
Non-convex Conditional Gradient Sliding

Chao Qu 1 Yan Li 2 Huan Xu 2

Abstract
We investigate a projection free optimization
method, namely non-convex conditional gradi-
ent sliding (NCGS) for non-convex optimiza-
tion problems on the batch, stochastic and finite-
sum settings. Conditional gradient sliding (CGS)
method, by integrating Nesterov’s accelerated gra-
dient method with Frank-Wolfe (FW) method in
a smart way, outperforms FW for convex opti-
mization, by reducing the amount of gradient
computations. However, the study of CGS in
the non-convex setting is limited. In this paper,
we propose the non-convex conditional gradient
sliding (NCGS) methods and analyze their con-
vergence properties. We also leverage the idea of
variance reduction from the recent progress in con-
vex optimization to obtain a new algorithm termed
variance reduced NCGS (NCGS-VR), and obtain
faster convergence rate than the batch NCGS in
the finite-sum setting. We show that NCGS algo-
rithms outperform their Frank-Wolfe counterparts
both in theory and in practice, for all three set-
tings, namely the batch, stochastic and finite-sum
setting. This significantly improves our under-
standing of optimizing non-convex functions with
complicated feasible sets (where projection is pro-
hibitively expensive).

1. Introduction
This paper studies non-convex optimization problems with
complicated feasible sets. Specifically, we consider the
following problem

min
θ∈Ω

F (θ), (1)

where the objective function F (θ) is non-convex and L
smooth, and Ω is a convex compact set.

*Equal contribution 1EE faculty, Technion, Israel 2H. Mil-
ton Stewart School of Industrial and Systems Engineering, Geor-
gia Institute of Technology, USA. Correspondence to: Chao Qu
<chaoqu.technion@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Besides this general form, we also consider a stochastic
setting and a finite-sum setting. In the stochastic setting,
we assume F (θ) = Eξf(θ, ξ), where f(θ, ξ) is smooth and
non-convex. In the finite-sum case, we study the following
problem

min
θ∈Ω

F (θ) :=
1

n

n∑
i=1

fi(θ),

where each fi(θ) is non-convex andL smooth, Ω is a convex
compact set. Here, we are interested in the case where n,
i.e., the number of training examples, is very large.

We focus on the case where the feasible set Ω is compli-
cated, in the sense that projection onto Ω is expensive (for
instance, the projection on the trace norm ball), or even
computationally intractable (Collins et al., 2008). To al-
leviate such difficulty, the Frank-Wolfe method (Frank &
Wolfe, 1956) (a.k.a. conditional gradient method ), which
was initially developed for the convex problem in 1950s,
has attracted much attention again in machine learning com-
munity recently, due to its projection free property (Jaggi,
2013). In each iteration, the Frank-Wolfe algorithm calls a
first-order oracle to get∇F (θ), and then calls a linear oracle
in the form arg minθ∈Ω〈θ, g〉, which avoids the projection
operation.

This setup is motivated by several popular problems in ma-
chine learning, wherein the above linear optimization is easy
but the projection is much more computationally demanding.
The example par excellence is the nuclear norm constraint
which is widely used in multi-task learning, mutli-class clas-
sification, recommendation systems and matrix learning.
We briefly explain some of them: Suppose there are m tasks
and each column i of a matrix Θ represents a task i, one
popular multi-task learning formulation proposed by Pong
et al. (2010) has the following form.

min
Θ,b

m∑
i=1

ni∑
j=1

`(yij , θ
T
i x

i
j + bi)

subject to ‖Θ‖∗ ≤ R,

(2)

where `(·, ·) is the loss function which can be potentially
non-convex, ni is the number of samples in each task,
Θ = [θ1, ..., θm], and ‖ · ‖∗ is the nuclear norm constraint
to encourage the low rank property. In the multiclass clas-
sification problem, suppose there are n training examples



Non-convex Conditional Gradient Sliding

(xi, yi)i=1,...,n, where xi is a feature vector and yi is the
label. The goal is to find an accurate linear predictor with pa-
rameter Θ = [θ1, ..., θh]. In Zhang et al. (2012) and Dudik
et al. (2012), multivariate logistic loss with nuclear norm
regularization is proposed with the following form

fi(Θ) = log(1 +
∑
` 6=yi

exp(θT` xi − θTyixi)),

and Ω = ‖Θ‖∗ ≤ R. The logistic loss can be replace by a
non-convex loss function due to the superior robustness and
classification accuracy of the non-convex loss (Mei et al.,
2016).

Apart from the nuclear norm constraint, other examples
of complicated feasible sets include polytopes with expo-
nentially many facets, often resulted from combinatorial
problems (e.g., the convex hull of all spanning trees). We
refer reader to Garber & Hazan (2013) and Lacoste-Julien
& Jaggi (2015) for details.

In the convex case, it is well known that for the Frank-Wolfe
method to achieve ε-solution, O

(
1
ε

)
iterations are required,

if F (θ) is convex and smooth. This rate is significantly
worse than the optimal rate O

(
1/
√
ε
)

for smooth convex
problems (Nesterov, 2013), which raises a question whether
this complexity bound O( 1

ε ) is improvable. Unfortunately,
the answer is no in the general setting (Lan, 2013; Guzmán
& Nemirovski, 2015) and improved results can only be
obtained under stronger assumptions, see e.g., Garber &
Hazan (2013; 2015); Lacoste-Julien & Jaggi (2015). Lan
& Zhou (2016) proposed the conditional gradient sliding
method (CGS) which combines the idea of Nesterov’s ac-
celerated gradient with the Frank-Wolfe method. While the
number of linear oracle calls remains same, the number of
gradient computations (the first order oracle) is significantly
improved from O( 1

ε ) to O( 1√
ε
). Under the strongly convex

assumption, this can be further improved toO(log(1/ε)) by
using the restarting techniques (Lan & Zhou, 2016).

Recently, non-convex optimization has attracted lots of at-
tentions and becomes the frontier of the machine learning,
where a partial list of applications includes robust regres-
sion and classification (Mei et al., 2016), dictionary learning
(Mairal et al., 2009), phase retrial (Candes et al., 2015) and
training the neural network (Goodfellow et al., 2016). There-
fore, the convergence on non-convex Frank-Wolfe method
has been studied, under the batch, stochastic and finite-sum
setting (Lacoste-Julien, 2016; Reddi et al., 2016b). A natu-
ral question arises: can we use similar technique of convex
conditional gradient sliding in the non-convex conditional
gradient sliding and improve the complexity on the first
order oracle? This paper provides an affirmative answer.

Summary of contributions: We propose the non-convex
conditional gradient sliding (NCGS) method and provides a
convergence analysis in the batch and the stochastic setting.

Compared to the convex CGS, the difficulty comes from
the analysis of non-convexity. In the finite-sum setting, we
propose the variance reduction non-convex gradient slid-
ing method (NCGS-VR) which achieves faster convergence
than the batch one. We need carefully balance the number
of call on the linear oracle and first order oracle. All result
are summarized in Table 1,2, 3 (with red color). Table 1
compares the result of non-convex conditional gradient slid-
ing with the non-convex Frank-Wolfe method in the batch
setting. Table 2 compares our method with SAGAFW and
SVFW (Reddi et al., 2016b) in the stochastic setting. In Ta-
ble 3, our method leverages the popular stochastic variance
reduction technique. We compare it with the stochastic vari-
ance reduction Frank-Wolfe method in (Reddi et al., 2016b).
To the best of our knowledge, our algorithms outperform
Frank-Wolfe method in all corresponding setting. We de-
fer the detailed comparison to the related work subsection.
Please see Section 2 for the formal definition of first order
oracle (FO), stochastic first order oracle (SFO), Incremental
First Order Oracle (IFO) and linear oracle (LO).

We remark that the convergence criterion used in paper is
different from that in Frank-Wolfe. In our paper, we fol-
low the criterion ‖∇F (θ)‖2 ≤ ε ( See section 2.3 for more
precise definition on convergence criteria), as that in most
non-convex optimization work (Lan, 2013; Allen-Zhu &
Hazan, 2016; Reddi et al., 2016c; Nesterov, 2013), while
the Frank-Wolfe method uses the Frank-Wolfe gap. Under-
standing the precise relationship between these convergence
criteria is an important direction for future research.

Algorithm FO complexity LO complexity
NCGS O(1/ε) O(1/ε2)
FW O(1/ε2) O(1/ε2)

Table 1. Comparison of complexity of algorithms in the batch set-
ting.

Algorithm SFO complexity LO complexity
NCGS O(1/ε2) O(1/ε2)

SAGAFW O(1/ε
8
3 ) O(1/ε2)

SVFW O(1/ε
10
3 ) O(1/ε2)

Table 2. Comparison of complexity of algorithms in the stochastic
setting.

Related work

The classical Frank-Wolfe method considers optimizing a
smooth convex function F (θ) over a polyhedral set and
enjoys O(1/ε) convergence rate (Frank & Wolfe, 1956;
Jaggi, 2013). Recent work (Garber & Hazan, 2013; 2015)
proves faster convergence rate under additional assumptions.
Conditional gradient sliding was proposed in (Lan & Zhou,
2016), aiming at minimizing a convex objective function.



Non-convex Conditional Gradient Sliding

Algorithm IFO complexity LO complexity
NCGS O(n/ε) O(1/ε2)
FW O(n/ε2) O(1/ε2)

NCGS-VR O(n+ n
2
3

ε ) O(1/ε2)

SVFW O(n+ n
2
3

ε2 ) O(1/ε2)

Table 3. Comparison of complexity of algorithms in the finite-sum
setting. Since we need to evaluate n gradients each iteration in
NCGS and FW, the IFO complexity of NCGS and FW are n×
results in table 1.

While our high level algorithmic idea is the same, the anal-
ysis differs significantly due to the non-convexity of the
objective function.

Most existing works on analyzing non-convex optimization
solve the problem with the projection or the proximal op-
eration. Hence we list some representative works below.
Ghadimi & Lan (2013) investigate SGD in the non-convex
setting. They extend Nesterov’s acceleration method in the
constrained stochastic optimization. The performance on
non-convex stochastic variance reduction method is ana-
lyzed in Reddi et al. (2016a); Allen-Zhu & Hazan (2016);
Shalev-Shwartz (2016); Allen-Zhu & Yuan (2016). Note
that the stochastic variance reduction techniques are first
introduced for solving convex optimization problems (Xiao
& Zhang, 2014; Johnson & Zhang, 2013; Xiao & Zhang,
2014).

There are very few work on projection free methods for
non-convex optimization. The early work in Bertsekas
(1999) proves the asymptotic convergence of the Frank-
Wolfe method to a stationary point, but the convergence
rate is not studied. Lacoste-Julien (2016) establishes the
convergence rate ofO(1/ε2) for the Frank-Wolfe method in
the (batch) non-convex setting, under the criteria of Frank-
Wolfe gap. In his work, both FO and LO complexity are
shown to be O(1/ε2). In contrast, for our proposed NCGS,
the FO complexity is O(1/ε) and the LO complexity is
O(1/ε2). Recent work on Frank-Wolfe method for non-
convex, stochastic setup shows that the SFO complexity
and the LO complexity are O(1/ε

10
3 ) and O(1/ε2) respec-

tively for SVFW, and O(1/ε
8
3 ) and O(1/ε2) for SAGAFW

(Reddi et al., 2016b). Our SFO and LO on the same setting
are O(1/ε2) and O(1/ε2) respectively. In the finite sum
setting, our variance reduction NCGS(NCGS-VR) has IFO

complexity O(n+ n
2
3

ε ), while the state of the art variance

reduced FW has IFO complexity O(n+ n
2
3

ε2 ) and the same
LO complexity (Reddi et al., 2016b). Thus, it is clear that
for all three settings, we improved upon the best known
results in literature in terms of reducing computation for
gradient evaluation.

2. Preliminary
2.1. Oracle model

We consider the following set of Oracles:

• First Order Oracle (FO): given a θ, the FO returns
∇θF (θ).

• Stochastic First Order Oracle (SFO): For a function
F (θ) = Eξf(θ, ξ) where ξ ∼ P , a SFO returns the
stochastic gradientG(θk, ξk) = ∇θf(θk, ξk) where ξk
is a sample drawn i.i.d. from P in the k-th call.

• Incremental First Order Oracle (IFO): For the setting
F (θ) = 1

n

∑n
i=1 fi(θ), an IFO samples i ∈ [n] and

returns∇θfi(θ).

• Linear oracle (LO): the LO solves the following prob-
lem arg minθ∈Ω〈θ, g〉 for a given vector g.

Thought out the paper, the complexity of FO, SFO, IFO,
LO denotes the number of call of them to obtain a solution
with “ε accuracy” (see Section 2.3 for details).

2.2. Assumptions

F (θ) is L smooth, if ‖∇F (θ1)−∇F (θ2)‖ ≤ L‖θ1 − θ2‖.
This definition is equivalent to the following form:

− L

2
‖θ1 − θ2‖2 ≤ F (θ1)− F (θ2)− 〈∇F (θ2), θ1 − θ2〉

≤ L

2
‖θ1 − θ2‖2, ∀θ1, θ2 ∈ Ω.

We say F (θ) is ` lower smooth if it satisfies

− l

2
‖θ1 − θ2‖2 ≤ F (θ1)− F (θ2)− 〈∇F (θ2), θ1 − θ2〉,

∀θ1, θ2 ∈ Ω.

Intuitively, the lower smoothness quantified the amount
of “non-convexity” of the function. Clearly, the L smooth
assumption trivially implies l lower smoothness for l = L.
However, in some cases, the non-convexity l is much smaller
than L and we will show how it affects some results in our
theorem.

We then define prox-mapping type functions ψ(x, ω, γ):

ψ(x, ω, γ) = arg min
θ∈Ω
〈ω, θ〉+

1

2γ
‖θ − x‖2.

It is closely related to the projected gradient by setting
w = ∇F (θ), γ by the stepsize and x = θk. We assume
‖ψ(x, ω, γ)‖ ≤ M for all γ ∈ (0,∞) and x ∈ Ω and
ω ∈ Rp following that in (Lan, 2013). Since in our work Ω
is compact and convex, this assumption is satisfied.



Non-convex Conditional Gradient Sliding

For the stochastic setting, we make the following additional
assumptions: For any θ ∈ Rp and k > 1, we have

(1). EG(θ, ξk) = ∇F (θ)

(2). E‖G(θ, ξk)−∇F (θ)‖2 ≤ σ2,

i.e., the stochastic gradient G(θ, ξk) is unbiased and has
bounded variance.

In the finite-sum setting, we assume each fi(θ) is L smooth.

2.3. Convergence criteria

Conventionally, the convergence criterion in non-convex
optimization defines a solution with ε accuracy as
‖∇F (θ)‖2 ≤ ε (Lan & Zhou, 2016; Nesterov, 2013). How-
ever when the problem has constraints, it needs a different
termination criterion based on the gradient mapping (Lan &
Zhou, 2016). This is a natural extension of gradient, since
if there is no constraint, it reduces to the gradient. The
gradient mapping is defined as follows

g(θ,∇F (θ), γ) =
1

γ
(θ − ψ(θ,∇F (θ), γ)).

Through out the paper, we use g(θ,∇F (θ), γ) as the con-
vergence criterion, i.e., we want to find the solution θ such
that ‖g(θ,∇F (θ), γ)‖2 ≤ ε.

Notice there is another criterion, called Frank-Wolfe gap
maxx∈Ω〈x − θk,−∇F (θk)〉, in some recent analysis of
non-convex Frank-Wolfe methods (Lacoste-Julien, 2016;
Reddi et al., 2016a), which was initially used in the convex
Frank-Wolfe method. However, in this paper, we follow
the definition on gradient mapping, since it is a natural
generalization of gradient.

3. Batched non-convex conditional gradient
sliding

3.1. Algorithm

Before we present the algorithm of non-convex conditional
gradient sliding, we present a procedure condg in Algorithm
1, which will be used as a subroutine in all three (i.e., batch,
stochastic and finite-sum) settings.

Algorithm 2 presents the non-convex conditional gradient
sliding in the batch setting. Notice it needs to call the
procedure condg. There are two options to update θag,
and we provide the theoretical guarantees for both of them
in Theorem 1.

3.2. Theoretical result

Theorem 1. Suppose the objective function F (θ) satisfies
the assumption in section 2, where L is the smoothness
parameter and l is the lower smoothness parameter, then if

Algorithm 1 Procedure of u+ = condg(l, u, γ, η)

1.u1 = u and t = 1.
2.vt be an optimal solution for the subproblem

V (ut) = max
x∈Ω
〈l +

1

γ
(ut − u), ut − x〉

3.if V (ut) ≤ η, set u+ = ut and terminate the procedure
4.ut+1 = (1 − ξt)ut + ξtvt with ξt =

min{1, 〈
1
γ (u−ut)−l,vt−ut〉

1
γ ‖vt−ut‖2

}.
Set t← t+ 1 and go to step 2.
end procedure

Algorithm 2 Non-convex conditional gradient sliding
(NCGS)

Input: Step size αk, λk, βk, smoothness parameter L.
Initialization: θag0 = θ0, k=1.
for k = 1, ..., N do

update: θmdk = (1− αk)θagk−1 + αkθk−1

update: θk = condg(∇F (θmdk ), θk−1, λk, ηk)
update:
option I: θagk = θmdk − βkg̃(θk−1,∇F (θmdk ), λk, ηk),
where g̃(θk−1,∇F (θmdk ), λk, ηk) := θk−1−θk

λk
.

option II: θagk = condg(∇F (θmdk ), θmdk , βk, χk).
end for

we set αk = 2
k+1 , βk = 1

2L , λk = βk, ηk = 1
N in option I

of Algorithm 2, we have

min
k=1,...,N

‖g(θk−1,∇F (θmdk ), λk)‖2

≤ 12L(F (θ0)− F (θ∗)) + 16L

N
,

(3)

where θ∗ is the optimal solution of equation 1.

In option II, we set αk = 2
k+1 , βk = 1

2L ,λk = kβk/2,
ηk = 1

N ,χk = 1
N , M is the positive constant defined in our

section 2.2, then we have

min
k=1,...,N

‖g(θk−1,∇F (θmdk ), βk)‖2

≤ 192L2‖θ0 − θ∗‖2

N2(N + 1)
+

48lL

N
(‖θ∗‖2 + 2M2) +

96L

N
.

(4)

Some remarks are in order:

• Notice in the procedure of condg, we solve the sub
problem with accuracy η. The choice of η is important:
If η is chosen too small, we need too many calls on LO.
On the other hand, if η is too large, the algorithm may
not converge.



Non-convex Conditional Gradient Sliding

• The FO complexities of option I and II are order wise
equivalent, namely, O(1/ε).

• We now examine each terms of the convergence
guarantee of Option II: the term L2‖θ0−θ∗‖2

N2(N+1) corre-
sponds to the convex part of the function. The term
Ll
N (‖θ∗‖2 + 2M2) corresponds to the non-convex part
of the function. And the last term L/N corresponds to
the procedure of condg.

• When the objective function a has finite-sum form with
n term, the IFO complexity of NCGS is O(nε ). We
will improve this complexity using stochastic variance
reduction techniques in Section 5.

Theorem 1 presents the convergence in terms of iteration
number, which we transfer to the FO and LO complexity in
the following corollary.

Corollary 1. Under the same condition of theorem 1. In
option I and II of algorithm 2, to achieve the accuracy ε, the
FO complexity is O(1/ε) and the LO complexity is O( 1

ε2 ).

• Our algorithm has the same LO complexity with FW
but improves the FO complexity from O( 1

ε2 ) to O( 1
ε ).

4. Stochastic non-convex conditional gradient
sliding

In this section we consider the following stochastic opti-
mization problem:

min
θ∈Ω

F (θ) := Eξf(θ, ξ). (5)

4.1. Algorithm

A natural way to extend batch NCGS method to the stochas-
tic case is to replace the exact gradient∇F (θ) in Algorithm
2 by the stochastic gradient G(θ, ξ). However it is shown in
Ghadimi & Lan (2016) that mini-batch stochastic gradient
is necessary to guarantee the convergence. We incorporate
this technique in the stochastic NCGS . In particular, we
define Ḡk = 1

mk

∑mk
i=1G(xmdk , ξk,i).

Notice, by our assumption in Section 2, we have

EḠk =
1

mk

mk∑
i=1

EG(θmdk , ξk,i) = ∇F (θmdk ),

and

E‖Ḡk −∇F (θmdk )‖2 ≤ σ2

mk
. (6)

We present the stochastic NCGS in Algorithm 3. Notice
we have a randomized termination criterion on the total
iteration R.

Algorithm 3 Stochastic Non-convex conditional gradient
sliding

Input: Step size αk, λk, βk, smoothness parameter L, a
probability mass function PR(·) with Prob{R = k} =
pk, k = 1, ..., N .
Initialization: θag0 = θ0, k=1.
Let R be a random variable chosen according to PR(·).
for k = 1, ..., R do

update: θmdk = (1− αk)θagk−1 + αkθk−1.
update: θk = condg(Ḡk, θk−1, λk, ηk).
update: θagk = condg(Ḡk, θ

md
k , βk, χk).

end for

4.2. Theoretical Result

In the following theorem, we carefully choose the value
of step size and the tolerance in the procedure condg to
guarantee the convergence of the algorithm.

Theorem 2. Suppose F (θ) is L smooth and l lower smooth,
σ2 is the variance defined in Section 2. In Algorithm 3,
set αk = 2

k+1 , βk = 1
2L , λk = kβk

2 , ηk = χk = 1
N and

mk = k , and set pk =
Γ−1
k∑N

k=1 Γ−1
k

, where Γk = 2
k(k+1) ,

then we have

E[‖g(θmdR , ḠR, βR)‖2]

≤192L
(4L‖θ0 − θ∗‖2

N2(N + 1)
+

l

N
(‖θ∗‖2 + 2M2) +

1

N
+

3σ2

2LN

)
,

(7)

where θ∗ is the optimal solution of equation 5.

Remarks:

• Compare this result with its batch counterpart, namely,
Theorem 1, we see there is a additional term cσ2

N due
to the variance of the gradient.

• The mini-batch size is set as mk = k, i.e., increasing
with the iteration of the algorithm. This is chosen to
guarantee the convergence with a fast rate.

Theorem 2 implies the following corollary of LO and SFO
complexity.

Corollary 2. Under the same setting as Theorem 2, SFO
and LO complexities in algorithm 3 are O(1/ε2) and
O(1/ε2) respectively.

• Notice in algorithm 3, we use mini-batches to calculate
Ḡk.Thus even the number of iteration of the stochastic
non-convex conditional gradient sliding is the same as
the batch one, it needs more calls of SFO.



Non-convex Conditional Gradient Sliding

• To the best of our knowledge, the corresponding Frank-
Wolfe method in Reddi et al. (2016b) has SFO com-
plexityO(1/ε

8
3 ). Our algorithm has the same LO com-

plexity while improves the SFO complexity.

5. Variance reduction nonconvex conditional
gradient sliding in finite-sum setting

The stochastic variance reduction technique has been very
successful in optimizing convex functions in the form of
finite sums. In this section we incorporate it with our non-
convex conditional gradient sliding and propose NCGS-VR
in Algorithm 4.

5.1. Algorithm

We consider minimizing a finite sum problem as the follow-
ing

min
x∈Ω

F (θ) =
1

n

n∑
i=1

fi(θ), (8)

where each fi is possibly non-convex, and smooth with pa-
rameter L. If we view the finite-sum problem as a special
case of batch problem, then use Algorithm 2, we have IFO
complexity O(nε ). Variance reduction technique has been
proposed for finite sum problem to reduce the dependence
of IFO complexity on number of components n. We in-
corporate this technique into NCGS. At the out looper, we
calculate the full gradient and use it in the inner loop to
reduce the variance of the stochastic gradient. Then we call
the procedure condg. As we show below our new algorithm

(Algorithm 4) achieves IFO complexity O(n+ n
2
3

ε ). To the
best of our knowledge, this outperforms Frank-Wolfe type
algorithms for the non-convex finite-sum problem. Notice
in Algorithm 4, different from Algorithm 2 and 3, we do not
apply Nestrerov’s acceleration step. Whether the accelera-
tion step can further improve the rate of convergence (e.g.,
exploit the lower smoothness) in this setting is left for future
research.

5.2. Theoretical result

Theorem 3. Suppose fi(θ) is non-convex and L smooth,
set b = n

2
3 in Algorithm 4, λt = 1

3L , m = n
1
3 and T is a

multiple of m, η = 1
T . Then for output θa we have:

E[‖g(θα,∇F (θα), λ)‖2] 6
18L(f(θ0)− f(θ?) + 1)

T

where θ? is an optimal solution to (8).

• If b = 1 and m = n, then vst reduces to the regular
stochastic variance reduced gradient. However this
means in every step we sample one data point and then
call condg, which may deteriorate the performance of
the algorithm.

Algorithm 4 Variance reduction Non-convex conditional
gradient sliding (NCGS-VR)

Input: θ̃0 = θ0
m = θ0 ∈ Rd, epoch lengthm, stepsize λt,

tolerance η, minibatch size b, iteration limit T , S = T
m .

for s = 0, ..., S − 1 do
θs+1

0 = θsm.
gs+1 = 1

n

∑n
i=1∇fi(θ̃s).

for t = 0, . . . ,m− 1 do
Pick It uniformly from {1, . . . , n} with replacement
such that |It| = b.
vs+1
t = 1

b

∑
i∈It(∇fit(θ

s+1
t )−∇fit(θ̃s)) + gs+1.

θs+1
t+1 = condg(vs+1

t , θs+1
t , λt, η).

end for
θ̃s+1 = θs+1

m

end for
Output: θα is chosen uniformly at random from
{{θs+1

t }m−1
t=0 }

S−1
s=0 .

• The minibatch gradient with size b = n2/3 and itera-
tion lengthm = n1/3 are carefully chosen to guarantee
the convergence of the algorithm and fast rate.

Theorem 3 leads to the following results on IFO and LO
complexity.

Corollary 3. Set the parameters set as in Theorem 3, the

IFO and LO complexities of Algorithm 4 areO(n+ n
2
3

ε ) and
O( 1

ε2 ) respectively to achieve E[‖g(θα,∇F (θα), λ)‖2] 6
ε.

• The stochastic variance reduction Frank-Wolfe method
has the IFO complexityO(n+ n2/3

ε2 ), while our method

has the IFO complexity O(n + n2/3

ε ). The LO com-
plexity for both algorithms are the same.

6. Simulation Result
In this section we test our algorithm in the batch (NCGS)
and finite-sum setting (NCGS-VR) and compare them with
Frank-Wolfe counterparts (FW and SVFW (Reddi et al.,
2016b)), as well as SVRG, a projection based algorithm.

6.1. Synthetic dataset

In this section, we first use a toy example on matrix comple-
tion to examine the convergence of the gradient mapping,
which is the convergence criteria for the algorithm. Notice
that in practice, the objective function value is typically a
more relevant metric, and hence we report such results using
a multitask learning problem.



Non-convex Conditional Gradient Sliding

6.1.1. MATRIX COMPLETION

We consider a toy matrix completion problem for our simu-
lation and observe the magnitude of gradient mapping. In
particular, we optimize the following trace norm constrained
non-convex problem using the candidate algorithms.

min
θ

∑
(i,j)∈Ω

fi,j(θ) s.t. ‖θ‖∗ ≤ R, (9)

where Ω is the set of observed entries, fi,j =
(
1 −

exp(− (θi,j−Yi,j)2
σ )

)
, Yi,j is the observation of (i, j)’s en-

try, ‖ · ‖∗ is the nuclear norm. Here fi,j is a smoothed `0
loss with enhanced robustness to outliers in the data, thus
it can solve sparse+low rank matrix completion in Chan-
drasekaran et al. (2009). Obviously, fi,j is non-convex and
satisfies assumptions in our algorithm 2,3,4. We compare
our non-convex conditional gradient sliding method with
the Frank-Wolfe method in Fig 1. Particularly, we report the
result of the batch setting in the left panel. The dimension
of the matrix is 200 × 200, rank r = 5, the probability of
observing each entry is 0.1. The sparse noise is sampled uni-
formly from [−3, 3]. Each entry is corrupted by noise with
probability 0.05. We set σ = 1, R = 5 in Problem (9). We
observe that our algorithm 2 (NCGS) clearly outperforms
the non-convex Frank-Wolfe method (FW). In the right
panel, we treat Problem (9) as a finite-sum problem, and
thus solve it using Algorithm 4 (NCGS-VR) and compare
the performance with the SVFW (Reddi et al., 2016b). We
set the dimension of the matrix as 400× 400, rank r = 8,
σ = 1, R = 8. The way to generate sparse noise and the
probability to observe the entry are same with the setting
of batch case. We observe that our NCGS-VR uses around
50 cpu-time to achieve 10−3 accuracy of squared gradient
mapping, while SVFW needs more than 300 cpu-time.

0 10 20 30 40
cpu time

10−4

10−3

10−2

10−1

100

sq
ua

re
d

gr
ad

ie
nt

m
ap

pi
ng

FW
NCGS

0 50 100 150 200 250 300
cpu time

10−3

10−2

10−1

100

sq
ua

re
d

gr
ad

ie
nt

m
ap

pi
ng

SVFW
NCGS-VR

Figure 1. Left figure: NCGS and non-convex Frank-Wolfe method.
Right figure: non-convex stochastic variance reduction Frank-
Wolfe and NCGS-VR. The x-axis is the cpu-time with unit second,
y-axis is the squared gradient mapping.

Notice in this example, NCGS-VR is not necessary faster
than NCGS, since computing the gradient is very cheap.

6.1.2. NON-CONVEX MULTITASK LEARNING

In this section, we consider the non-convex multitask learn-
ing problem and compare the performance of NCGS, NCGS-

VR, non-convex Frank-Wolfe (FW) (Lacoste-Julien, 2016),
stochastic variance reduction Frank-wolfe (SVFW) (Reddi
et al., 2016b) and SVRG (Johnson & Zhang, 2013). In
SVRG, we update θ and then project it back to the feasible
set of the nuclear norm constraint. In the experiment we
apply the mini-batch technique on SVRG. The reason is that
in regular SVRG (with mini-batch size =1) it samples one
data point and then calls the the procedure condg, result-
ing in very slow convergence. We choose the mini-batch
b = n2/3 and m = n1/3 as that in Reddi et al. (2016a).

We first generate m different covariance matrices Σi, i =
1, ...,m, according to Σi = UiDiU

T
i , where Di ∈ Rd×d is

a diagonal matrix with each entry drawn uniformly from
(1, 2), and Ui ∈ Rd×d is a random matrix with each entry
drawn from N(0, 1). The feature vectors of task (i, k) are
generated from the Normal distribution N (0,Σi + ∆Σik),
k = 1, ...K, where ∆Σik = Ui∆DiU

T
i , ∆Di is a small

perturbation of Di uniformly sampled from (0, 0.1) . Thus
for each i, there areK similar tasks. Totally we havem×K
tasks, where some of them are similar and others may be
different. The target yi,kj in task (i, k)is 0 or 1 which is
sampled from the distribution P(yi,kj = 1|xi,kj = x) =

1
1+exp(〈θi∗,x〉+bi∗) , where θi∗, bi∗ is the true parameter and
each entry of them (-1 or 1) are sampled with equal proba-
bility . In each task we generate n such data points. We use
Equation (2) as our objective function, where we choose a
loss function l(y, θTx + b) = (y − 1

1+exp(θT x+b)
)2. This

non-convex loss function has been used in (Mei et al., 2016;
Nguyen & Sanner, 2013) and enjoys better accuracy in con-
trast to convex losses (e.g., logistic loss). NCGS, NCGS-VR,
FW, SVFW and SVRG are compared in this experiment.

We choose different setting onm,K, n and report the results
in Figure 2. In all experiment, the dimension of feature is
set as d = 300 and we choose R = 10 in Equation (2).

We observe from Figure 2 that although we already adapt
SVRG into the mini-batch version to speed up the converges,
its convergence is still very slow due to large amount of com-
putation in singular value decomposition when performing
the projection onto the nuclear norm ball. We also observe
that in all experiments, the proposed non-convex conditional
gradient sliding methods outperfom their respective coun-
terparts of the Frank-wolfe method. Particularly, NCGS-VR
performs the best and is followed by NCGS , FW and SVFW.
When the sample size is large (the right panel where the
sample size is 30× 10× 3000), our method is significantly
better than the Frank-Wolfe method.

6.2. Real datasets

We test our algorithms on three real datasets: Aloi
(n=108000, d=128) (Geusebroek et al., 2005), Covertype
(n=581012, d=54) (Blackard & Dean, 1999) and Sensorless



Non-convex Conditional Gradient Sliding

0 10 20 30 40 50 60 70 80

cpu time

10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

ob
je

ct
iv

e 
fu

nc
tio

n

NCGS-VR
FW
SVFW
NCGS
SVRG

0 10 20 30 40 50 60 70 80

cpu time

6

6.5

7

7.5

ob
je

ct
iv

e 
fu

nc
tio

n

NCGS-VR
FW
SVFW
NCGS
SVRG

0 10 20 30 40 50 60 70 80

cpu time

6.4

6.6

6.8

7

7.2

7.4

7.6

ob
je

ct
iv

e 
fu

nc
tio

n

NCGS-VR
FW
SVFW
NCGS
SVRG

Figure 2. The X-axis is the cputime, the y-axis is the objective function. In the left figure, m = 50, k = 5, and n = 1000. In the middle
figure, we have m = 30, k = 5, and n = 1500. In the right figure, m = 30, k = 10, and n = 3000.

0 5 10 15 20 25 30

cpu time

19

20

21

22

23

24

25

ob
je

ct
iv

e 
fu

nc
tio

n

NCGS-VR
FW
SVFW
NCGS
SVRG

0 5 10 15 20 25 30

cpu time

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

ob
je

ct
iv

e 
fu

nc
tio

n

NCGS-VR
FW
SVFW
NCGS
SVRG

0 5 10 15 20 25 30 35 40 45 50

cpu time

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

ob
je

ct
iv

e 
fu

nc
tio

n

NCGS-VR
FW
SVFW
NCGS
SVRG

Figure 3. The X-axis is the cputime, the y-axis is the objective function. From the left to right, the dataset is aloi, covetype and Sensorless
Drive Diagnosis.

Drive Diagnosis Data Set (n=58509, d=49) (Bator, 2015).
We test the multitask learning task in Equation 2. For all
dataset, we normalize the feature to the range [−1, 1]. Note
these dataset have multi-classes. We generate tasks in the
following way. For each class of a dataset, we generate
five noisy versions of them by adding the small noise on
the feature . Then we set the labels of these data to ones.
We randomly sample same amount data from other classes
and generate the noisy version of them in the same way,
and then set the labels of them to zeros. Each version of
data with label ones and zeros is one individual task in our
multi-task learning problem. We report the experimental
results in Figure 3. Same as before, we use the mini-batch
version of SVRG.

In all experiments, SVRG converges very slowly due to
heavy computation cost of the projection onto the nuclear
norm ball. In the left figure, the performance of NCGS-
VR is best and then is followed by NCGS. The non-convex
Frank-Wolfe method converges fast at beginning then slow
down, while SVFW performs in the opposite way. In the
mid figure, NCGS-VR works fastest and is followed by
NCGS, SVFW, and FW. In the right figure, the performance
of NCGS-VR and NCGS are almost identical, and both
outperform the counterpart of the Frank-Wolfe method.

7. Conclusion and future work
In this paper, we propose non-convex conditional gradient
sliding methods to solve the batch, stochastic and finite-sum
non-convex problems with complex constraints, such that
projecting onto the feasible set is time consuming. Our algo-
rithms surpass state of the art Frank-Wolfe type method both
theoretically and empirically. One future research direction
is to consider the accelerated steps in the proposed NCGS-
VR algorithm, in hope to further improve the convergence
speed.

References
Allen-Zhu, Z. and Hazan, E. Variance reduction for faster

non-convex optimization. In Proceedings of The 33rd
International Conference on Machine Learning, pp. 699–
707, 2016.

Allen-Zhu, Z. and Yuan, Y. Improved svrg for non-strongly-
convex or sum-of-non-convex objectives. In Proceedings
of The 33rd International Conference on Machine Learn-
ing, pp. 1080–1089, 2016.

Bator, M. UCI machine learning repository, 2015. URL
http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml


Non-convex Conditional Gradient Sliding

Bertsekas, D. P. Nonlinear programming. Athena scientific
Belmont, 1999.

Blackard, J. A. and Dean, D. J. Comparative accuracies
of artificial neural networks and discriminant analysis in
predicting forest cover types from cartographic variables.
Computers and electronics in agriculture, 24(3):131–151,
1999.

Candes, E. J., Li, X., and Soltanolkotabi, M. Phase re-
trieval via wirtinger flow: Theory and algorithms. IEEE
Transactions on Information Theory, 61(4):1985–2007,
2015.

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky,
A. S. Sparse and low-rank matrix decompositions. IFAC
Proceedings Volumes, 42(10):1493–1498, 2009.

Collins, M., Globerson, A., Koo, T., Carreras, X., and
Bartlett, P. L. Exponentiated gradient algorithms for
conditional random fields and max-margin markov net-
works. Journal of Machine Learning Research, 9(Aug):
1775–1822, 2008.

Dudik, M., Harchaoui, Z., and Malick, J. Lifted coordinate
descent for learning with trace-norm regularization. In
Artificial Intelligence and Statistics, pp. 327–336, 2012.

Frank, M. and Wolfe, P. An algorithm for quadratic pro-
gramming. Naval research logistics quarterly, 3(1-2):
95–110, 1956.

Garber, D. and Hazan, E. A linearly convergent condi-
tional gradient algorithm with applications to online and
stochastic optimization. arXiv preprint arXiv:1301.4666,
2013.

Garber, D. and Hazan, E. Faster rates for the frank-wolfe
method over strongly-convex sets. In ICML, pp. 541–549,
2015.

Geusebroek, J.-M., Burghouts, G. J., and Smeulders, A. W.
The amsterdam library of object images. International
Journal of Computer Vision, 61(1):103–112, 2005.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Ghadimi, S. and Lan, G. Accelerated gradient methods
for nonconvex nonlinear and stochastic programming.
Mathematical Programming, 156(1-2):59–99, 2016.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Guzmán, C. and Nemirovski, A. On lower complexity
bounds for large-scale smooth convex optimization. Jour-
nal of Complexity, 31(1):1–14, 2015.

Jaggi, M. Revisiting frank-wolfe: Projection-free sparse
convex optimization. In ICML (1), pp. 427–435, 2013.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances
in neural information processing systems, pp. 315–323,
2013.

Lacoste-Julien, S. Convergence rate of frank-wolfe for
non-convex objectives. arXiv preprint arXiv:1607.00345,
2016.

Lacoste-Julien, S. and Jaggi, M. On the global linear conver-
gence of frank-wolfe optimization variants. In Advances
in Neural Information Processing Systems, pp. 496–504,
2015.

Lan, G. The complexity of large-scale convex program-
ming under a linear optimization oracle. department of
industrial and systems engineering, university of florida,
gainesville. Technical report, Florida. Technical Report,
2013.

Lan, G. and Zhou, Y. Conditional gradient sliding for convex
optimization. SIAM Journal on Optimization, 26(2):1379–
1409, 2016.

Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., and Bach,
F. R. Supervised dictionary learning. In Advances in
neural information processing systems, pp. 1033–1040,
2009.

Mei, S., Bai, Y., and Montanari, A. The landscape of
empirical risk for non-convex losses. arXiv preprint
arXiv:1607.06534, 2016.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2013.

Nguyen, T. and Sanner, S. Algorithms for direct 0–1 loss
optimization in binary classification. In International
Conference on Machine Learning, pp. 1085–1093, 2013.

Pong, T. K., Tseng, P., Ji, S., and Ye, J. Trace norm reg-
ularization: Reformulations, algorithms, and multi-task
learning. SIAM Journal on Optimization, 20(6):3465–
3489, 2010.

Reddi, S. J., Hefny, A., Sra, S., Poczos, B., and Smola, A.
Stochastic variance reduction for nonconvex optimization.
In Proceedings of The 33rd International Conference on
Machine Learning, pp. 314–323, 2016a.

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Non-convex Conditional Gradient Sliding

Reddi, S. J., Sra, S., Póczos, B., and Smola, A. Stochas-
tic frank-wolfe methods for nonconvex optimization.
In Communication, Control, and Computing (Allerton),
2016 54th Annual Allerton Conference on, pp. 1244–1251.
IEEE, 2016b.

Reddi, S. J., Sra, S., Póczos, B., and Smola, A. J. Proximal
stochastic methods for nonsmooth nonconvex finite-sum
optimization. In Advances in Neural Information Pro-
cessing Systems, pp. 1145–1153, 2016c.

Shalev-Shwartz, S. Sdca without duality, regularization,
and individual convexity. In Proceedings of The 33rd
International Conference on Machine Learning, pp. 747–
754, 2016.

Xiao, L. and Zhang, T. A proximal stochastic gradient
method with progressive variance reduction. SIAM Jour-
nal on Optimization, 24(4):2057–2075, 2014.

Zhang, X., Schuurmans, D., and Yu, Y.-l. Accelerated train-
ing for matrix-norm regularization: A boosting approach.
In Advances in Neural Information Processing Systems,
pp. 2906–2914, 2012.



Appendix

A. Proof of Theorems and Corollaries
In this section, we present all proofs of theorems and corollaries.

A.1. Proof of Batched Setting

We start with the proof of Theorem 1.

proof of option I in Theorem 1. Define ∆k = ∇F (θk−1)−∇F (θmdk )

F (θk) ≤ F (θk−1) + 〈∇F (θk−1), θk − θk−1〉+
L

2
‖θk − θk−1‖2

= F (θk−1) + 〈∇F (θmdk ), θk − θk−1〉+
L

2
‖θk − θk−1‖2 + 〈∆k, θk − θk−1〉

(10)

Now we use the termination condition of procedure condg

Recall we have θk = condg(∇F (θmdk−1), θk−1, λk, ηk).

The termination condition is

〈∇F (θmdk−1) +
1

λk
(θk − θk−1), θk − u〉 ≤ ηk,∀u ∈ Ω.

We choose u = θk−1 and have

〈∇F (θmdk−1), θk − θk−1〉 ≤ −
1

λk
‖θk − θk−1‖2 + ηk. (11)

Now we substitute the upper bound of 〈∇F (θmdk−1), θk − θk−1〉 in (11) for the terms in (10) and get

F (θk) ≤ F (θk−1)− 1

λk
‖θk − θk−1‖2 +

L

2
‖θk − θk−1‖2 + 〈∆k, θk − θk−1〉+ ηk

≤ F (θk−1)− 1

λk
‖θk − θk−1‖2 +

L

2
‖θk − θk−1‖2 + ‖∆k‖‖θk − θk−1‖+ ηk.

(12)

where the second inequality holds from the Cauchy-Schwarz inequality.

Now we prepare to bound term ‖∆k‖, recall that ∆k = ∇F (θk−1)−∇F (θmdk ).

‖∆k‖ = ‖∇F (θk−1)−∇F (θmdk )‖ ≤ L‖θk−1 − θmdk ‖ = L(1− αk)‖θagk−1 − θk−1‖.

Replace ‖∆k‖ by this upper bound in (12), we get
11



Non-convex Conditional Gradient Sliding

F (θk) ≤ F (θk−1)− 1

λk
‖θk − θk−1‖2 +

L

2
‖θk − θk−1‖2 + L(1− αk)‖θagk−1 − θk−1‖‖θk − θk−1‖+ ηk

≤ F (θk−1) + (
L

2
− 1

λk
)‖θk − θk−1‖2 +

L

2
‖θk − θk−1‖2 +

L(1− αk)2

2
‖θagk−1 − θk−1‖2 + ηk

≤ F (θk−1) + (L− 1

λk
)‖θk − θk−1‖2 +

L(1− αk)2

2
‖θagk−1 − θk−1‖2 + ηk,

(13)

where the second inequity holds from the fact a2 + b2 ≥ 2ab.

By the algorithm, we have

θagk − θk
=θmdk − βkg̃(θk−1,∇F (θmdk ), λk, ηk)− θk
=(1− αk)θagk−1 + αkθk−1 − βkg̃(θk−1,∇F (θmdk ), λk, ηk)−

(
θk−1 − λkg̃(θk−1,∇F (θmdk ), λk, ηk)

)
=(1− α)(θagk−1 − θk−1) + (λk − βk)g̃(θk−1,∇F (θmdk ), λk, ηk).

(14)

Now we apply Lemma 2 on θagk − θk and have

θagk − θk = Γk

k∑
τ=1

(
λτ − βτ

Γτ
)g̃(θτ−1,∇F (θmdτ ), λτ , ητ ).

Now using Jensens’s inequality and the fact that

k∑
τ=1

ατ
Γτ

=
α1

Γ1
+

k∑
τ=2

1

Γτ
(1− Γτ

Γτ−1
) =

1

Γk
,

we have

‖θagk − θk‖
2 = ‖Γk

k∑
τ=1

(
λτ − βτ

Γτ
)g̃(θτ−1,∇F (θmdk ), λτ , ητ )‖2

= ‖Γk
k∑
τ=1

ατ
Γτ

(
λτ − βτ
ατ

)g̃(θτ−1,∇F (θmdk ), λτ , ητ )‖2

≤ Γk

k∑
τ=1

ατ
Γτ
‖(λτ − βτ

ατ
)g̃(θτ−1,∇F (θmdk ), λτ , ητ )‖2

= Γk

k∑
τ=1

(λτ − βτ )2

Γτατ
‖g̃(θτ−1,∇F (θmdk ), λτ , ητ )‖2.

(15)

Now replace above upper bound in (13) we have

F (θk) ≤ F (θk−1)− λk(1− Lλk)‖g̃(θk−1,∇F (θmdk ), λk, ηk)‖2

+
L(1− αk)2

2
Γk

k−1∑
τ=1

(λτ − βτ )2

Γτατ
‖g̃(θτ−1,∇F (θmdk ), λτ , ητ )‖2 + ηk

≤ F (θk−1)− λk(1− Lλk)‖g̃(θk−1,∇F (θmdk ), λk, ηk)‖2+

LΓk
2

k∑
τ=1

(λτ − βτ )2

Γτατ
‖g̃(θτ−1,∇F (θmdk ), λτ , ητ )‖2 + ηk.

(16)



Non-convex Conditional Gradient Sliding

Now sum over both side, we obtain

F (θN ) ≤ F (θ0)−
N∑
k=1

λk(1− Lλk)‖g̃(θk−1,∇F (θmdk ), λk, ηk)‖2

+

N∑
k=1

LΓk
2

k∑
τ=1

(λτ − βτ )2

Γτατ
‖g̃(θτ−1,∇F (θmdk ), λτ , ητ )‖2 +

N∑
k=1

ηk

= F (θ0)−
N∑
k=1

λk(1− Lλk)‖g̃(θk−1,∇F (θmdk ), λk, ηk)‖2

+
L

2

N∑
k=1

(λk − βk)2

Γkαk

( N∑
τ=k

Γτ
)
‖g̃(θk−1,∇F (θmdk ), λk, ηk)‖2 +

N∑
k=1

ηk

= F (θ0)−
N∑
k=1

λkCk‖g̃(θk−1, λk, ηk)‖2 +

N∑
k=1

ηk,

(17)

where Ck = 1− Lλk − L(λk−βk)2

2αkΓkλk
(
∑N
τ=k Γτ ).

Now rearrange terms and using the fact that F (θ∗) ≤ F (θN ), we obtain

min
k=1,...,N

‖g̃(θk−1,∇F (θmdk ), λk, ηk)‖2
( N∑
k=1

λkCk
)
≤ F (θ0)− F (θ∗) +

N∑
k=1

ηk.

Recall αk = 2
k+1 , βk = 1/(2L), λk ∈ [βk, (1 + αk

4 )βk], ηk = 1
N . In this setting, we have

Γk =
2

k(k + 1)
,

N∑
τ=k

Γτ =

N∑
τ=k

2

τ(τ + 1)
≤ 2

k
. (18)

Since 0 ≤ λk − βk ≤ αkβk/4.

We got Ck ≥ 1− L
[
(1 + αk

4 )βk +
α2
kβ

2
k

16kαkΓkβk

]
= 1− βkL(1 + αk

4 + 1
16 ) ≥ 1− βkL 21

16 = 11/32.

So we have λkCk ≥ 11βk
32 ≥

1
6L .

min
k=1,...,N

‖g̃(θk−1,∇F (θmdk ), λk, ηk)‖2 ≤ 6L(F (θ0))− F (θ∗) + 1)

N

The next step is to bound the distance of approximated gradient mapping and true gradient mapping, i.e.,

‖g̃(θk−1,∇F (θmdk ), λk, ηk)− g(θk−1,∇F (θmdk ), λk)‖2.

Using Lemma 1, we obtain

‖g̃(θk−1,∇F (θmdk ), λk, ηk)− g(θk−1,∇F (θmdk ), λk)‖2 ≤ ηk/λk ≤ 2L
N .

Thus we have

min
k=1,...,N

‖g(θk−1,∇F (θmdk ), λk)‖2 ≤ 12L(F (θ0)− F (θ∗)) + 16L

N
.



Non-convex Conditional Gradient Sliding

Proof of option II in Theorem 1. Note that the procedure condg(∇F (θmdk ), θk−1, λk, ηk)actually solve the following prob-
lem with tolerance ηk.

min
θ∈Ω
〈∇F (θmdk ), θ〉+

1

2λk
‖θk−1 − θ‖2.

Using strong convexity of above objective function (w.r.t. θ), we have ∀θ ∈ Ω

〈∇F (θmdk ), θ〉+
1

2λk
‖θk−1 − θ‖2 − 〈∇F (θmdk ), θk〉 −

1

2λk
‖θk−1 − θk‖2

≥〈∇F (θmdk ) +
1

λk
(θk − θk−1), θ − θk〉+

1

2λk
‖θ − θk‖2.

(19)

Recall the termination condition

〈∇F (θmdk ) +
1

λk
(θk − θk−1), θk − θ〉 ≤ ηk,∀θ ∈ Ω,

and rearrange terms, we have

〈∇F (θmdk ), θk − θ〉 ≤
1

2λk

(
‖θk−1 − θ‖2 − ‖θk − θ‖2 − ‖θk−1 − θk‖2

)
+ ηk. (20)

Apply same argument on θagk , we have

〈∇F (θmdk ), θagk − θ〉 ≤
1

2βk

(
‖θmdk − θ‖2 − ‖θagk − θ‖

2 − ‖θagk − θ
md
k ‖2

)
+ χk. (21)

Now choose θ = αkθk + (1− αk)θagk−1 in (21) and we have

〈F (θmdk ), θagk − αkθk − (1− αk)θagk−1〉 ≤
1

2βk

(
‖θmdk − αkθk − (1− αk)θagk−1‖

2 − ‖θagk − θ
md
k ‖2

)
=

1

2βk

(
α2
k‖θk − θk−1‖2 − ‖θagk − θ

md
k ‖2

)
+ χk.

(22)

Add (22) and αk×(20), we have

〈∇F (θmdk ), θagk − αkθ − (1− αk)θagk−1〉

≤ αk
2λk

(‖θk−1 − θ‖2 − ‖θk − θ‖2) +
αk(λkαk − βk)

2βkλk
‖θk − θk−1‖2 −

1

2βk
‖θagk − θ

md
k ‖2

≤ αk
2λk

(‖θk−1 − θ‖2 − ‖θk − θ‖2)− 1

2βk
‖θagk − θ

md
k ‖2 + αkηk + χk,

(23)

where the last inequality uses the assumption λkαk ≤ βk.

Note that

αk(F (θmdk )− F (θ)) + (1− αk)(F (θmdk )− F (θagk−1))

≤αk(〈∇F (θmdk ), θmdk − θ〉+
l

2
‖θ − θmdk ‖2) + (1− αk)

(
〈∇F (θmdk ), θmdk − θagk−1〉+

l

2
‖θmdk − θagk−1‖

2
)

=〈∇F (θmdk ), θmdk − αkθ − (1− αk)θagk−1〉+
αkl

2
‖θ − θmdk ‖2 +

(1− αk)l

2
‖θmdk − θagk−1‖

2

=〈∇F (θmdk ), θmdk − αkθ − (1− αk)θagk−1〉+
αkl

2
‖θ − θmdk ‖2 +

α2
k(1− αk)l

2
‖θagk−1 − θk−1‖2,

(24)



Non-convex Conditional Gradient Sliding

and
F (θagk ) ≤ F (θmdk ) + 〈∇F (θmdk ), θagk − θ

md
k 〉+

L

2
‖θagk − θ

md
k ‖2. (25)

Combine above equation with (23) and (24), we have

F (θagk )− F (θ) ≤ (1− αk)F (θagk−1)− (1− αk)F (θ)− 1

2
(

1

βk
− L)‖θagk − θ

md
k ‖2

+
αk
2λk

(‖θk−1 − θ‖2 − ‖θk − θ‖2) +
lαk
2
‖θmdk − θ‖2 +

lα2
k(1− α)k

2
‖θagk−1 − θk−1‖2 + αkηk + χk.

(26)

Now we apply Lemma 2 and have

F (θagN )− F (θ)

ΓN
+

N∑
k=1

1− Lβk
2βkΓk

‖θagk − θ
md
k ‖2

≤‖θ0 − θ‖2

2λ1
+
l

2

N∑
k=1

αk
Γk

(
‖θmdk − θ‖2 + αk(1− αk)‖θagk−1 − θk−1‖2

)
+

N∑
k=1

αk
Γk
ηk +

N∑
k=1

χk
Γk
.

(27)

Now set θ = θ∗ in above equation, and notice

‖θmdk − θ∗‖2 + αk(1− αk)‖θagk−1 − θk−1‖2

≤2
(
‖θ∗‖+ ‖θmdk ‖2 + αk(1− αk)(‖θagk−1‖

2 + ‖θk−1‖2)
)

≤2
(
‖θ∗‖2 + (1− αk)‖θagk−1‖

2 + αk‖θk−1‖2 + αk(1− αk)(‖θagk−1‖
2 + ‖θk−1‖2)

)
≤2(‖θ∗‖2 + ‖θagk−1‖

2 + ‖θk−1‖2)

≤2(‖θ∗‖2 + 2M2),

(28)

and recall the definition of Γk and (18) we obtain

F (θagN )− F (θ)

ΓN
+

N∑
k=1

1− Lβk
2βkΓk

‖θagk − θ
md
k ‖2

≤‖θ0 − θ∗‖2

2λ1
+ l

N∑
k=1

αk
Γk

(‖θ∗‖2 + 2M2) +

N∑
k=1

χk
Γk

+

N∑
k=1

αk
Γk
ηk

≤‖θ0 − θ∗‖2

2λ1
+

l

ΓN
(‖θ∗‖2 + 2M2) +

N∑
k=1

χk
Γk

+

N∑
k=1

αk
Γk
ηk.

(29)

Now using the setup of χk, ηk, γk in the theorem 2 we obtain

min
k=1,...,N

‖θagk − θ
md
k ‖2 ≤

6

L

(4L‖θ0 − θ∗‖2

N2(N + 1)
+

l

N
(‖θ∗‖2 + 2M2) +

1

N

)
.

Define approximated gradient mapping g̃(θk−1,∇F (θmdk ), βk, χk) :=
θmdk −θagk

βk
.

Thus mink=1,...,N ‖g̃(θk−1,∇F (θmdk ), βk, χk)‖2 ≤ 24L
( 4L‖θ0−θ∗‖2
N2(N+1) + l

N (‖θ∗‖2 + 2M2) + 1
N

)
.



Non-convex Conditional Gradient Sliding

Using Lemma 1, we have

‖g̃(θk−1,∇F (θmdk ), βk, χk)− g(θk−1,∇F (θmdk ), βk)‖2 ≤ χk/βk,
thus we obtain

min
k=1,...,N

‖g(θk−1,∇F (θmdk ), βk)‖2 ≤ 48L
(4L‖θ0 − θ∗‖2

N2(N + 1)
+

l

N
(‖θ∗‖2 + 2M2) +

2

N

)
.

Proof of corollary 1. Note that the procedure condg(∇F (θmdk ), θk−1, λk, ηk) actually solves the following problem using
frank-wolfe method with tolerance ηk. In option I, In each call of condg, we need 1

2λk
/ηk = NL steps to converge with

tolerance ηk according to the standard proof of Frank-Wolfe method. Thus the total number of LO is O(N2). Similarly,
in option II, we have two calls of condg, where they need 1

2λk
/ηk = d 2NL

k e and 1
2βk

/χk = NL steps to converges with
tolerance ηk and χk. Thus the total number of LO is O(N2).

Lemma 1. ‖g̃(θk−1,∇F (θmdk ), λk, ηk) − g(θk−1,∇F (θmdk ), λk)‖2 ≤ ηk/λk, where λk is the stepsize in the algorithm,
ηk the tolerance in the procedure condg.

Proof. Define θ̃ = condg(l, u, λ, η), θ̂ = arg minx∈Ω〈l, x〉+ 1
2λ‖x− µ‖

2.

Using the termination condition of the procedure, we have

〈l +
1

λ
(θ̃ − u), θ̃ − x〉 ≤ η,∀x ∈ Ω.

Now we choose x = θ̂ and rearrange the therm then we have

〈l +
1

λ
(θ̂ − u), θ̃ − θ̂〉+

1

λ
‖θ̃ − θ̂‖2 ≤ η.

Notice 〈l + 1
λ (θ̂ − u), θ̃ − θ̂〉 ≥ 0 by the optimal condition of θ̂. Thus we have ‖θ̃ − θ̂‖2 ≤ ηλ, i.e., ‖(θ̃ − θ̂)/λ‖2 ≤ η/λ.

Lemma 2. Let αk be the stepsize in the algorithm 2 option II, and the sequence {hk} satisfies

hk ≤ (1− αk)hk−1 + ψk, k = 1, 2, ..., (30)

then we have hk ≤ Γk
∑k
i=1(ψi/Γi) for any k ≥ 1, where

Γk =

{
1, k = 1

(1− αk)Γk−1 k ≥ 2

Proof. Notice α1 = 1 and α ∈ (0, 1) for k ≥ 2 and then divide both side of (30) by Γk, we have

h1

Γ1
≤ (1− α1)h1

Γ1
+
ψ1

Γ1
=
ψ1

Γ1

and

hk
Γk
≤ (1− αk)hk−1

Γk
+
ψk
Γk

=
hk−1

Γk−1
+
ψk
Γk
, for k ≥ 2.

Sum over both side, we have the result.



Non-convex Conditional Gradient Sliding

A.2. Proof of Stochastic Setting

Proof of Theorem 2. We denote δ̄k := Ḡk − ∇Ψ(θmdk ) and δ̄[k] := δ̄1, ..., δ̄k. Similar to the batch case, the procedure
condg solve the following problem with tolerance ηk.

min
x∈Ω
〈Ḡk, x〉+

1

2λk
‖θk−1 − x‖2

Again, use the strong convexity of objective function (w.r.t. x) we have

〈Ḡk, θ〉+
1

2λk
‖θk−1 − θ‖2 − 〈Ḡk, θk〉 −

1

2λk
‖θk−1 − θk‖2

≥〈Ḡk +
1

λk
(θk − θk−1), θ − θk〉+

1

2λk
‖θ − θk‖2.

(31)

Recall the termination condition

〈Ḡk +
1

λk
(θk − θk−1), θk − θ〉 ≤ ηk,∀θ ∈ Ω

and rearrange terms, we have

〈Ḡk, θk − θ〉 ≤
1

2λk

(
‖θk−1 − θ‖2 − ‖θk − θ‖2 − ‖θk−1 − θk‖2

)
+ ηk. (32)

We have similar result on θagk , i.e.,

〈Ḡk, θagk − θ〉 ≤
1

2βk

(
‖θmdk − θ‖2 − ‖θagk − θ‖

2 − ‖θagk − θ
md
k ‖2

)
+ χk. (33)

Now choose θ = αkθk + (1− αk)θagk−1 in (21) and we have

〈Ḡk, θagk − αkθk − (1− αk)θagk−1〉 ≤
1

2βk

(
‖θmdk − αkθk − (1− αk)θagk−1‖

2 − ‖θagk − θ
md
k ‖2

)
=

1

2βk

(
α2
k‖θk − θk−1‖2 − ‖θagk − θ

md
k ‖2

)
+ χk.

(34)

Add (34) and αk×(32) together and recall the definition of Ḡk = ∇F (θmdk ) + δ̄k we have

〈∇F (θmdk ) + δ̄k, θ
ag
k − αkθ − (1− αk)θagk−1〉

≤ αk
2λk

(‖θk−1 − θ‖2 − ‖θk − θ‖2) +
αk(λkαk − βk)

2βkλk
‖θk − θk−1‖2 −

1

2βk
‖θagk − θ

md
k ‖2

≤ αk
2λk

(‖θk−1 − θ‖2 − ‖θk − θ‖2)− 1

2βk
‖θagk − θ

md
k ‖2 + αkηk + χk,

(35)

where the last inequality uses the assumption λkαk ≤ βk.

Again use the smoothness of objective function F (θ),

F (θagk ) ≤ F (θmdk ) + 〈∇F (θmdk ), θagk − θ
md
k 〉+

L

2
‖θagk − θ

md
k ‖2. (36)



Non-convex Conditional Gradient Sliding

Combine (36), (24) and (35) together, we obtain

F (θagk )− F (θ) ≤ (1− αk)F (θagk−1)− (1− αk)F (θ)− 1

2
(

1

βk
− L)‖θagk − θ

md
k ‖2

+
αk
2λk

(‖θk−1 − θ‖2 − ‖θk − θ‖2) +
lαk
2
‖θmdk − θ‖2 +

lα2
k(1− α)k

2
‖θagk−1 − θk−1‖2+

+ 〈δ̄k, αk(θ − θk−1) + θmdk − θagk 〉+ αkηk + χk

≤ (1− αk)F (θagk−1)− (1− αk)F (θ)− 1

4
(

1

βk
− L)‖θagk − θ

md
k ‖2 +

βk‖δ̄k‖2

1− Lβk

+
αk
2λk

(‖θk−1 − θ‖2 − ‖θk − θ‖2) +
lαk
2
‖θmdk − θ‖2 +

lα2
k(1− α)k

2
‖θagk−1 − θk−1‖2 + αkηk + χk,

(37)

where the second inequality holds from the fact that ab ≤ a2+b2

2 .

Again we apply Lemma 2 and have for ∀θ ∈ Ω

F (θagN )− F (θ)

ΓN
+

N∑
k=1

1− Lβk
4βkΓk

‖θagk − θ
md
k ‖2

≤‖θ0 − θ‖2

2λ1
+
l

2

N∑
k=1

αk
Γk

(
‖θmdk − θ‖2 + αk(1− αk)‖θagk−1 − θk−1‖2

)
+

N∑
k=1

χk
Γk

+

N∑
k=1

αk
Γk
ηk

+

N∑
k=1

αk
ηk
〈δ̄k, θ − θk−1〉+

N∑
k=1

βk‖δ̄k‖2

Γk(1− Lβk)
.

(38)

Now choose θ = θ∗, where θ∗ is the optimal solution, take expectation over both side with respect to δ[N ] and use the fact
that E〈δ̄k, θ∗ − θk−1|δ̄[k−1]〉 = 0 and (6),we have

Eδ[N]
F (θagN )− F (θ∗)

ΓN
+

N∑
k=1

1− Lβk
4βkΓk

Eδ[N]
‖θagk − θ

md
k ‖2

≤‖θ0 − θ∗‖2

2λ1
+
Lf
ΓN

(‖θ∗‖2 + 2M2) + σ2
N∑
k=1

βk
Γk(1− Lβk)mk

+

N∑
k=1

χk
Γk

+

N∑
k=1

αk
Γk
ηk.

(39)

Define approximated gradient mapping g̃(θmdk , Ḡk, βk, χk) :=
θmdk −θagk

βk
, we have

N∑
k=1

(1− Lβk)βk
4Γk

Eδ[N]
‖g̃(θmdk , Ḡk, βk, ξk)‖2

≤‖θ0 − θ∗‖2

2λ1
+

l

ΓN
(‖θ∗‖2 + 2M2) + σ2

N∑
k=1

βk
Γk(1− Lβk)mk

+

N∑
k=1

χk
Γk

+

N∑
k=1

αk
Γk
ηk.

(40)

Recall the setting of χk, αk, βk and (18), and notice the following fact (using Lemma 1)

‖g̃(θmdk , Ḡk, βk, χk)− g(θmdk , Ḡk, βk)‖2 ≤ χk/βk ≤
L

N
,



Non-convex Conditional Gradient Sliding

the fact

E‖g(θmdk , Ḡk, βk)− g(θmdk ,∇F (θmdk ), βk)‖2 ≤ σ2

mk
,

and if we choose pk =
Γ−1
k βk(1−Lβk)∑N

k=1 Γ−1
k βk(1−Lβk)

=
Γ−1
k∑N

k=1 Γ−1
k

, (note βk = 1
2L ,Γk = 2

k(k+1) by (18)), we have

E[‖g(θmdR , ḠR, βR)‖2] ≤ 192L
(4L‖θ0 − θ∗‖2

N2(N + 1)
+

l

N
(‖θ∗‖2 + 2M2) +

3σ2

LN3

N∑
k=1

k2

mk
+

1

N

)
.

Now choose mk = k, we obtain

E[‖g(θmdk , Ḡk, βk)‖2)] ≤ 192L
(4L‖θ0 − θ∗‖2

N2(N + 1)
+

l

N
(‖θ∗‖2 + 2M2) +

3σ2

2LN
+

1

N

)
.

Proof of corollary 2. Recall Ḡk = 1
mk

∑mk
i=1G(xmdk , ξk,i) , mk = k using the result of theorem 2, it is easy to see the SFO

complexity is O(1/ε2).

The proof on the LO complexity is same with option II in theorem 1. We need to calculate the steps to converges up to
the tolerance in the procedure condg. In particular, we have two calls of condg, where they need 1

2λk
/ηk = d 2NL

k e and
1

2βk
/χk = NL steps to converges with tolerance ηk and χk. Thus the total number of LO is O(N2).

A.3. Proof of stochastic finite sum case

The following lemma is used to control variance of stochastic gradient vs+1
t in non-convex setting.

Lemma 3. In Algorithm 4, we have:

E[‖∇F (θs+1
t )− vs+1

t ‖2] 6
L2

b
‖θs+1
t − θ̃s‖2

Proof.

E[‖∇F (θs+1
t )− vs+1

t ‖2] = E[‖1

b

∑
i∈It

(∇fit(θs+1
t )−∇fit(θ̃s))− (∇F (xs+1

t )− gs+1)‖2]

6 E[‖1

b

∑
i∈It

(∇fit(θs+1
t )−∇fit(θ̃s))‖2]

6 E[
1

b

∑
i∈It
‖∇fit(θs+1

t )−∇fit(θ̃s)‖2]

6 E[
L2

b

∑
i∈It
‖θs+1
t − θ̃s‖2]

=
L2

b

∑
i∈It
‖θs+1
t − θ̃s‖2

where the first inequality uses bouding variance of random variable by second moment and the second inequality uses the
fact that E[‖

∑b
i=1Xi‖2] 6 bE[

∑b
i=1 ‖Xi‖2].

We also need the following key lemma.

Lemma 4. Let y = condg(ω, x, λ, η), then we have:

F (y) 6 F (z) + 〈y − z,∇F (x)− ω〉+ (
L

2
− 1

2λ
)‖y − x‖2 + (

L

2
+

1

2λ
)‖z − x‖2 − 1

2λ
‖y − z‖2 + η, ∀z ∈ Rd. (41)



Non-convex Conditional Gradient Sliding

Proof. By termination criteria of condg procedure, we have

〈ω +
1

λ
(y − x), y − z〉 6 η (42)

re-arrange terms we have

〈ω, y − z〉 6 1

λ
〈x− y, y − z〉+ η

=
1

2λ
(‖x− z‖2 − ‖y − z‖2 − ‖x− y‖2) + η. (43)

Now by smoothness of F (x) we have:

F (y) 6 F (x) + 〈∇F (x), y − x〉+
L

2
‖y − x‖2

6 F (z) + 〈∇F (x), x− z〉+
L

2
‖z − x‖2 + 〈∇F (x), y − x〉+

L

2
‖y − x‖2

= F (z) + 〈∇F (x), y − z〉+
L

2
‖z − x‖2 +

L

2
‖y − x‖2. (44)

Add (43) and (44) together the result follows.

Now we are ready to prove Theorem 3.

Proof. We first define θ̂s+1
t+1 = ψ(θs+1

t ,∇F (θs+1
t ), λ), where ψ is the prox-mapping type function in our section 2.2. Notice

θ̂s+1
t+1 = condg(∇F (θs+1

t ), θs+1
t , λ, 0) simply by the algorithm of condg or see our proof of Lemma 1. Then by a direct

application of Lemma 4(with y = θ̂s+1
t+1 , z = x = θs+1

t ), we have

F (θ̂s+1
t+1 ) 6 F (θs+1

t ) + (
L

2
− 1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 − 1

2λ
‖θ̂s+1
t+1 − θ

s+1
t ‖2. (45)

By a second application of Lemma 4(with y = θs+1
t+1 , z = θ̂s+1

t+1 , x = θs+1
t ), we have

F (θs+1
t+1 ) 6 F (θ̂s+1

t+1 ) + 〈θs+1
t+1 − θ̂

s+1
t+1 ,∇F (θs+1

t )− vs+1
t 〉+ (

L

2
− 1

2λ
)‖θs+1

t+1 − θ
s+1
t ‖2

+ (
L

2
+

1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 − 1

2λ
‖θs+1
t+1 − θ̂

s+1
t+1 ‖2 + η

6 F (θ̂s+1
t+1 ) +

1

2λ
‖θs+1
t+1 − θ̂

s+1
t+1 ‖2 +

λ

2
‖∇F (θs+1

t )− vs+1
t ‖2 + (

L

2
− 1

2λ
)‖θs+1

t+1 − θ
s+1
t ‖2

+ (
L

2
+

1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 − 1

2λ
‖θs+1
t+1 − θ̂

s+1
t+1 ‖2 + η

6 F (θ̂s+1
t+1 ) +

λL2

2b
‖θs+1
t − θ̃s‖2

+ (
L

2
− 1

2λ
)‖θs+1

t+1 − θ
s+1
t ‖2 + (

L

2
+

1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 + η. (46)

Then by adding (45) and (46) together we have

F (θs+1
t+1 ) 6 F (θs+1

t ) + (L− 1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 + (

L

2
− 1

2λ
)‖θs+1

t+1 − θ
s+1
t ‖2

+
λL2

2b
‖θs+1
t − θ̃s‖2 + η (47)

Now we define Lyapunov function as follows, with cm = 0 and ct = ct+1(1 + β) + λL2

2b .

Ls+1
t = F (θs+1

t ) + ct‖θs+1
t − θ̃s‖2.



Non-convex Conditional Gradient Sliding

By (47), we have:

Ls+1
t+1 = F (θs+1

t+1 ) + ct+1‖θs+1
t+1 − θ̃s‖2

6 F (θs+1
t ) + (L− 1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 + (

L

2
− 1

2λ
)‖θs+1

t+1 − θ
s+1
t ‖2

+
λL2

2b
‖θs+1
t − θ̃s‖2 + η + ct+1‖θs+1

t+1 − θ̃s‖2

6 F (θs+1
t ) + (L− 1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 + (

L

2
− 1

2λ
)‖θs+1

t+1 − θ
s+1
t ‖2

+
λL2

2b
‖θs+1
t − θ̃s‖2 + η + ct+1(1 +

1

β
)‖θs+1

t+1 − θ
s+1
t ‖2 + ct+1(1 + β)‖θs+1

t − θ̃s‖2

= F (θs+1
t ) + (L− 1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 + [ct+1(1 +

1

β
) +

L

2
− 1

2λ
]‖θs+1

t+1 − θ
s+1
t ‖2

+ [ct+1(1 + β) +
λL2

2b
]‖θs+1

t − θ̃s‖2 + η

= F (θs+1
t ) + (L− 1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 + [ct+1(1 +

1

β
) +

L

2
− 1

2λ
]‖θs+1

t+1 − θ
s+1
t ‖2

+ [ct+1(1 + β) +
λL2

2b
]‖θs+1

t − θ̃s‖2 + η

6 F (θs+1
t ) + (L− 1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 + ct‖θs+1

t − θ̃s‖2 + η

= Ls+1
t + (L− 1

2λ
)‖θ̂s+1

t+1 − θ
s+1
t ‖2 + η, (48)

where the first inequality comes from (47), the second inequality comes from Cauchy-Schwarz inequality and the final
inequality comes from definition of ct and the fact that ct+1(1 + 1

β ) + L
2 −

1
2λ 6 0 for appropriate choice of β and λ which

we now verify. By definition of ct we can easily find

ct =
λL2

2b

(1 + β)m−t − 1

β

=
λL2m

2b
((1 +

1

m
)m−t − 1) (letβ =

1

m
)

6
λL2m

2b
(e− 1) 6

λL2m

b
. (49)

Hence we have

ct+1(1 +
1

β
) +

L

2
− 1

2λ
6
λL2m

b
(1 +m) +

L

2
− 1

2λ

6
2λL2m2

b
+
L

2
− 1

2λ

6
1

2λ
(
4λ2L2m2

b
+ Lλ− 1) 6 0, (50)

where the last inequality comes from plug in back our specification of λ, b,m in our theorem. Now by telescoping both side
of (48), we have:

Ls+1
m + (

1

2λ
− L)

m−1∑
t=0

‖θ̂s+1
t+1 − θ

s+1
t ‖2 6 Ls+1

0 +mη. (51)

By using cm = 0 and that θ̃s+1 = θs+1
m we have Ls+1

m = F (θs+1
m ) = F (θ̃s+1), by using θs+1

0 = θ̃s, we have Ls+1
0 =

F (θs+1
0 ) = F (θ̃s). Hence (51) becomes

(
1

2λ
− L)

m−1∑
t=0

‖θ̂s+1
t+1 − θ

s+1
t ‖2 6 F (θ̃s)− F (θ̃s+1) +mη. (52)



Non-convex Conditional Gradient Sliding

Now telescope through all the epoch, we have:

(
1

2λ
− L)

m−1∑
t=0

S∑
s=0

‖θ̂s+1
t+1 − θ

s+1
t ‖2 6 F (θ̃0)− F (θ̃S+1) + Tη

6 F (θ0)− F (θ?) + 1. (53)

Recall by definition, we have ‖θ̂s+1
t+1 − θ

s+1
t ‖2 = λ2‖g(θs+1

t ,∇F (θs+1
t ), λ)‖2. By definition of θα we have:

λ2(
1

2λ
− L)E‖g(θα,∇F (θα), λ)‖2 6

F (θ0)− F (θ?) + 1

T
. (54)

Plug in back the choice of λ = 1
3L , the claim follows immediately.

proof of corollary 3. To achieve E[‖g(θα,∇F (θα), λ)‖2] 6 1
ε , the number of total iteration should be T = O( 1

ε ). The
LO complexity per each inner iteration is O(T ) by our choice of λ and η, which gives us the overall LO complexity
O(T 2) = O( 1

ε2 ). The IFO complexity is given by T
m (n+ bm), sustituting our choice of m, b gives IFO complexity being

O(n+ n
2
3

ε ).


