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A. Proofs
In the proofs, some technical details are omitted for brevity and readability. The full proofs are left to the long version of
the work.

Proof of Proposition 3.1. To prove (a), omitting (l) in W (l), and let M = Ml, M ′ = Ml−1, Bλ′,λ = ‖Wλ′,λ‖1. By
definition of Bl, we have that ∑

λ′∈[M ′]

Bλ′,λ ≤ Bl, ∀λ

∑
λ∈[M ]

Bλ′,λ ≤ Bl
M

M ′
, ∀λ′.

(A1)

We essentially use Schur’s test, being more careful with the summation over λ′. We derive by Cauchy-Schwarz which is
equivalent to Schur’s test:
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which means that
‖x(l)[x1]− x(l)[x2]‖ ≤ Bl‖x1 − x2‖.

Thus Bl ≤ 1 implies (a).

To prove (b), we firstly verify that x(l)0 (λ) indeed is a constant over space for all λ and l. When l = 0, x(0)0 is all zero, so
the claim is true. Suppose that the claim holds for l − 1, then

x
(l)
0 (u, λ) = σ
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λ′

∫
x
(l−1)
0 (λ′)W
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λ′,λ(v′)dv′ + b(l)(λ)
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which again does not depend on u. So we can write x(l)0 as x(l)0 (λ). Now by (a),

‖x(l)c ‖ = ‖x(l)[x(l−1)]− x(l)[x(l−1)0 ]‖ ≤ ‖x(l−1) − x(l−1)0 ‖ = ‖x(l−1)c ‖,

which proves (b).

Proof of Lemma 3.2. To illustrate the idea, we first prove the lemma in the one-dimensional case, i.e. u ∈ R instead of R2.
We then extend to the 2D case. In the 1D case, the constant c1 can be improved to be 2, and we only need |τ ′|∞ < 1

2 . In
the 2D case, we need c1 = 4 as in the final claim.

To simply notation, we denote the mapping x(l)[x(l−1)] as y[x], x(l−1)c by xc, Ml−1 = M ′, Ml = M , and W (l) by W . Let
Cλ′,λ =

∫
|v|| ddvWλ′,λ(v)|dv, and Bλ′,λ =

∫
|Wλ′,λ(v)|dv, then (A1) holds, and the same relation holds for Cλ′,λ and

Cl.

By definition,

Dτy[x](u, λ) = σ

 ∑
λ′∈[M ′]

∫
x(ρ(u) + v′, λ′)Wλ′,λ(v′)dv′ + b(λ)

 ,

y[Dτx](u, λ) = σ

 ∑
λ′∈[M ′]

∫
x(ρ(u+ v′), λ′)Wλ′,λ(v′)dv′ + b(λ)

 .

Relaxing by removing σ as in the proof of Proposition 3.1, one can derive that

‖Dτy[x]− y[Dτx]‖2 · |Ω|M ≤ ‖E1 + E2‖2,

where

E1(u, λ) =
∑

λ′∈[M ′]

∫
xc(v, λ

′)(Wλ′,λ(v − ρ(u))−Wλ′,λ(ρ−1(v)− u))dv,

E2(u, λ) =
∑

λ′∈[M ′]

∫
xc(v, λ

′)Wλ′,λ(ρ−1(v)− u)(|(ρ−1)′(v)| − 1)dv.

Notice that x is replaced by xc due to the fact that x and xc differ by a constant field over space for each channel λ′. We
bound ‖E1‖ and ‖E2‖ respectively.

For E1, we introduce k(1)λ′,λ(v, u) = Wλ′,λ(v − ρ(u))−Wλ′,λ(ρ−1(v)− u), and re-write it as

E1(u, λ) =
∑

λ′∈[M ′]

∫
xc(v, λ

′)k
(1)
λ′,λ(v, u)dv.

Applying Schur’s test as in the proof of Proposition 3.1, one can show that

‖E1‖ ≤ 2|τ ′|∞Cl
√
M |Ω|‖xc‖

as long as for all λ′, λ,

sup
u

∫ ∣∣∣k(1)λ′,λ(v, u)
∣∣∣ dv, sup

v

∫ ∣∣∣k(1)λ′,λ(v, u)
∣∣∣ du ≤ 2Cλ′,λ|τ ′|∞. (A2)

(A2) can be verified by 1D change of variable, and details omitted.

For E2, we introduce k(2)λ′,λ(v, u) = Wλ′,λ(ρ−1(v)− u)(|(ρ−1)′(v)| − 1), and then we have that∫
|k(2)λ′,λ(v, u)|du ≤ |(ρ−1)′(v)− 1| ·

∫
|Wλ′,λ(u)|du ≤ 2|τ ′|∞Bλ′,λ, ∀v,



DCFNet

where we use 1− (ρ−1)′(t) = −τ ′(ρ−1(t))
1−τ ′(ρ−1(t)) and |τ ′| < 1

2 to obtain the factor 2. Meanwhile,∫
|k(2)λ′,λ(v, u)|dv =

∫
|Wλ′,λ(ṽ − u)||1− |ρ′(ṽ)||dṽ ≤ |τ ′|∞Bλ′,λ, ∀u.

This gives that
‖E2‖ ≤ 2|τ ′|∞Bl

√
M |Ω|‖xc‖.

Putting together we have that√
M |Ω|‖Dτy[x]− y[Dτx]‖ ≤ ‖E1 + E2‖ ≤ ‖E1‖+ ‖E2‖ ≤ 2|τ ′|∞(Cl +Bl)

√
M |Ω|‖xc‖

which proves the claim in the 1D case.

The extension to the 2D case uses standard elementary techniques. The assumption |∇τ |∞ < 1
5 is used to derive that

||Jρ| − 1|, ||Jρ−1| − 1| ≤ 4|∇τ |∞, and |Jρ|, |Jρ−1| ≤ 2. In all the formula, |(ρ−1)′(v)| is replaced by the Jacobian
determinant |Jρ−1(v)|. The integration in 1D is replaced by that along a segment in the 2D space. Details omitted.

Proof of Prop. 3.3. Under these conditions, Proposition 3.1 applies. Let c1 = 4. Introduce the notation

yl = x(L) ◦ · · · ◦Dτx
(l) ◦ · · · ◦ x(0), l = 0, · · · , L

where y0 = x(L)[Dτx
(0)], and yL = Dτx

(L)[x(0)]. The l.h.s equals ‖y0 − yL‖, and we will bound it by ‖yL − y0‖ ≤∑L
l=1 ‖yl − yl−1‖. For each l = 1, · · · , L,

‖yl − yl−1‖ =‖x(L) ◦ · · · ◦Dτx
(l) ◦ x(l−1)

− x(L) ◦ · · · ◦ x(l) ◦Dτx
(l−1)‖

≤‖Dτx
(l) ◦ x(l−1) − x(l) ◦Dτx

(l−1)‖
≤c1(Cl +Bl)|∇τ |∞‖x(l−1)c ‖
≤2c1|∇τ |∞‖x(l−1)c ‖
≤2c1|∇τ |∞‖x(0)‖,

where the first inequality is by the nonexpansiveness of the (l + 1) to L-th layer, the second by Lemma 3.2, the third by
(A2), and the last by Proposition 3.1 (b). Thus,

∑L
l=1 ‖yl − yl−1‖ ≤ 2c1L|∇τ |∞‖x(0)‖.

Proof of Proposition 3.4. The technique is similar to that in the proof of Lemma 3.2. Let the constant on the r.h.s be
denoted by c2. In the 1D case, the constant c2 can be improved to be 1. In the 2D case, c2 = 2 as in the final claim. Details
omitted.

Proof of Lemma 3.5. The first claim is a classical result, and has a direct proof as
∫
D(0)
|∇F |2 = −

∫
D(0)

F∆F =

〈
∑
k akψk,

∑
k akµkψk〉 = π

∑
k a

2
kµk by the orthogonality of ψk, as stated above in the text. By Cauchy-Schwarz,

‖∇F‖1 ≤
√
π‖∇F‖2. Putting together gives the second claim.

Proof of Proposition 3.6. Omitting λ′, λ, l, and let jl = j, we write W (u) =
∑
k akψj,k(u). Rescaled to D(0), we con-

sider w(u) =
∑
k akψk(u), and one can verify that ‖|v||∇W (v)|‖1 = ‖|v||∇w(v)|‖1, and ‖W‖1 = ‖w‖1. Meanwhile,∫

D(0)
|v||∇w(v)|dv ≤

∫
D(0)
|∇w(v)|dv by that |v| ≤ 1, and ‖w‖1 ≤ ‖∇w‖1 by Poincaré inequality, using the fact that w

vanishes on the boundary of D(0). Thus ‖|v||∇w|‖1, ‖w‖1 ≤ ‖∇w‖1. The claim of the proposition follows by applying
Lemma 3.5 to w.

Proof of Theorem 3.8. Let c1 = 4, c2 = 2. The l.h.s. is bounded by ‖x(L) −Dτx
(L)‖+ ‖Dτx

(L)[x(0)]− x(L)[Dτx
(0)]‖.

The second term is less than 2c1L|∇τ |∞‖x(0)‖ by Theorem 3.7. To bound the first term, we apply Proposition 3.4,
and notice that for all λ′, λ, ‖∇W (L)

λ′,λ‖1 ≤ 2−jLπ‖a(L)λ,λ‖FB (consider W (L)
λ′,λ(u) = W (u) =

∑
k akψJ,k(u) =

2−2J
∑
k akψk(2−Ju), J = jL, let w(u) =

∑
k akψk(u), then W (u) = 2−2Jw(2−Ju), and ‖∇W‖1 = 2−J‖∇w‖1,

where ‖∇w‖1 ≤
√
π‖a‖FB by Lemma 3.5), and thus DL ≤ 2−jLAL. By (A2’), this gives that ‖Dτx

(L) − x(L)‖ ≤
c22−jL |τ |∞‖x(L−1)c ‖, and ‖x(L−1)c ‖ ≤ ‖x(0)‖ by Proposition 3.1 (b).
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B. Experimental Details
The training of a Conv-2 DCF-FB network (Table 2) on MNIST dataset:

The network is trained using standard Stochastic Gradient Descent (SGD) with momentum 0.9 and batch size 100 for 100
epochs. L2 regularization (“weightdecay”) of 10−4 is used on the trainable parameters a’s. The learning rate decreases
from 10−2 to 10−4 over the 100 epochs. Batch normalization is used after each convolutional layer. The typical evolution
of training and testing losses and errors over epochs are shown in Figure B.1.

Figure B.1. The evolution of training and validation losses (left) and errors (right) over the epochs of a Conv-2 DCF-FB network trained
on 50K MNIST using SGD.


