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Abstract
We consider the problem of learning a binary clas-
sifier from n different data sources, among which
at most an η fraction are adversarial. The over-
head is defined as the ratio between the sample
complexity of learning in this setting and that
of learning the same hypothesis class on a sin-
gle data distribution. We present an algorithm
that achieves an O(ηn + lnn) overhead, which
is proved to be worst-case optimal. We also dis-
cuss the potential challenges to the design of a
computationally efficient learning algorithm with
a small overhead.

1. Introduction
Consider the following real-world scenario: we would like
to train a speech recognition model based on labeled exam-
ples collected from different users. For this particular ap-
plication, a high average accuracy over all users is far from
satisfactory: a model that is correct on 99.9% of the data
may still go seriously wrong for a small yet non-negligible
0.1% fraction of the users. Instead, a more desirable ob-
jective would be finding personalized speech recognition
solutions that are accurate for every single user.

There are two major challenges to achieving this goal, the
first being user heterogeneity: a model trained exclusively
for users with a particular accent may fail miserably for
users from another region. This challenge hints that a suc-
cessful learning algorithm should be adaptive: more samples
need to be collected from users with atypical data distribu-
tions. Equally crucial is that a small fraction of the users are
malicious (e.g., they are controlled by a competing corpora-
tion); these users intend to mislead the speech recognition
model into generating inaccurate or even ludicrous outputs.

Motivated by these practical concerns, we propose the Ro-
bust Collaborative Learning model and study from a theoret-
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ical perspective the complexity of learning in the presence of
untrusted collaborators. In our model, a learning algorithm
interacts with n different users, each associated with a data
distribution Di. As mentioned above, a successful learn-
ing algorithm should, ideally, find personalized classifiers
f1, f2, . . . , fn for different distributions, such that

errDi(fi) , Pr
x∼Di

[fi(x) 6= f∗(x)] < ε

holds for every i ∈ [n], where f∗(x) denotes the true la-
bel of sample x. Further complicating the situation is that
the algorithm can only interact with the data distributions
via the users, each of which is either truthful or adversar-
ial. A truthful user always provides the learning algorithm
with independent samples drawn from his distribution to-
gether with the correct labels, whereas the labeled samples
collected from adversarial users are arbitrary.

In the presence of malicious users, it is clearly impossible
to learn an accurate classifier for every single distribution:
an adversary may choose to provide no information about
his data distribution. Therefore, a more realistic objective
is to satisfy all the truthful users, i.e., to learn n classifiers
f1, f2, . . . , fn such that errDi(fi) < ε holds for every truth-
ful user i.

Naı̈vely, one could ignore the prior knowledge that samples
from truthful users are labeled by the same function, and
run n independent copies of the same learning algorithm for
the n users. This straightforward approach clearly needs at
least n times as many samples as that required by learning
on a single data distribution. Following the terminology
of Blum et al. (2017), we say that this naı̈ve algorithm leads
to an Ω(n) sample complexity overhead. The notion of
overhead measures the extent to which learning benefits
from the collaboration and sharing of information among
different parties. Blum et al. (2017) proposed a learning
algorithm that achieves an O(lnn) overhead for the case
that all users are truthful, i.e., η = 0. We are then interested
in answering the following natural question: can we still
achieve a sublinear overhead for the case that η > 0, at least
when η is sufficiently small? In other words, do adversaries
ruin the efficiency of collaboration?
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1.1. Model and Preliminaries

Similar to the classic Probably Approximately Correct (PAC)
learning framework due to Valiant (1984), we consider the
binary classification problem on a set X . The hypothesis
class F is a collection of binary functions on X with VC-
dimension d. The elements in X are labeled by an unknown
target function f∗ ∈ F .1

Suppose that D is a probability distribution on set X . Let
OF denote the oracle that, given a set S = {(xi, yi)} of
labeled examples, either returns a classifier f ∈ F that is
consistent with the examples (i.e., f(xi) = yi for every
(xi, yi) ∈ S) or returns ⊥ if F contains no such consistent
classifiers. A classic result in PAC learning states that if

m = Θ

(
d ln(1/ε) + ln(1/δ)

ε

)
independent labeled samples S = {(xi, f∗(xi)) : i ∈ [m]}
are drawn from D, with probability at least 1 − δ, in-
equality errD(f) < ε holds for every possible output
f = OF (S) (Blumer et al., 1989).

In the Robust Collaborative Learning setting, we consider n
different data distributions D1,D2, . . . ,Dn supported on X .
A learning algorithm interacts with these distributions via n
user oraclesO1,O2, . . . ,On, each of which operates in one
of two different modes: truthful or adversarial. Upon each
call to a truthful oracle Oi, a sample x is drawn from dis-
tribution Di and the labeled sample (x, f∗(x)) is returned.
On the other hand, an adversarial oracle Oi may output an
arbitrary pair in X × {0, 1} each time.2

We define (ε, δ, η)-learning in the Robust Collaborative
Learning model as the task of learning an ε-accurate clas-
sifier for each truthful user with probability 1 − δ, under
the assumption that at most an η fraction of the oracles are
adversarial.

Definition 1.1 ((ε, δ, η)-learning). Algorithm A is an
(ε, δ, η)-learning algorithm if A, given a concept class
F and access to n user oracles O1,O2, . . . ,On among
which at most ηn oracles are adversarial, outputs functions
f1, f2, . . . , fn : X → {0, 1}, such that with probability at
least 1 − δ, errDi(fi) < ε holds simultaneously for every
truthful oracle Oi.

We also formally define the sample complexity of (ε, δ, η)-
learning.

Definition 1.2 (Sample Complexity). LetMA(F , {Oi}) de-
note the expected number of times that algorithm A calls
oraclesO1,O2, . . . ,On in total, when it runs on hypothesis

1This is known as the realizable setting of PAC learning.
2Our results hold even if the adversarial oracles are allowed to

collude and they know the samples previously drawn by truthful
oracles.

class F and user oracles {Oi}. The sample complexity of
(ε, δ, η)-learning a concept class with VC-dimension d from
n users is defined as:

mn,d(ε, δ, η) , inf
A

sup
F,{Oi}

MA (F , {Oi}) .

Here the infimum is over all (ε, δ, η)-learning algorithms A.
The supremum is taken over all hypothesis classes F with
VC-dimension d and user oracles O1,O2, . . . ,On, among
which at most an η fraction are adversarial.

The overhead of Robust Collaborative Learning is defined
as the ratio between the sample complexity mn,d(ε, δ, η)
and its counterpart in the classic PAC learning setting,
m1,d(ε, δ, 0). To simplify the notations and restrict our at-
tention to the dependence of overhead on parameters n, d
and η, we assume that ε = δ = 0.1 in our definition of
overhead.3

Definition 1.3 (Overhead). For n, d ∈ N and η ∈ [0, 1],
the sample complexity overhead of Robust Collaborative
Learning is defined as

o(n, d, η) ,
mn,d(ε, δ, η)

m1,d(ε, δ, 0)
,

where ε = δ = 0.1.

Following our definition of the overhead, the results in
(Blum et al., 2017) imply that when all users are truthful
(i.e., when η = 0) and n = O(d), o(n, d, 0) = O(lnn).
They also proved the tightness of this bound in the special
case that n = Θ(d).

1.2. Our Results

Information-theoretically, collaboration can be robust.
In Section 3, we present our main positive result: a learning
algorithm that achieves an O(ηn+ lnn) sample complexity
overhead when n = O(d). Our result recovers the O(lnn)
overhead upper bound due to Blum et al. (2017) for the
special case η = 0. In Section 4, we complement our posi-
tive result with a lower bound, which states that an Ω(ηn)
overhead is inevitable in the worst case. In light of the pre-
vious Ω(lnn) overhead lower bound for the special case
that n = Θ(d) (Blum et al., 2017), our learning algorithm
achieves an optimal overhead when parameters n and d
differ by a bounded constant factor.

Our characterization of the sample complexity in Robust
Collaborative Learning indicates that efficient cooperation
is possible even if a small fraction of arbitrary outliers are
present. Moreover, the overhead is largely determined by
ηn, the maximum possible number of adversaries. Our

3This definition only changes by a constant factor when 0.1 is
replaced by other sufficiently small constants.
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results suggest that for practical applications, the learning
algorithm could greatly benefit from a relatively clean pool
of data sources.

Computationally, outliers may ruin collaboration.
Our study focuses on the sample complexity of Robust
Collaborative Learning, yet also important in practice is the
amount of computational power required by the learning
task. Indeed, the algorithm that we propose in Section 3 is
inefficient due to an exhaustive enumeration of the set of
truthful users, which takes exponential time. In Section 5,
we provide evidence that hints at a time-sample complex-
ity tradeoff in Robust Collaborative Learning. Informally,
we conjecture that any learning algorithm with a sublin-
ear overhead must run in super-polynomial time. In other
words, while the presence of adversaries does not seriously
increase the sample complexity of learning, it may still ruin
the efficiency of collaboration by significantly increasing the
computational burden of this learning task. We support our
conjecture with known hardness results in computational
complexity theory.

2. Related Work
Most related to our work is the recent Collaborative PAC
Learning model proposed by Blum et al. (2017). They also
considered the task of learning the same binary classifier
on different data distributions, yet all users are assumed
to be truthful in their model. In fact, the Robust Collabo-
rative Learning model reduces to the personalized setting
of their model when η = 0. Here the word “personalized”
emphasizes the assumption that each user may receive a
specialized classifier tailored to his distribution.

In addition to the personalized setting, they also studied the
centralized setting, in which all the n users should receive
the same classifier. They proved that a poly-logarithmic
overhead is still achievable in this more challenging set-
ting. In our Robust Collaborative Learning model, however,
centralized learning is in general impossible due to the indis-
tinguishability between truthful and adversarial users. The
following simple impossibility result holds for extremely
simple concept classes and even when infinitely many sam-
ples are available.

Proposition 2.1. For any ε ∈ [0, 1), δ ∈
[
0, 1

2

)
and η ∈

(0, 1], no algorithms (ε, δ, η)-learn any concept class of VC-
dimension d ≥ 2, under the restriction that all users should
receive the same classifier.

Proof of Proposition 2.1. Let x0 and x1 be two different
samples that can be shattered by F . Choose f0, f1 ∈ F
such that f0(x0) = f0(x1) = f1(x0) = 0 and f1(x1) = 1.
Let n be large enough such that ηn ≥ 1. Construct (de-
generate) distributions D1,D2, . . . ,Dn such that D1(x1) =

D2(x1) = 1 and Di(x0) = 1 for each 3 ≤ i ≤ n.

Consider the following two cases:

• The target function is f0. The only adversarial user,
O1, misleads the learning algorithm by outputing the
labeled example (x1, 1).

• The target function is f1. The only adversarial user,
O2, misleads the learning algorithm by outputing the
labeled example (x1, 0).

Note that in both cases, oracles O1 and O2 always return
(x1, 1) and (x1, 0) respectively, while all other oracles re-
turn (x0, 0). Consequently, no algorithms can distinguish
these two cases with success probability strictly greater than
1
2 . Thus, any learning algorithm would have a failure proba-
bility of at least 1

2 > δ.

A related line of research is multi-task learning (Caruana,
1997; Baxter, 2000; Ben-David et al., 2002; 2003), which
studies the problem of learning multiple related tasks si-
multaneously with significantly fewer samples. Most work
in this direction assumes certain relation (e.g., a transfer
function) between the given learning tasks. In contrast to
multi-task learning, our work focuses on the problem of
learning the same classifier on multiple data distributions,
without assuming any similarity between these underlying
distributions.

Also relevant to our study is the work on robust statistics, i.e.,
the study of learning and estimation in the presence of noisy
data and arbitrary outliers; see Lai et al. (2016); Charikar
et al. (2017); Diakonikolas et al. (2016; 2017; 2018) and
the references therein for some recent work in this line of
research. Classic problems in this regime include the esti-
mation of the mean and covariance of a high-dimensional
distribution, given a dataset consisting of samples drawn
from the distribution and a small fraction of arbitrary out-
liers. Our model differs from this line of research in that
we consider a general classification setting, and the learning
algorithm is allowed to sample different sources adaptively,
instead of learning from a given dataset of fixed size.

3. An Iterative Learning Algorithm
In this section, we present an iterative (ε, δ, η)-learning algo-
rithm achieves an O(ηn+ lnn) overhead when n = O(d).
Here n is the number of users, and d denotes the VC-
dimension of the hypothesis class F . Since F can be large
and even infinite, we assume that the algorithm access F
via an oracle OF that, given a set S = {(xi, yi)} of la-
beled examples, either returns a classifier f ∈ F such that
f(xi) = yi holds for each pair (xi, yi) ∈ S, or returns
⊥ if F does not contain any consistent functions. The
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Algorithm 1 Iterative Robust Collaborative Learning
Input: Parameters n, d, ε, δ, η.
Output: Classifiers f1, f2, . . . , fn.
r ← 1; G1 ← [n];
while bηnc ≤ |Gr|10 do
δr ← δ

5r2 ;
f̂r ← Candidate(Gr, d, ε, δr);
Gr+1 ← Test(Gr, f̂r, ε, δr);
Set fi ← f̂r for each i ∈ Gr \Gr+1;
r ← r + 1;

end while
for i ∈ Gr do
Si ← Θ

(
d ln(1/ε)+ln(n/δ)

ε

)
labeled samples from Oi;

fi ← OF (Si);
end for
Output f1, f2, . . . , fn;

algorithm interacts with the underlying data distributions
D1,D2, . . . ,Dn via n example oracles O1,O2, . . . ,On,
among which at most an η fraction are adversarial.

3.1. Algorithm

Our algorithm is formally described in Algorithms
1 through 3. The main algorithm proceeds in rounds and
maintains a set Gr of the indices of active users at the be-
ginning of round r, i.e., users who have not received an
ε-accurate classifier so far. When bηnc, the maximum pos-
sible number of adversaries, is below |Gr|

10 , the algorithm
invokes subroutine Candidate to find a candidate classifier
f̂r. Then, Algorithm 1 calls the validation procedure Test
to check whether f̂r is accurate for each user i ∈ Gr (with
respect to accuracy threshold ε). If so, the algorithm marks
the output for user i as f̂r; otherwise, user i stays in set
Gr+1 for the next round. When the proportion of adver-
saries reaches 1

10 , the algorithm learns for the remaining
users independently: for each active user, it draws samples
from his oracle and outputs an arbitrary classifier that is
consistent with his data.

3.2. Analysis of Subroutines

Subroutine Candidate (Algorithm 2) is the key to the sam-
ple efficiency of our algorithm, as it enables us to learn a
candidate classifier that is accurate simultaneously for a con-
stant fraction of the active users, using only a nearly-linear
number of samples (with respect to parameters |G| and d).
Subroutine Test (Algorithm 3) further checks whether the
learned classifier is accurate enough for each active user.
This allows us to determine whether a user should remain
active in the next iteration. We devote this subsection to the
analysis of these two subroutines.

Algorithm 2 Candidate(G, d, ε, δ)

Input: Index set G, parameters d, ε and δ.
Output: Candidate classifier f̂ ∈ F .

M ← Θ

(
d ln(1/ε)+ln(2|G|/δ)

ε + |G| ln |G|δ

)
;

for i ∈ G do
Si← 4M

|G| labeled samples from Oi;
end for
G ←

{
H ⊆ G : |H| ≥ 9

10 |G|
}

;
for H ∈ G do
f̂H ← OF (

⋃
i∈H Si);

if f̂H 6= ⊥ then
Output f̂H ;

end if
end for

Algorithm 3 Test(G, f̂ , ε, δ)

Input: SetG of indices, candidate function f̂ , parameters
ε and δ.
Output: Set G′ of surviving indices.
for i ∈ G do
Si ← Θ

(
ln(|G|/δ)

ε

)
samples from Oi;

θi ← 1
|Si|
∑

(x,y)∈Si I
[
f̂(x) 6= y

]
;

end for
Output G′ = {i ∈ G : θi >

3
4ε};

Lemma 3.1. Suppose G ⊆ [n] denotes the indices of |G|
users, among which at most |G|10 are adversarial. Let f̂
denote the output of Candidate(G, d, ε, δ). With probability
1− δ, the following two conditions hold simultaneously for
at least |G|2 indices i ∈ G: (1) errDi(f̂) ≤ ε

2 ; (2) oracle Oi
is truthful.

The proof of Lemma 3.1 relies on the following technical
claim, which enables us to relate the union of several equal-
size datasets to the samples drawn from the uniform mixture
of the corresponding distributions.

Claim 3.2. Suppose m = Ω
(
n ln n

δ

)
balls are thrown into

n bins independently and uniformly at random. Then with
probability 1− δ, no bins contain more than 2m

n balls.

Proof of Claim 3.2. Let random variableX denote the num-
ber of balls in a fixed bin, so X

m is the average of m i.i.d.
Bernoulli random variables with mean 1

n . The Chernoff
bound implies that

Pr

[
X

m
≥ 2

n

]
≤ e−mD( 2

n || 1n ) = e−Ω(n ln n
δ )·Ω( 1

n ) ≤ δ

n
,

where the last step holds if we choose a sufficiently large
hidden constant in m = Ω

(
n ln n

δ

)
. The claim follows

from a union bound over the n bins.



Do Outliers Ruin Collaboration?

Proof of Lemma 3.1. Let G′ denote the indices of truthful
users in G. By assumption, |G′| ≥ 9

10 |G| and F contains a
function f∗ that is consistent with

⋃
i∈G′ Si. This guaran-

tees that Algorithm 2 should return f̂H as the output when
H = G′, so function Candidate is well-defined.

Recall that in Algorithm 2, we set

M = Θ

(
d ln(1/ε) + ln

(
2|G|/δ

)
ε

+ |G| ln |G|
δ

)
.

Consider the following thought experiment. For each non-
empty H ⊆ G, we draw a sequence AH of M integers,
each of which is chosen uniformly and independently at
random from H . We also draw M samples from oracle Oi
for each i ∈ G. If all users in H are truthful, the samples
together with AH naturally specify a realization of drawing
M samples from the uniform mixture distribution DH ,

1
|H|
∑
i∈H Di: we arrange the M samples drawn from each

distribution into a queue, and when we would like to draw
the i-th sample, we simply take the sample at the front of
queue AH(i).

For a fixed non-empty subset H ⊆ G that only contains
truthful users, the VC theorem implies that with probability
1− δ

2|G|+1 (over the randomness in both the samples and the
choice of AH ), when we draw samples from the uniform
mixture DH as described above, any function f ∈ F that
is consistent with the labeled samples satisfies errDH (f) ≤
ε

10 . By a union bound over ≤ 2|G| different sets H ⊆ G,
the above holds for every H ⊆ G simultaneously with
probability 1− 2|G| · δ

2|G|+1 = 1− δ
2 .

Recall that in Algorithm 2, we first query each oracle Oi
to obtain a “training set” Si of size 4M

|G| for each i ∈ G.

Then we find set H ⊆ G and classifier f̂H ∈ F such
that: (1) |H| ≥ 9

10 |G|; (2) f̂H is consistent with all labeled
samples in

⋃
i∈H Si. Suppose that H is the set associated

with the output of Algorithm 2, and let H ′ = {i ∈ H :

Oi is truthful}. Note that |H ′| ≥ |H| − |G|10 ≥
4
5 |G|.

The crucial observation is that since

M = Ω

(
|G| ln |G|

δ

)
,

Claim 3.2 implies that with probability at least 1− δ
2 , each

index i ∈ H ′ appears less than 2M
|H′| ≤

4M
|G| times in AH′ .

In other words,
⋃
i∈H′ Si is a superset of the M samples

that are supposed to be drawn from DH′ (in our thought
experiment). Since f̂H is consistent with

⋃
i∈H′ Si, a union

bound shows that with probability 1 − 2 · δ2 = 1 − δ, we
have

1

|H ′|
∑
i∈H′

errDi(f̂H) = errDH′ (f̂H) ≤ ε

10
.

This further implies that errDi(f̂H) ≤ ε
2 holds for at least

|G|
2 indices i ∈ H ′; otherwise, we would have

1

|H ′|
∑
i∈H′

errDi(f̂H) ≥ 1

|H ′|

(
|H ′| − |G|

2

)
· ε

2

≥
(

1− 5

8

)
· ε

2
>

ε

10
,

which leads to a contradiction. Here the second step applies
|H ′| ≥ 4

5 |G|. This proves the lemma.

The following lemma, which directly follows from a Cher-
noff bound and a union bound, states that with probability
1− δ, Test(G, f̂ , ε, δ) correctly determines whether f̂ has
an O(ε) error for each user in G.

Lemma 3.3. Let G′ denote the output of Test(G, f̂ , ε, δ).
With probability 1 − δ, the following holds for every i ∈
G simultaneously: (1) if errDi(f̂) > ε, i ∈ G′; (2) if
errDi(f̂) ≤ ε

2 , i /∈ G′.

Proof of Lemma 3.3. Fix a truthful oracle Oi with i ∈ G.
Recall that Algorithm 3 sets

θi =
1

|Si|
∑

(x,y)∈Si

I
[
f̂(x) 6= y

]
.

Note that θi is the average of Ω
(

ln(|G|/δ)
ε

)
independent

Bernoulli random variables, each with mean errDi(f̂). Thus,
the Chernoff bound implies that with probability 1 − δ

|G| ,
the following two conditions holds simultaneously: (1) if
errDi(f̂) > ε, θi > 3

4ε; (2) if errDi(f̂) ≤ ε
2 , θi ≤ 3

4ε. The
lemma follows from a union bound over all i ∈ G.

3.3. Correctness and Sample Complexity

Now we are ready to prove our main result.

Theorem 3.4. For any ε, δ ∈ (0, 1] and η ∈ [0, 1], Algo-
rithm 1 is an (ε, δ, η)-learning algorithm and takes at most

O

(
d ln(1/ε)

ε
(ηn+ lnn) +

n ln(n/δ)

ε

)
samples.

By Theorem 3.4, the sample complexity mn,d(ε, δ, η) re-
duces to O (d(ηn+ lnn)) when ε and δ are constants and
n ≤ C · d for some constant C. Therefore, when n = O(d),
we have the following overhead upper bound:

o(n, d, η) =
O (d(ηn+ lnn))

Θ(d)
= O(ηn+ lnn).

Proof of Theorem 3.4. The proof proceeds by applying
Lemmas 3.1 and 3.3 iteratively. In each round r, Lemma 3.1
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guarantees that with probability 1−δr, the learned classifier
f̂r has an error below ε

2 for at least |Gr|2 truthful users. By
Lemma 3.3, for each such distribution, the “validation error”
θi should be below 3

4ε, so these users will exit the algorithm
by receiving f̂r as the classifier, and the number of active
users decreases by a factor of 1

2 . Therefore, the while-loop
in Algorithm 1 terminates after at most blog2 nc+ 1 itera-
tions. Finally, the algorithm satisfies the remaining active
users by drawing Θ

(
d ln(1/ε)+ln(n/δ)

ε

)
samples from each

of them. Thus, the VC theorem guarantees that for each
truthful user, the learned classifier is ε-accurate with proba-
bility at least 1− δ

3n . By a union bound, with probability at
least

1−
∞∑
r=1

2δr − n ·
δ

3n
= 1−

(
1

3
+

∞∑
r=1

2

5r2

)
δ ≥ 1− δ,

Algorithm 1 returns an ε-accurate classifier for each truthful
user.

It remains to bound the sample complexity of Algorithm 1.
In round r, the number of active users is at most |Gr| ≤
n

2r−1 . Recall that δr = δ
5r2 . The number of samples that

Candidate and Test draw in round r is then upper bounded
by

O

(
d ln(1/ε) + |Gr| ln(|Gr|/δr)

ε

)
=O

(
d ln(1/ε)

ε
+
n ln(n/δ)

2rε

)
.

Therefore, the number of samples drawn in the O(lnn)
iterations is upper bounded by:

blog2 nc+1∑
r=0

O

(
d ln(1/ε)

ε
+
n ln(n/δ)

2rε

)
=O

(
d ln(1/ε) lnn+ n ln(n/δ)

ε

)
.

(1)

When the while-loop in Algorithm 1 terminates, it holds
that |Gr| ≤ 10ηn = O(ηn). After that, we learn on the
remaining distributions separately, using

O

(
ηn · d ln(1/ε) + ln(n/δ)

ε

)
(2)

samples in total. Adding (1) and (2) gives the desired sample
complexity upper bound.

4. Overhead Lower Bound
In this section, we show that an Ω(ηn + lnn) overhead
is unavoidable when n = Θ(d). Therefore, the overhead
achieved by Algorithm 1 is optimal up to a constant fac-
tor, when the number of users is commensurate with the

complexity of the hypothesis class. Formally, we have the
following theorem.
Theorem 4.1. For any n, d ∈ N, ε ∈

(
0, 1

2

]
and δ, η ∈

(0, 1),

mn,d(ε, δ, η) = Ω

(
ηnd

ε

)
.

Theorem 4.1 directly implies the following lower bound on
the overhead:

o(n, d, η) =
Ω(ηnd)

Θ(d)
= Ω(ηn).

Combining this with the previous lower bound o(n, d, η) =
Ω(lnn) when n = Θ(d) and η = 0 (Blum et al., 2017)4, we
obtain the desired worst-case lower bound of Ω(ηn+ lnn).

Proof of Theorem 4.1. Assume without loss of generality
that ηn is an integer between 1 and n− 1. We consider the
binary classification problem on set X = [d] ∪ {⊥}, while
the hypothesis class F contains all the 2d binary functions
on X that map ⊥ to 0. The target function f∗ is chosen
uniformly at random from F .

Suppose that for (1−η)n−1 truthful users, the data distribu-
tion is the degenerate distribution on {⊥}, so these truthful
users provide no information on the correct classifier f∗. On
the other hand, the data distribution of the only remaining
truthful user i∗ satisfies Di∗(x) = 2ε

d for any x ∈ [d] and
Di∗(⊥) = 1 − 2ε. By construction, a learning algorithm
must draw Ω

(
d
ε

)
samples from Di∗ in order to learn an

ε-accurate classifier with a non-trivial success probability
1− δ.

Now suppose that each of the ηn adversarial users tries to
pretend that he is the truthful user i∗. More specifically,
each adversarial user i chooses a function f̃i ∈ F uniformly
at random, and answer the queries as if he is the truthful
user with a different target function f̃i. In other words, upon
each request from the learning algorithm, oracle Oi draws
x from Di∗ and returns

(
x, f̃i(x)

)
.

Recall that the actual target function f∗ is also uniformly
distributed in F , so from the perspective of the learning
algorithm, the truthful user i∗ is indistinguishable from the
other ηn adversarial users. Therefore, an (ε, δ, η)-learning
algorithm must guarantee that each of these (ηn+ 1) users
receives an ε-accurate classifier with probability at least
1 − δ. The sample complexity lower bound from PAC
learning theory implies that we must draw Ω

(
d
ε

)
samples

from each such user and thus

(ηn+ 1) · Ω
(
d

ε

)
= Ω

(
ηnd

ε

)
4They proved an Ω(lnn) lower bound for the special case that

n = d, yet their proof directly implies the same lower bound when
n = Θ(d).
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samples in total.

5. Discussion: A Computationally Efficient
Algorithm?

Although Algorithm 1 is proved to achieve an optimal sam-
ple complexity overhead in certain cases, the algorithm
is computationally inefficient and of limited practical use
when there are a large number of users. In particular, sub-
routine Candidate performs an exhaustive search over all
user subsets of size ≥ 9

10 |G|, and thus may potentially call
oracle OF exponentially many times. In contrast, the naı̈ve
approach that learns for different users separately, though
obtaining an Ω(n) overhead, only makes n calls to oracle
OF . Naturally, one may wonder whether we can achieve the
best of both worlds by finding a computationally efficient
learning algorithm with a small overhead? We conjecture
that such an algorithm, unfortunately, does not exist.

Conjecture 5.1. For any α > −1 and β < 1, no learning
algorithms that make polynomially many calls to oracleOF
achieve an O(nβ) overhead when η = Ω(nα).

In words, when there is a non-trivial number of adversaries,
any efficient learning algorithm would incur a nearly-linear
overhead. We remark that it is necessary to assume α > −1
since when ηn, the maximum possible number of adver-
saries, is a constant, the learning algorithm can enumerate
the subset of adversarial users in polynomial time, thus
achieving an optimal overhead efficiently. Proving or refut-
ing Conjecture 5.1 would greatly further our understanding
of the impact of arbitrary outliers on collaborative learning.

The key to our sample-efficient learning algorithm is that
subroutine Candidate identifies a large user group such that
some classifier f̂ ∈ F is consistent with all their labeled
samples. Lemma 3.1 further guarantees that f̂ is ε-accurate
for at least half of the users. This allows us to satisfy almost
all the users in O(lnn) iterations, resulting in the lnn term
in the overhead.

We note that finding a group of users with consistent datasets
generalizes the problem of finding a large clique in a graph:
For an undirected graph with vertices labeled from 1 to n,
we construct the user oracles O1,O2, . . . ,On such that Oi
and Oj produce conflicting labels on the same data if the
edge (i, j) is absent from the graph. Then a group of users
have consistent datasets if and only if they form a clique in
the corresponding graph.

Unfortunately, Zuckerman (2006) proved that even if the
graph is known to contain a hidden clique of size Ω(n)5, it is
still NP-hard to find a clique of size Ω(n1−β) for any β < 1.
This indicates that, following the approach of Algorithm 1,

5Analogously, in our setting, we know that a large fraction of
users have non-conflicting datasets.

a computationally efficient algorithm can only find accurate
classifiers for at most O(n1−β) users in each iteration. As
a result, Ω(nβ) iterations would be necessary to satisfy all
the n users. The algorithm consequently incurs an Ω(nβ)
overhead.
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