Gradually Updated Neural Networks for Large-Scale Image Recognition

A. Proof for Section 4.1

Proof. Consider a linear transformation $\mathcal{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ converted to GUNN, i.e.

$$
\begin{equation*}
y_{i}=x_{i}+\sum_{j=1}^{i-1} \omega_{i, j} y_{j}+\sum_{j=i}^{n} \omega_{i, j} x_{j}, \quad \forall i \in\{1, . ., n\} \tag{1}
\end{equation*}
$$

Suppose that there exists a pair of neurons y_{p} and $y_{q}(p<q)$ that collapse into each other. We consider one step of gradient descent on parameter ω with learning rate ϵ when the input is x and the gradient on y is $\partial L / \partial y$, i.e., $\forall i, j$,

$$
\begin{equation*}
\Delta \omega_{i, j}=\epsilon \cdot \frac{\partial L}{\partial \omega_{i, j}}=\epsilon \cdot \frac{\partial L}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial \omega_{i, j}} \tag{2}
\end{equation*}
$$

Then, we consider Δy, which is the value difference at the same x used in gradient descent. When $\epsilon \rightarrow 0, \forall i$,

$$
\begin{equation*}
\Delta y_{i}=\epsilon \frac{\partial L}{\partial y_{i}}\left(\sum_{j=1}^{i-1} y_{j}^{2}+\sum_{j=i}^{n} x_{j}^{2}\right)+\sum_{j=1}^{i-1} \omega_{i, j} \Delta y_{j} \tag{3}
\end{equation*}
$$

Since y_{p} and y_{q} collapse, $\Delta y_{p}=\Delta y_{q}$, i.e.,

$$
\begin{equation*}
\epsilon \frac{\partial L}{\partial y_{p}}\left(\sum_{j=1}^{p-1} y_{j}^{2}+\sum_{j=p}^{n} x_{j}^{2}\right)+\sum_{j=1}^{p-1} \omega_{p, j} \Delta y_{j}=\epsilon \frac{\partial L}{\partial y_{q}}\left(\sum_{j=1}^{q-1} y_{j}^{2}+\sum_{j=q}^{n} x_{j}^{2}\right)+\sum_{j=1}^{q-1} \omega_{q, j} \Delta y_{j} \tag{4}
\end{equation*}
$$

If $q>p+1$, then we can rewrite Eq. 4 with respect to Δy_{q-1},

$$
\begin{equation*}
\omega_{q, q-1} \Delta y_{q-1}=\epsilon \frac{\partial L}{\partial y_{p}}\left(\sum_{j=1}^{p-1} y_{j}^{2}+\sum_{j=p}^{n} x_{j}^{2}\right)+\sum_{j=1}^{p-1} \omega_{p, j} \Delta y_{j}-\epsilon \frac{\partial L}{\partial y_{q}}\left(\sum_{j=1}^{q-1} y_{j}^{2}+\sum_{j=q}^{n} x_{j}^{2}\right)-\sum_{j=1}^{q-2} \omega_{q, j} \Delta y_{j} \tag{5}
\end{equation*}
$$

Note that the left side of Eq. 5 is a function of $\partial L / \partial y_{q-1}$ while the right side is not. Therefore, $\omega_{q, q-1}=0$. However, $\omega_{q, q-1}=0$ cannot always hold after any number of gradient descent optimizations. Therefore, $q \ngtr p+1 ; q=p+1$. Thus,

$$
\begin{equation*}
\epsilon \frac{\partial L}{\partial y_{p}}\left(\sum_{j=1}^{p-1} y_{j}^{2}+\sum_{j=p}^{n} x_{j}^{2}\right)+\sum_{j=1}^{p-1} \omega_{p, j} \Delta y_{j}=\epsilon \frac{\partial L}{\partial y_{p+1}}\left(\sum_{j=1}^{p} y_{j}^{2}+\sum_{j=p+1}^{n} x_{j}^{2}\right)+\sum_{j=1}^{p} \omega_{p+1, j} \Delta y_{j} \tag{6}
\end{equation*}
$$

We divide the both sides of Eq. 6 with $\epsilon \partial L / \partial y_{p}=\epsilon \partial L / \partial y_{p+1}$, and let $\partial L / \partial y_{p} \rightarrow \infty$. Then, we have

$$
\begin{equation*}
\sum_{j=1}^{p-1} y_{j}^{2}+\sum_{j=p}^{n} x_{j}^{2}=\sum_{j=1}^{p} y_{j}^{2}+\sum_{j=p+1}^{n} x_{j}^{2}+\omega_{p+1, p}\left(\sum_{j=1}^{p-1} y_{j}^{2}+\sum_{j=p}^{n} x_{j}^{2}\right) \tag{7}
\end{equation*}
$$

Eq. 7 must hold after at least one step of gradient descent on ω with input x, gradient $\partial L / \partial y$ and learning rate ϵ., i.e.,

$$
\begin{equation*}
2 y_{p} \cdot\left(\epsilon \frac{\partial L}{\partial y_{p}}\left(\sum_{j=1}^{p-1} y_{j}^{2}+\sum_{j=p}^{n} x_{j}^{2}\right)+\sum_{j=1}^{p-1} \omega_{p, j} \Delta y_{j}\right)+\left(\sum_{j=1}^{p-1} y_{j}^{2}+\sum_{j=p}^{n} x_{j}^{2}\right) \cdot\left(\epsilon \cdot \frac{\partial L}{\partial y_{p}} \cdot y_{p}\right)=-\omega_{p+1, p} \Delta\left(\sum_{j=1}^{p-1} y_{j}^{2}+\sum_{j=p}^{n} x_{j}^{2}\right) \tag{8}
\end{equation*}
$$

Note that the left side of Eq. 8 is a function of $\partial L / \partial y_{p}$ while the right is not. Therefore, the only solution is $y_{q}=y_{p}=0$. However, these equalities will also be broken in the next step. Thus, y_{p} and y_{q} cannot collapse into each other.

