been limited by a seemingly opaque interpreta-
tion. We show that MSVM and SCSVM are in
fact exactly equivalent, and provide a bijection
between their tuning parameters. MSVM may
then be entertained as both a natural and com-
putationally efficient multicategory extension of
SVM. We further provide a Donsker theorem for
finite-dimensional kernel MSVM and partially
answer the open question pertaining to the very
competitive performance of One-vs-Rest meth-
ods against MSVM. Furthermore, we use the de-
rived asymptotic covariance formula to develop
an inverse-variance weighted classification rule
which improves on the One-vs-Rest approach.

1. Introduction
Support vector machines (SVM) is an established algorithm
for classification with two categories (Vapnik, 1998; Smola
and Schlkopf, 1998; Steinwart and Christmann, 2008; Fried-
man et al., 2009). The method finds the maximum margin
separating hyperplane; it finds the hyperplane dividing the
input space (perhaps after mapping the data to a higher di-
mensional space) into two categories and maximizing the
minimum distance from a point to the hyperplane. SVM
can also be adapted to allow for imperfect classification, in
which case we speak of soft margin SVM.

Given the success of SVM at binary classification, many
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attempts have been made at extending the methodology to
accommodate classification with K > 2 categories (Sun et
al., 2017; Dogan et al., 2016; Lopez et al., 2016; Kumar
et al., 2017, survey available in Ma and Guo, 2014). Lee,
Lin and Wahba (2004) propose what is arguably the natural
multicategory generalization of binary SVM. For instance,
their multicategory SVM (MSVM) is Fisher consistent (i.e.,
the classification rule it produces converges to the Bayes
rule), which is a key property and motivation for the use
standard SVM. Furthermore, it encompasses standard SVM
as a special case.

However, the method has not been widely used in applica-
tion, nor has it been studied from a statistical perspective,
the way SVM has been. Amongst the machine learning
community, MSVM has not gathered popularity commen-
surate to that of SVM. Likewise, three major publications
(Jiang et al., 2008; Koo et al., 2008; Li et al., 2011) have
established Donsker theorems for SVM, and none have done
so for MSVM.

Interestingly, computation and statistical analysis of MSVM
are hindered by the same obstable. The optimization prob-
lem which MSVM consists of is done under a sum-to-zero
constraint on the vector argument. This makes both the
numerical optimization task and the statistical asymptotic
analysis of the estimator more challenging. The numerical
optimization is substantially slowed down by the equality
constraint1 as detailed in Table 1. Likewise, standard meth-
ods for deriving Donsker theorems and limit distribution
theory do not apply to such constrained vectors of random
variables.2

In a separate strain of literature, Mroueh, Poggio, Rosasco
and Slotine (2012) have proposed the simplex-cone SVM
(SC-SVM), a multicategory classifier developped within the
vector reproducing kernel Hilbert space set-up. The SC-
SVM optimization program is computationally tractable,
and in particular does away with the equality constraint slow-
ing down the primal and dual formulations of MSVM (Lee

1In fact, a “hack” sometimes used is to ignore the equality
constraint in the primal or dual formulation. This can result in
arbitrarily large distorsions of the optimal solution.

2For instance, the covariance matrix of a vector of random
variables constrained to sum to zero is not positive definite.
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et al., 2004). Nevertheless, its use has remained marginal,
arguably due to more limited interpretability, e.g., the notion
of distance is captured via angles and the nesting of binary
SVM as a special case is not entirely straightforward.

As our main contribution, we show that MSVM and SC-
SVM are in fact exactly equivalent. As a direct consequence,
we deliver faster computations for MSVM. Simulations
such as those presented in Table 1 display speed gains or
an order of magnitude. Furthermore, the equivalence with
an unconstrained estimator allows for statistical analysis of
MSVM. As a second contribution, we deliver a Donsker
theorem for MSVM, as well as an asymptotic covariance
formula with sample analog. A third contribution is to
use the asymptotic analysis result to propose a statistically
efficient, inverse-variance weighted modification of One-
vs-Rest. Finally, as a fourth contribution, we show that
the asymptotic analysis allows us to partially answer, with
analytic characterizations, the open question relating to the
very competitive performance of the seemingly more naive
One-vs-Rest method against MSVM.

The fourth contribution is important because it provides an-
alytical substance to a long-standing open question. To be
sure, the different attempts at developping a multicategory
generalization of binary SVM can be understood as sub-
scribing to one of two broad approaches. The first approach
consists in doing multicategory classification using the stan-
dard, binary SVM. For instance, the popular One-vs-Rest
approach works as follows: to predict the category of a point
in a test set3 (i.e. out of sample), run K binary SVMs where
the first category is one of the original K categories, and the
second category is the union of the remaining K � 1 cate-
gories. The predicted category is the one that was picked
against all others with the greatest “confidence”. In prac-
tice, the confidence criteria used is the distance of the test
point to the separating hyperplane (we show in Subsection
3.1 that even this can be improved according to statistical
considerations). The second approach consists in generaliz-
ing the standard SVM to develop a single machine which
implements multicategory classification solving a single,
joint optimization problem. Many such algorithms have
been suggested (Weston and Watkins, 1999; Crammer and
Singer, 2002; Lee et al., 2004). Intuition would suggest that
joint optimization makes for a more statistically efficient
procedure, and for superior out-of-sample prediction perfor-
mance. However, in a quite counterintuitive turn of events, it
has been widely observed in practice that multicategory clas-
sification with binary machines offers a performance (for
instance, in out-of-sample classification) which is competi-
tive with, and sometimes superior to, that of single-machine
multicategory SVM algorithms. This phenomenon is widely
acknowledged (Rifkin and Klautau, 2004) but very little

3Or the fitted category of a point in the training set.

theory has been put forth to explain it.

We make some progress towards an analytical characteriza-
tion of the comparative performance, and are able to suggest
an explanation as to the competitive, and sometimes supe-
rior, empirical performance of One-vs-Rest compared to
MSVM. We argue that, in some respect, One-vs-Rest makes
a more efficient use of the information contained in the data.

The remainder of the paper is organized as follows. Sec-
tion 2 defines both MSVM and SC-SVM, and contains the
proof of the equivalence between the two methods. Sec-
tion 3 gives the Donsker theorem for MSVM, and describes
how the asymptotic distribution may be used for more ef-
ficient classification. Section 4 suggests an analytical ex-
planation for the surprisingly competitive performance of
One-vs-Rest classifiers versus MSVM. Section 5 discusses
and concludes.

2. Equivalence
The multicategory SVM (MSVM) of Lee et al. (2004) is
arguably the more elegant and natural generalization of
SVM to multicategory data. However, its implementation,
even for moderate size data sets, is complicated by the
presence of a sum constraint on the vector argument.

The simplex encoding of Mroueh et al. (2012) is relieved
of the linear constraint on the vector argument. However,
we believe the simplex encoding is not more widely used
because it is not known what standard encoding it corre-
sponds to, making it challenging for practitioners to carry
out interpretable classification analysis. The following re-
sult resolves both issues, making it of practical interest for
analysts and researchers using multicategory classification
methods.

We define MSVM and SC-SVM, and establish their equiv-
alence. The presentation is done with finite-dimensional
kernels for ease of exposition. Remark 3 details the general-
ization to infinite-dimensional kernels in reproducing kernel
Hilbert spaces.

With K categories, data is of the form (x
i

, y
i

) 2 Rp ⇥
{1, ...,K}, i = 1, ..., N . When carrying out multicategory
classification, different choices of encodings of the cate-
gory variables y

i

lead to optimization problems that are
differently formulated and implemented.

For their multicategory SVM (MSVM), Lee et al. (2004)
encode y

i

associated with category k 2 {1, ...,K} as a K-
tuple with 1 in the kth entry and �1

K�1 in every other entry.
For instance,

”yi in category 2” , yi =

✓

�1

K � 1

, 1,

�1

K � 1

, · · · , �1

K � 1

◆

.

The loss function they suggest is then based on the differ-

ence between the decision function and the encoded y
i

’s.



Equivalence of Multicategory SVM and Simplex Cone SVM

Specifically, in the case of finite-dimensional feature maps,
they suggest minimizing

1

n

n

X

i=1

L(y
i

) · [Wx
i

+ b� y
i

]+ +

�

2

|||W |||, (1)

where |||W ||| = trace(WTW ), and L(y
i

) = 1

K

� e
yi is a

vector that has 0 in the kth entry when y
i

designates category
k, and a 1 in every other entry. Importantly, the decision
function is constrained to sum to zero, i.e. 1T

k

(Wx+ b) =
0, 8 x. The function [·]+applies pointwise to its vector
argument.

Mroueh et al. (2012) preconize an encoding that does away
with the sum-to-zero constraint. The loss function they
suggest is based on the inner product between the deci-
sion function and their encoding of y

i

’s. Likewise in the
finite-dimensional case, the penalized minimization prob-
lem entailed by their loss function is

1

n

n

X

i=1

X

y

0 6=y



1

K � 1

+

D

c
y

0 , ˜Wx
i

+

˜b
E

�

+

+

˜�

2

||| ˜W |||,

(2)

where c
y

is a unit vector in RK�1 which encodes the re-
sponse; it is a row of a simplex coding matrix, which is the
key building block of their construction.

A simplex coding matrix (Mroueh et al., 2012; Pires et al.,
2013) is a matrix C 2 RK⇥(K�1) such that its rows c

k

satisfy (i) kc
k

k22 = 1; (ii) cT
i

c
j

= � 1
K�1 for i 6= j ; and

(iii)
P

K

k=1 ck = 0

K�1. It encodes the responses as unit
vectors in RK�1 having maximal equal angle with each
other. Further note that, because its domain is a (K � 1)-
dimensional subspace of RK , any given C has a unique
inverse operator ˜C defined on the image {x 2 RK

: 1

T

K

x =

0}.

For a given choice of simplex encoding defined by C, the
operator C : RK�1 ! RK can be thought of as mapping
decision functions and encoded y’s from the unrestricted
simplex encoding space to the standard, restricted encoding
space used by Lee et al. (2004).

A natural question is then: if f(x) = Wx+ b and ˜f(x) =
˜Wx +

˜b are optimal solutions to (1) and (2), respectively,
are ˜C (Wx+ b) and C(

˜Wx+

˜b) then optimal solutions to
(2) and (1), respectively? We show that this is in fact the
case. That is, both problems are exactly equivalent.

We now show the problems are equivalent. The equivalence

of the loss functions is straighforward. Indeed,

P

y0 6=y

h

fy0
(x) +

1
K�1

i

+
=

P

y0 6=yi



⇣

C

˜

f(x)

⌘

y0
+

1
K�1

�

+

=

P

y0 6=yi

hD

cy0
,

˜

f(x)

E

+

1
K�1

i

+
,

(3)

which is exactly the SC-SVM loss of Mroueh et al. (2004).
Writing out f and ˜f as linear functions, the identity becomes

P

y0 6=y

h

!y0
x+ by0

+

1
K�1

i

+

=

P

y0 6=yi

hD

cy0
,

˜

Wx+

˜

b

E

+

1
K�1

i

+

(4)

with f(x) = Wx + b and ˜f(x) = ˜Wx +

˜b, and !
y

0 is the
(y0)th row of W .

Equality (up to a change of tuning parameter) of the penalty
relies on the key observation of this exercise, which is that
CTC is the diagonal matrix K

K�1IK�1. It then immediately
follows that

K�1
K

trace

⇣

˜

W

T
˜

W

⌘

=

K�1
K

trace

�

W

T
C

T
CW

�

= trace

�

W

T
W

�

.

(5)

In conclusion, we have

1

n

n
X

i=1

L(yi) · [Wxi + b� yi]+ +

�

2

|||W |||

=

1

n

n
X

i=1

X

y0 6=y



1

K � 1

+

D

c

0
y,

˜

Wx+

˜

b

E

�

+

+

�(K � 1)

2K

||| ˜W |||,

(6)
as desired.

We now prove the key linear algebra result. There are other
ways (see remarks below) to prove this result. However, it is
desirable to establish the equivalence between the more prac-
tical encoding and the more interpretable one in an intuitive
way. The geometric proof given below accomplishes this by
establishing the equivalence through a volume preservation
argument.

PROPOSITION

Let C 2 RK⇥(K�1)
be a simplex coding matrix. Then its

columns are orthogonal and have norm

q

K

K�1 .

Proof
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The key observation (Gantmacher, 1959, vol. 1, p.251) is
that

V =

p
G, (7)

where V = V (C) is the volume of the parallelipiped
spanned by the columns of C, and G = G(C) is the Gram-
mian of C. The Grammian (defined below) extends the
notion of volume to objects determined by more vectors
than the space they are embedded in has dimensions.

Let C·i denote the ith column of C, and recall that |||C|||
denotes the sum of the squared entries of C. Note that
V  kC·1k · · · · ·

�

�C·(K�1)

�

�, which holds with equality if
and only if all columns are mutually orthogonal. Further
note that

kC·1k·· · ··
�

�C·(K�1)

�

� 
 

r

|||C|||
K � 1

!

K�1

=

✓

K

K � 1

◆

K�1
2

which holds with equality if and only if kC·ik =

q

K

K�1 , i = 1, ...,K � 1. Hence, if G =

⇣

K

K�1

⌘

K�1
,

it must be that the statement of the proposition is true.

We compute the Grammian. By Gantmacher (1959),

G(C) =

K

X

i=1

det

2
(C�i·) , (8)

where C�i· is C with the ith row removed. Noting that
C�i·C

T

�i· is a circulant matrix and using the relevant deter-
minant formula, we find that

P

K

i=1 det
�

C�i·C
T

�i·
�

= K · det

0

B

@

1 � 1
K�1

. . .
� 1

K�1 1

1

C

A

= K ·
Q

K�2
j=0

⇣

1� 1
K�1

P

K�2
m=1

⇣

e
2⇡ij
K�1

⌘

m

⌘

= K ·
⇣

1� K�2
K�1

⌘

·
Q

K�2
j=1

⇣

1� 1
K�1

P

K�2
m=1

⇣

e
2⇡ij
K�1

⌘

m

⌘

= K ·
⇣

1
K�1

⌘

·
Q

K�2
j=1

⇣

1 +

1
K�1

⌘

= K ·
⇣

1
K�1

⌘

·
⇣

K

K�1

⌘

K�2

=

⇣

K

K�1

⌘

K�1
,

which proves the claim.

Note that we have used the orthogonality of the complex
exponential basis,

n�1
X

m=0

e
2⇡ijm

n
=

⇢

n, j mod n = 0

0, o.w.
.

⇤
The immediate implication of the above argument and propo-
sition is that we may compute MSVM using the equivalent,
unconstrained representation of SC-SVM. In Table 1, we
display “clock-on-the-wall” computation times. Collected
simulations suggest gains of an order of magnitude.

Remark 1 The result of the Proposition holds for a more
general simplex matrix C 2 RK⇥D, 0 < D < K, having
rows of equal norm and maximal equal angle between them.

Remark 2 A different argument of a more algebraic ge-
ometry flavor can be given, which suggests the choice of a
canonical C. Given K, there exists a simplex coding matrix
C such that pairwise coordinate projections (i.e. projections
on a plane spanned by two distinct standard basis vectors)
yield equidistant points around a circle (“a pie with equal
sized slices”). This is trivial for K = 3, and geometrically
obvious for K = 4. Call such a simplex coding matrix a
canonical coding matrix. From this geometric observation,
the orthogonality of the columns readily follows: for any
two disctinct columns of C, say C·i, C·j , i 6= j, we have
that

hC·i, C·ji =
K

X

t=1

cos

✓

t⇡

K/2

◆

sin

✓

t⇡

K/2

◆

=

1

2

K

X

t=1

sin

✓

t⇡

K/4

◆

= 0.

The length of the columns can be established as in the proof
of the Proposition. Furthermore, and somewhat surprisingly,
we can go the other way and construct C from the condition
on its pairwise coordinate projections (Chan, 2013).

Remark 3 The equivalence of MSVM and SC-SVM im-
mediately generalizes to the infinite-dimensional kernel
case. The representer theorem yields that f

j

(x) = b
j

+

P

n

i=1 aijK(x
i

, x) for j = 1, ...,K with sum-to-zero con-
straint. Then (3) holds in the same notation. Letting A
denote the matrix with (i, j) entry a

ij

and K the matrix
with (i, j) entry K(x

i

, x
j

), the penalty equivalence follows
from observing that

trace(ATKA) = trace(C ˜ATK ˜ACT

)

= trace(CTC ˜ATK ˜A) =

K

K � 1

trace(

˜ATK ˜A).

We then get, again, equality of the objective functions up to
the tuning parameter.
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Table 1. Computation times in seconds. Primal and dual MSVMs
are implemented as described in Lee et al. (2004). All simulations
are for K = 3 balanced categories. Computations were done in
Gurobi on a Macbook Pro with a 3.1 GHz Intel Core i7 processor.

FORMULATION n = 200 n = 1000 n = 5000

PRIMAL MSVM 5.5 81.4 9740.4
DUAL MSVM 0.4 8.2 887.5
SC-SVM 0.1 0.4 7.7

3. Donsker Theorem
By considering MSVM as penalized M -estimator, one can
in principle work out its asymptotic distribution. In (2),
under simplex encoding, MSVM is phrased as an uncon-
strained M -estimator, and the asymptotic distribution for
the estimated parameters –and thus separating hyperplane–
can be obtained using standard empirical process theory.
The expression for the covariance matrices presented below
are novel and of practical use. To the best of my knowledge,
if a practitioner wants to compute the asymptotic covariance
matrix of SVM or MSVM –which is essential in order to
know where extrapolation is reliable– this article is the only
resource displaying worked out expressions with sample
analogs.4

One readily obtains (Van der Vaart, 2008) a standard central
limit theorem result of the form
p
n
⇣

ˆ

˜

⇥

n

� ˜

⇥

⇤
⌘

d! N(0, H�1
Multi⌦MultiH

�1
Multi), (9)

where ˜

⇥ = (vec(

˜W )

T ,˜b)T , the information matrix ⌦Multi

is

E

0

@

X

y0 6=y

c

T
y01

nD

cy0
,

˜

f

E

� �ã

o

1

A

0

@

X

y0 6=y

cy01
nD

cy0
,

˜

f

E

� �ã

o

1

A

⌦
⇣

(x

T
, 1)

T
(x

T
, 1)

⌘

,

and the Hessian HMulti is

Ey

2

4

X

y0 6=y

⇣

c

T
y0cy0

⌘

p

⇣

�
D

cy0
,

˜

b

E

� ã

⌘

⌦E

h

(x

T
, 1)

T
(x

T
, 1)

�

�

�

D

cy0
,

˜

f

E

= �ã, y

ii

.

Both are evaluated at ˜

⇥

⇤, ˜f =

˜f(x), and ã =

1
K�1 , and

p = p hcy0 ,W̃x+b̃i|y is the density of
D

c
y

0 , ˜f
E

conditional on
y. Derivations are given in the online appendix.

4Koo et al. (2008) and Jiang et al. (2008) do not provide
expressions with sample analogs.

3.1. Efficient Classifiers

SVM are most commonly used for classification and predic-
tion tasks. Accordingly, the most immediate practical use
for an estimate of the variance of the separating hyperplane
is the construction of a more accurate classifier.

Consider the One-vs-Rest method, for instance. The One-
vs-Rest method fits K hyperplanes, which in the linear case
are defined by (!

i

, b
i

) 2 Rp+1, and categorizes a point by
attributing it to the category in which it is the “deepest”.
That is,

ŷnew = argmax

k

n

!̂T

k

xnew +

ˆb
k

o

.

However, studentized distances yield more sensible and reli-
able classifications by accounting for the comparative uncer-
tainty of the hyperplanes when categorizing a given point.
Naturally, a point being ”deeper” with respect to a classi-
fying hyperplane –in terms of the length of the line from
the point to the hyperplane and normal to the hyperplane–
should make one more confident in the classification if it oc-
curs in a section of the space where the hyperplane has lower
variance. In sections with high variance, the distance could
be much smaller in resamplings of the data. Accordingly,
we suggest the following efficient categorization rule

ŷ⇤new = argmax

k

(

!̂T

k

xnew +

ˆb
k

p

(xT

new, 1)⌃k

(xT

new, 1)

)

,

where ⌃

k

is the asymptotic variance of (!̂
k

,ˆb
k

), or a con-
sistent estimate. An analog modification can be applied to
make the MSVM procedure more efficient.

4. Efficiency of One-vs-Rest
Explaining the surprisingly competitive performance of the
naive One-vs-Rest approach, comparatively to the more so-
phisticated MSVM approach, is an important open question.
The phenomenon is detailed and documented empirically
in Rifkin and Klautau (2004) and is well established in the
machine learning folklore. However, there are practically no
theoretical results in the way of an explanation. In this sec-
tion, we consider this question from the asymptotic statistics
perspective and argue that the competitive performance of
One-vs-Rest may be explained by a more efficient use of
information.

The idea is to consider the full One-vs-Rest method as a
single M -estimator and to artificially impose a sum-to-zero
constraint on the decision function. I can use the simplex
encoding and obtain the (joint) asymptotic variance of the
K separating hyperplanes in the form H�1

1vsR⌦1vsRH
�1
1vsR.

Note that I pick the geometric margin to be 1
K�1 , rather

than 1 in the standard form for binary (and thus One-vs-
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Rest) SVM. The loss function for One-vs-Rest in simplex
encoding is

K

X

k=1

 

1{y = k} ·


1

K � 1

�
D

c
k

, ˜Wx+

˜b
E

�

+

(10)

+1{y 6= k} ·


1

K � 1

+

D

c
k

, ˜Wx+

˜b
E

�

+

!

which is minimized in ˜W and ˜b. The first summand penal-
izes classification for which the point x is not sufficiently far
from the hyperplane within the true category. This is where
we speak of using the information from a point’s “own” cat-
egory. The second summand penalizes classifications for
which the point x is not sufficiently far from the hyperplane
away from the wrong category. This is where we speak of
using the information from “other” categories.

The sum-to-zero constraint is added for analytical reasons;
we need it to make the covariance matrices comparable. It
will be apparent that the analytical conclusion is robust to
this modification.

The information matrix ⌦1vsR is
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We get instructive comparisons. First of all, HMulti <
H1vsR. That is, the one-vs-rest problem has more “curva-
ture” than the MSVM. Indeed, it is clear from inspection5

5Note the addition of a y = y

0 positive summand.

that this comes from the one-vs-rest procedure using infor-
mation from the “own category”, while MSVM doesn’t as
it only uses information with respect to “other” categories.

It is clear from the comparison of the loss functions (2) and
(10), corresponding to SC-SVM and the simplex encoding
of One-vs-Rest, respectively, that both penalize for an obser-
vation that falls within the half-space assigned to an “other”
category, but only One-vs-Rest rewards for points falling
within their true, “own” category. It was not clear, however,
if the rewarding a point for being in its “own” category is
still informative and not redundant when it is already pe-
nalized if it is in any “other” category. However, in spite
of imposing an additional constraint on the solution space
of the One-vs-Rest problem, we do find from inspection of
the Hessian that the additional information from rewarding
classification of points within their “own” category is infor-
mative and not redundant. Although this was not obvious a
priori, it is revealed by the statistical asymptotic analysis.

Furthermore, in the special case of a separable data gen-
erating process (DGP), that is in the case in which 1{ã �
D

c
y

, ˜f
E

� 0} = 0 a.s., we get that ⌦Multi = ⌦1vsR and
both procedures have the same target hyperplane. Therefore,
One-vs-Rest is strictly more statistically efficient than mul-
ticategory when the DGP is separable. In this specific case,
this translates into smaller expected prediction error. We
have displayed a case, that of perfect seprarability, where
One-vs-Rest (with simplex encoding) provably dominates
MSVM.

In non-separable cases, this dominance may not hold. In fact,
we expect MSVM to outperform One-vs-Rest in some cases
due to the more efficient gathering, by joint optimization, of
the information from the “other” categories.

5. Discussion and Conclusion
We established rigorously, and with a proof conveying geo-
metric intuition, the equivalence of MSVM and SC-SVM.
This provides a formulation of the optimization problem
for computing MSVM which is relieved of the sum-to-zero
constraint that bogged down computations in the implemen-
tations as suggested in Lee et al. (2004). Our hope is that
availablity of faster computations for MSVM will encour-
age applied researchers and analysts to employ MSVM in
multicategory classification tasks. We gave the first cen-
tral limit theorem for MSVM, along with an asymptotic
covariance formula having a sample analog, which is a
new result even for binary SVM. The variance formula al-
lows for the construction of studentized decision functions
for One-vs-Rest procedures, improving their accuracy and
statistical efficiency. These make for more reliable classifi-
cation, especially for extrapolation. We gave an analytical
characterization of the surprisingly good performance of the
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One-vs-Rest procedure, comparatively to MSVM, using the
asymptotic distribution of estimators. We hope this line of
study fosters further research.
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Appendix: Construction of the Simplex
Encoding Matrix C

It is straightforward to build a function that takes K and
outputs the simplex encoding matrix C. We give intuitive
pseudocode for the general K case. A code file is available
in the online appendix.

The construction relies on mapping vectors in spherical
coordinates to their representation in Cartesian coordinates.
The function StoC : RK�2 ! RK�1 does just that.

StoC function(�1,�2, ...,�K�2){
v1 = cos(�1)

v2 = sin(�1) cos(�2)

v3 = sin(�1) sin(�2) cos(�3)

...
v
K�2 = sin(�1) · · · sin(�K�3) cos(�K�2)

v
K�1 = sin(�1) · · · sin(�K�3) sin(�K�2)

v = (v1, ..., vK�1)

v

}

Using the StoC function, it is now easy to construct the
simplex encoding matrix. This can be done with the function

C : K 7! RK⇥(K�1) , which we now describe.

C function(K){
C1,· = StoC(0, 0, ..., 0)

C2,· = StoC

✓

acos

✓

�1
K � 1

◆

, 0, ..., 0

◆

C3,· = StoC

✓

acos

✓

�1
K � 1

◆

, acos

✓

�1
K � 2

◆

, 0, ..., 0

◆

...

C
K�1,· = StoC

✓

acos

✓

�1
K � 1

◆

, acos

✓

�1
K � 2

◆

,

..., acos

✓

�1
3

◆

, acos

✓

�1
2

◆◆

C
K,· = StoC

✓

acos

✓

�1
K � 1

◆

, acos

✓

�1
K � 2

◆

,

..., acos

✓

�1
3

◆

, 2 · acos
✓

�1
2

◆◆

C

}
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