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Appendix
Additional Definition and Results from
Section 4
Note that for evaluating the defender RL agent, we initially
use a slightly suboptimal attacker, which randomizes over
playing optimally and with a disjoint support strategy. The
disjoint support strategy is a suboptimal verison (for better
exploration) of the prefix attacker described in Theorem
3. Instead of finding the partition that results in sets A,B
as equal as possible, the disjoint support attacker greedily
picksA,B so that there is a potential difference between the
two sets, with the fraction of total potential for the smaller
set being uniformly sampled from [0.1, 0.2, 0.3, 0.4] at each
turn. This exposes the defender agent to sets of uneven
potential, and helps it develop a more generalizable strategy.

To train our defender agent, we use a fully connected deep
neural network with 2 hidden layers of width 300 to rep-
resent our policy. We decided on these hyperparameters
after some experimentation with different depths and widths,
where we found that network width did not have a signifi-
cant effect on performance, but, as seen in Section 4, slightly
deeper models (1 or 2 hidden layers) performed noticeably
better than shallow networks.

Additional Results from Section 5
Here in Figure 11 we show results of training the attacker
agent using the alternative parametrization given with Theo-
rem 3 with PPO and A2C (DQN results were very poor and
have been omitted.)

Other Generalization Phenomena
Generalizing Over Different Potentials and K

In the main text we examined how our RL defender agent
performance varies as we change the difficulty settings of
the game, either the potential or K. Returning again to the
fact that the Attacker-Defender game has an expressible
optimal that generalizes across all difficulty settings, we
might wonder how training on one difficulty setting and
testing on a different setting perform. Testing on different
potentials in this way is straightforwards, but testing on
different K requires a slight reformulation. our input size
to the defender neural network policy is 2(K + 1), and so
naively changing to a different number of levels will not
work. Furthermore, training on a smaller K and testing on
larger K is not a fair test – the model cannot be expected to
learn how to weight the lower levels. However, testing the
converse (training on larger K and testing on smaller K)
is both easily implementable and offers a legitimate test of
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Figure 11. Performance of PPO and A2C on training the attacker
agent for different difficulty settings. DQN performance was very
poor (reward < −0.8 at K = 5 with best hyperparams). We see
much greater variation of performance with changing K, which
now affects the sparseness of the reward as well as the size of the
action space. There is less variation with potential, but we see a
very high performance variance with lower (harder) potentials.
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Figure 12. On the left we train on different potentials and test on
potential 0.99. We find that training on harder games leads to
better performance, with the agent trained on the easiest potential
generalizing worst and the agent trained on a harder potential
generalizing best. This result is consistent across different choices
of test potentials. The right pane shows the effect of training on
a larger K and testing on smaller K. We see that performance
appears to be inversely proportional to the difference between the
train K and test K.

generalization. We find (a subset of plots shown in Figure
12) that when varying potential, training on harder games
results in better generalization. When testing on a smaller
K than the one used in training, performance is inverse to
the difference between train K and test K.

Catastrophic Forgetting and Curriculum Learning

Recently, several papers have identified the issue of catas-
trophic forgetting in Deep Reinforcement Learning, where
switching between different tasks results in destructive inter-
ference and lower performance instead of positive transfer.
We witness effects of this form in the Attacker-Defender
games. As in Section 8, our two environments differ in the
K that we use – we first try training on a small K, and then
train on larger K. For lower difficulty (potential) settings,
we see that this curriculum learning improves play, but for
higher potential settings, the learning interferes catastrophi-
cally, Figure 13

Understanding Model Failures
Value of the Null Set

The significant performance drop we see in Figure 5 moti-
vates investigating whether there are simple rules of thumb
that the model has successfully learned. Perhaps the sim-
plest rule of thumb is learning the value of the null set: if
one of A,B (say A) consists of only zeros and the other (B)
has some pieces, the defender agent should reliably choose
to destroy B. Surprisingly, even this simple rule of thumb is
violated, and even more frequently for larger K, Figure 14.

Model Confidence

We can also test to see if the model outputs are well cali-
brated to the potential values: is the model more confident
in cases where there is a large discrepancy between poten-
tial values, and fifty-fifty where the potential is evenly split?
The results are shown in Figure 15.

8.1. Generalizing across Start States and Opponent
Strategies

In the main paper, we mixed between different start state dis-
tributions to ensure a wide variety of states seen. This begets
the natural question of how well we can generalize across
start state distribution if we train on purely one distribution.
The results in Figure 16 show that training naively on an
‘easy’ start state distribution (one where most of the states
seen are very similar to one another) results in a significant
performance drop when switching distribution.

In fact, the amount of possible starting states for a given K
and potential φ(S0) = 1 grows super exponentially in the
number of levels K. We can state the following theorem:

Theorem 4. The number of states with potential 1 for a
game with K levels grows like 2Θ(K2) (where 0.25K2 ≤
Θ(K2) ≤ 0.5K2 )

We give a sketch proof.

Proof. Let such a state be denoted S. Then a trivial upper
bound can be computed by noting that each si can take
a value up to 2(K−i), and producting all of these together
gives roughly 2K/2.

For the lower bound, we assume for convenience that K is
a power of 2 (this assumption can be avoided). Then look
at the set of non-negative integer solutions of the system of
simultaneous equations

aj−121−j + aj2
−j = 1/K

where j ranges over all even numbers between log(K) + 1
and K. The equations don’t share any variables, so the
solution set is just a product set, and the number of solutions
is just the product

∏
j(2

j−1/K) where, again,j ranges over
even numbers between log(K) + 1 and K. This product is
roughly 2K

2/4.

8.2. Comparison to Random Search

Inspired by the work of (Mania et al., 2018), we also include
the performance of random search in Figure ??
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Figure 13. Defender agent demonstrating catastrophic forgetting when trained on environment 1 with smaller K and environment 2 with
larger K.
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Figure 14. Figure showing proportion of sets of form
[0, ..., 0, 1, 0, ..., 0] that are valued less than the null set.
Out of the K + 1 possible one hot sets, we determine the
proportion that are not picked when paired with the null (zero) set,
and plot this value for different K.
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Figure 15. Confidence as a function of potential difference between
states. The top figure shows true potential differences and model
confidences; green dots are moves where the model prefers to make
the right prediction, while red moves are moves where it prefers to
make the wrong prediction. The right shows the same data, plotting
the absolute potential difference and absolute model confidence
in its preferred move. Remarkably, an increase in the potential
difference associated with an increase in model confidence over a
wide range, even when the model is wrong.
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Figure 16. Change in performance when testing on different state
distributions
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Figure 17. Performance of random search from (Mania et al.,
2018). The best performing RL algorithms do better.


