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Appendix A Proof of Theorem 1 - Simplified Convergence Rate

Theorem 1. If f is Lipschitz continuous and f(yn, γ(yn)), φ(yn, zn,m) ∈ L2, the mean squared error of IN,M converges
to 0 at rate O (1/N + 1/M).

Proof. Though the Theorem follows directly from Theorem 3, we also provide the following proof for this simplified case to
provide a more accessible intuition behind the result. Note that the approach taken is distinct from the proof of Theorem 3.

Using Minkowski’s inequality, we can bound the mean squared error of IN,M by

E[(I − IN,M )2] = ‖I − IN,M‖22 ≤ U
2 + V 2 + 2UV ≤ 2

(
U2 + V 2

)
(25)

where U =

∥∥∥∥∥I − 1

N

N∑
n=1

f(yn, γ(yn))

∥∥∥∥∥
2

and V =

∥∥∥∥∥ 1

N

N∑
n=1

f(yn, γ(yn))− IN,M

∥∥∥∥∥
2

.

We see immediately that U = O
(

1/
√
N
)

, since 1
N

∑N
n=1 f(yn, γ(yn)) is a MC estimator for I , noting our assumption

that f(yn, γ(yn)) ∈ L2. For the second term,

V =

∥∥∥∥∥ 1

N

N∑
n=1

f(yn, (γ̂M )n)− f(yn, γ(yn))

∥∥∥∥∥
2

≤ 1

N

N∑
n=1

‖f(yn, (γ̂M )n)− f(yn, γ(yn))‖2 ≤
1

N

N∑
n=1

K ‖(γ̂M )n − γ(yn)‖2

where K is a fixed constant, again by Minkowski and using the assumption that f is Lipschitz. We can rewrite

‖(γ̂M )n − γ(yn)‖22 = E
[
E
[
((γ̂M )n − γ(yn))2

∣∣yn]] .
by the tower property of conditional expectation, and note that

E
[
((γ̂M )n − γ(yn))2

∣∣yn] = Var

(
1

M

M∑
m=1

φ(yn, zn,m)

∣∣∣∣∣yn
)

=
1

M
Var (φ(yn, zn,1)|yn)

since each zn,m is i.i.d. and conditionally independent given yn. As such

‖(γ̂M )n − γ(yn)‖22 =
1

M
E [Var (φ(yn, zn,1)|yn)] = O(1/M),

noting that E [Var (φ(yn, zn,1)|yn)] is a finite constant by our assumption that φ(yn, zn,m) ∈ L2. Consequently,

V ≤ NK

N
O
(

1/
√
M
)

= O
(

1/
√
M
)
.

Substituting these bounds for U and V in (25) gives

‖I − IN,M‖22 ≤ 2

(
O
(

1/
√
N
)2

+O
(

1/
√
M
)2
)

= O (1/N + 1/M)

as desired.

Appendix B The Inevitable Bias of Nested Estimation

In this section we demonstrate formally that NMC schemes must produce biased estimates of I(f) for certain functions f .
In fact, our result applies more generally: we show that this holds for any MC scheme that makes use of imperfect estimates
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ζ̂n of γ(yn), either via a NMC procedure (e.g. ζ̂n = (γ̂M )n), or when these inner estimates are generated by some other
methods such as a variational approximation (Blei et al., 2016) or Bayesian quadrature (O’Hagan, 1991).
Theorem 6. Suppose that the random variables ζ̂n satisfy P(ζ̂n 6= γ(yn)) > 0. Then we can choose f such that if

yn ∼ p(y), E
[

1
N

∑N
n=1 f(yn, ζ̂n)

]
6= I(f) for any N (including the limit N →∞).

Proof. Take f(y, w) = (γ(y)− w)2. Then f(y, γ(y)) = 0, so that I(f) = 0. On the other hand, f(yn, ζ̂n) ≥ 0 since f is
non-negative. Moreover, f(yn, ζ̂n) > 0 on the event {ζ̂n 6= γ(yn)}. Since we assumed this event has nonzero probability, it
follows that E

[
f(yn, ζ̂n)

]
> 0 and hence

E

[
1

N

N∑
n=1

f(yn, ζ̂n)

]
=

1

N

N∑
n=1

E
[
f(yn, ζ̂n)

]
> 0 = I(f)

which gives the required result.

It also follows from Jensen’s inequality that any strictly convex or concave f entails a biased estimator when ζ̂n is unbiased
but has non-zero variance given yn, e.g. when ζ̂n is a MC estimate. More formally we have

Theorem 7. Suppose that yn ∼ p(y) and that each ζ̂n satisfies E
[
ζ̂n

∣∣∣yn] = γ(yn). Define A ⊆ Y as A ={
y ∈ Y

∣∣∣ Var
(
ζ̂n

∣∣∣yn = y
)
> 0
}

and assume that P(yn ∈ A) > 0. Then for any f that is strictly convex in its sec-
ond argument,

E

[
1

N

N∑
n=1

f(yn, ζ̂n)

]
> I(f).

Similarly for any f that is strictly concave in its second argument,

E

[
1

N

N∑
n=1

f(yn, ζ̂n)

]
< I(f).

Proof. We prove our claim for the case that f is strictly convex; our proof for the other concave case is symmetrical. We
have

E

[
1

N

N∑
n=1

f(yn, ζ̂n)

]
= E

[
f(y1, ζ̂1)

]
= E

[
E
[
f(y1, ζ̂1)

∣∣∣y1

]]
≥ E

[
f
(
y1,E

[
ζ̂1

∣∣∣y1

])]
= I(f)

where the ≥ is a result of Jensen’s inequality on the inner expectation. Since f is strictly convex and therefore non-linear,
equality holds if and only if ζ̂1 is almost surely constant given y1. This is violated whenever y1 ∈ A, which by assumption
has a non-zero probability of occurring. Consequently, the inequality must be strict, giving the desired result.

In addition to some special cases discussed in the Section 4, it may still be possible to develop unbiased estimation schemes
for certain non-linear f using Russian roulette sampling (Lyne et al., 2015) or other debiasing techniques. However, these
induce their own complications: for some problems the resultant estimates have infinite variance (Lyne et al., 2015) and
as shown by (Jacob et al., 2015), there are no general purpose “f -factories” that produce both non-negative and unbiased
estimates for non-constant, positive output functions f : R→ R+, given unbiased estimates for the inputs.

Appendix C Proof of Theorem 2 - “Almost almost sure” convergence

Theorem 2. For n ∈ N, let

(εM )n = |f(yn, (γ̂M )n)− f(yn, γ(yn))| .
Assume that E [(εM )1]→ 0 as M →∞. Let Ω be the sample space of our underlying probability space, so that Iτδ(M),M

forms a mapping from Ω to R. Then, for every δ > 0, there exists a measurable Aδ ⊆ Ω with P(Aδ) < δ, and a function
τδ : N→ N such that, for all ω 6∈ Aδ ,

Iτδ(M),M (ω)
a.s.→ I as M →∞.
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Proof. For all N,M , we have by the triangle inequality that

|IN,M − I| ≤ VN,M + UN , where

VN,M =

∣∣∣∣∣ 1

N

N∑
n=1

f(yn, γ(yn))− IN,M

∣∣∣∣∣ and UN =

∣∣∣∣∣I − 1

N

N∑
n=1

f(yn, γ(yn))

∣∣∣∣∣ .
A second application of the triangle inequality then allows us to write

VN,M ≤
1

N

N∑
n=1

(εM )n

where we recall that (εM )n = |f(yn, γ(yn)) − f(yn, γ̂n)|. Now, for all fixed M , each (εM )n is i.i.d. Furthermore,
since E [(εM )1] → 0 as M → ∞ by our assumption and (εM )n is nonnegative, there exists some L ∈ N such that
E [|(εM )n|] <∞ for all M ≥ L. Consequently, the strong law of large numbers means that as N →∞ then for all M ≥ L

1

N

N∑
n=1

(εM )n
a.s.→ E [(εM )1] . (26)

For any fixed δ > 0 then by repeatedly applying Egorov’s theorem to each M ≥ L, we can find a sequence of events

BL, BL+1, BL+2, . . .

such that for every M ≥ L,

P(BM ) <
δ

4
· 1

2M−L

and outside of BM , the sequence 1
N

∑N
n=1(εM )n converges uniformly to E [(εM )1]. This uniform convergence (as opposed

to just the piecewise convergence implied by (26)) now guarantees that we can define some function τ1
δ : N→ N such that∣∣∣∣∣∣ 1

M ′

M ′∑
n=1

(εM )n(ω)− E [(εM )1]

∣∣∣∣∣∣ < 1

M
(27)

for all M ≥ L, M ′ ≥ τ1
δ (M), and ω 6∈ BM , remembering that ω is a point in our sample space. We further have that (27)

holds for all M ≥M0, M ′ ≥ τ1
δ (M), and ω 6∈ Bδ :=

⋃
M≥LBM . Consequently, for all such M , M ′ and ω,

VM ′,M (ω) ≤ 1

M ′

M ′∑
n=1

(εM )n(ω) <
1

M
+ E [(εM )1] , (28)

while we also have

P(Bδ) ≤
∑
M≥L

P (BM ) <
∑
M≥L

δ

4
· 1

2M−L
=
δ

2
. (29)

To complete the proof, we must remove the dependence of UN on N as well. This is straightforward once we observe that
UN

a.s.→ 0 as N →∞ by the strong law of large numbers. So, by Egorov’s theorem again, there exists an event Cδ such that

P(Cδ) <
δ

2
(30)

and outside of Cδ , the sequence UN converges uniformly to 0. This uniform convergence, in turn, ensures the existence of a
function τ2

δ : N→ N such that

UM ′(ω) <
1

M
(31)

for all M ∈ N, M ′ ≥ τ2
δ (M), and ω 6∈ Cδ .

We can now define τδ(M) = max(τ1
δ (M), τ2

δ (M)), and Aδ = Bδ ∪ Cδ . By inequalities in (29) and (30),

P(Aδ) ≤ P(Bδ) + P(Cδ) < δ.
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Also, by the inequalities in (28) and (31),∣∣I − Iτδ(M),M (ω)
∣∣ ≤ Vτδ(M),M (ω) + Uτδ(M)(ω) ≤ 1

M
+

1

M
+ E [(εM )1]

for all M ≥ L and ω /∈ Aδ . Since E [(εM )1]→ 0, we have here that Iτδ(M),M (ω)→ I as desired.

Appendix D Proof of Theorem 3 - Convergence for Repeated Nesting

Theorem 3. If f0, · · · , fD are all Lipschitz continuous in their second input with Lipschitz constants

Kk := sup
y(0:k)

∣∣∣∣∣∂fk
(
y(0:k), γk+1(y(0:k))

)
∂γk+1

∣∣∣∣∣ ,
for all k ∈ 0, . . . , D − 1 and if

ς2k := E
[(
fk

(
y(0:k), γk+1

(
y(0:k)

))
− γk

(
y(0:k−1)

))2
]

<∞ ∀k ∈ 0, . . . , D

then

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+

D∑
k=1

(
k−1∏
`=0

K2
`

)
ς2k
Nk

+O(ε) (5)

where O(ε) represents asymptotically dominated terms.

If f0, · · · , fD are also continuously differentiable with second derivative bounds

Ck := sup
y(0:k)

∣∣∣∣∣∂2fk
(
y(0:k), γk+1(y(0:k))

)
∂γ2

k+1

∣∣∣∣∣
then this mean square error bound can be tightened to

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+(
C0ς

2
1

2N1
+

D−2∑
k=0

(
k∏
d=0

Kd

)
Ck+1ς

2
k+2

2Nk+2

)2

+O(ε).

(6)

For a single nesting, we can further characterize O(ε) giving

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+
4K2

0 ς
2
1

N0N1
+

2K0ς0ς1

N0

√
N1

+
K2

0 ς
2
1

N1
(7)

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+
C2

0 ς
4
1

4N2
1

(
1 +

1

N0

)
+
K2

0 ς
2
1

N0N1
+

2K0ς1

N0

√
N1

√
ς20 +

C2
0 ς

4
1

4N2
1

+O

(
1

N3
1

) (8)

for when the continuous differentiability assumption does not hold and holds respectively.

Proof. As this is a long and involved proof, we start by defining a number of useful terms that will be used throughout.
Unless otherwise stated, these definitions hold for all k ∈ {0, . . . , D}. Note that most of these terms implicitly depend on
the number of samples N0, N1, . . . , ND. However, sk, ζd,k, and ςk do not and are thus constants for a particular problem.

Ek
(
y(0:k−1)

)
is the MSE of the estimator at depth k given y(0:k−1)

Ek

(
y(0:k−1)

)
:= E

[(
Ik

(
y(0:k−1)

)
− γk

(
y(0:k−1)

))2
∣∣∣∣y(0:k−1)

]
(32)
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f̄k
(
y(0:k−1)

)
is the expected value of the estimate at depth k, or equivalently the expected function output using the estimate

of the layer below

f̄k

(
y(0:k−1)

)
:= E

[
Ik

(
y(0:k−1)

)∣∣∣y(0:k−1)
]
∀k ∈ {1, . . . , D − 1}

= E
[
fk

(
y(0:k), Ik+1

(
y(0:k)

))∣∣∣y(0:k−1)
] (33)

v2
k

(
y(0:k−1)

)
is the variance of the estimator at depth k

v2
k

(
y(0:k−1)

)
:= Var

[
Ik

(
y(0:k−1)

)∣∣∣y(0:k−1)
]

= E
[(
Ik

(
y(0:k−1)

)
− f̄k

(
y(0:k−1)

))2
∣∣∣∣y(0:k−1)

] (34)

βk
(
y(0:k−1)

)
is the bias of the estimator at depth k

βk

(
y(0:k−1)

)
:= E

[
Ik

(
y(0:k−1)

)
− γk

(
y(0:k−1)

)∣∣∣y(0:k−1)
]

= f̄k

(
y(0:k−1)

)
− γk

(
y(0:k−1)

)
= E

[
fk

(
y(0:k), Ik+1

(
y(0:k)

))
− fk

(
y(0:k), γk+1

(
y(0:k)

))∣∣∣y(0:k−1)
] (35)

s2
k

(
y(0:k−1)

)
is the variance at depth k of the true function output

s2
k

(
y(0:k−1)

)
:= E

[(
fk

(
y(0:k), γk+1

(
y(0:k)

))
− γk

(
y(0:k−1)

))2
∣∣∣∣y(0:k−1)

]
(36)

s2
D

(
y(0:D−1)

)
:= E

[(
fD

(
y(0:D)

)
− γD

(
y(0:D)

))2
∣∣∣∣y(0:D−1)

]
(37)

ζ2
d,k

(
y(0:k−1)

)
is expectation of s2

d

(
y(0:d−1)

)
over y(k:d−1)

ζ2
d,k

(
y(0:k−1)

)
:= E

[
s2
d

(
y(0:d−1)

)∣∣∣y(0:k−1)
]

= E
[(
fd

(
y(0:d), γd+1

(
y(0:d)

))
− γd

(
y(0:d−1)

))2
∣∣∣∣y(0:k−1)

] (38)

ς2k is expectation of s2
k

(
y(0:k−1)

)
over all y(0:k−1)

ς2k := ζ2
k,0 = E

[(
fk

(
y(0:k), γk+1

(
y(0:k)

))
− γk

(
y(0:k−1)

))2
]

(39)

Ak
(
y(0:k−1)

)
is the MSE in the function output from using the estimate of the next layer, rather than the true value

γk+1

(
y(0:k)

)
, we fix AD := 0

Ak

(
y(0:k−1)

)
:=E

[(
fk

(
y(0:k), Ik+1

(
y(0:k)

))
− fk

(
y(0:k), γk+1

(
y(0:k)

)))2
∣∣∣∣y(0:k−1)

]
(40)

σ2
k

(
y(0:k−1)

)
is the variance in the function output from using the estimate of the next layer, we fix σ2

D

(
y0:D−1

)
:=

s2
D

(
y0:D−1

)
σ2
k

(
y(0:k−1)

)
:= Var

[
fk

(
y(0:k), Ik+1

(
y(0:k)

))∣∣∣y(0:k−1)
]

= E
[(
fk

(
y(0:k), Ik+1

(
y(0:k)

))
− f̄k

(
y(0:k−1)

))2
∣∣∣∣y(0:k−1)

] (41)

ωk
(
y(0:k−1)

)
is the expectation over y(k) of the MSE for the next layer, we fix ωD

(
y(0:D−1)

)
:= 0

ωk

(
y(0:k−1)

)
:= E

[
Ek+1

(
y(0:k)

)∣∣∣y(0:k−1)
]

= E
[(
Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))2
∣∣∣∣y(0:k−1)

] (42)
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λk
(
y(0:k−1)

)
is the expectation over y(k) of the magnitude of the bias for the next layer, we fix λD

(
y(0:D−1)

)
:= 0 and

note that λD−1

(
y(0:D−2)

)
:= 0 also as the innermost layer is an unbiased

λk

(
y(0:k−1)

)
:= E

[∣∣∣βk+1

(
y(0:k)

)∣∣∣ ∣∣∣∣∣y(0:k−1)

]

= E

[∣∣∣E [(Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))∣∣∣y(0:k)
]∣∣∣ ∣∣∣∣∣y(0:k−1)

] (43)

Lipschitz Continuous Case

Given these definitions, we start by breaking the error down into a variance and bias term. Using the standard bias-variance
decomposition we have

Ek

(
y(0:k−1)

)
= E

[(
Ik

(
y(0:k−1)

)
− γk

(
y(0:k−1)

))2
∣∣∣∣y(0:k−1)

]
= v2

k

(
y(0:k−1)

)
+
(
βk

(
y(0:k−1)

))2

(44)

It is immediately clear from its definition in (35) that the bias term
(
βk
(
y(0:k−1)

))2
is independent of N0. On the other

hand, we will show later that the dominant components of the variance term for large N0:D depend only on N0. We can thus
think of increasing N0 as reducing the variance of the estimator and increasing N1:D as reducing the bias.

We first consider the variance term

v2
k

(
y(0:k−1)

)
= E

( 1

Nk

Nk∑
n=1

fk

(
y(0:k)
n , Ik+1

(
y(0:k)
n

))
− f̄k

(
y(0:k−1)

))2
∣∣∣∣∣∣y(0:k−1)


=

1

Nk
E
[(
fk

(
y(0:k), Ik+1

(
y(0:k)

))
− f̄k

(
y(0:k−1)

))2
∣∣∣∣y(0:k−1)

]
with the equality following because the y(0:k)

n being drawn i.i.d. and the expectation of each fk
(
y(0:k), Ik+1

(
y(0:k)

))
equaling f̄k

(
y(0:k−1)

)
means that all the cross terms are zero. By the definition of σ2

k we now have

v2
k

(
y(0:k−1)

)
=
σ2
k

(
y(0:k−1)

)
Nk

. (45)

By using Minkowski’s inequality and the definition of Ak it also follows that

σk

(
y(0:k−1)

)
≤
(
Ak

(
y(0:k−1)

)) 1
2

+

(
E
[(
fk

(
y(0:k), γk+1

(
y(0:k)

))
− f̄k

(
y(0:k−1)

))2
∣∣∣∣y(0:k−1)

]) 1
2

. (46)

Using a bias-variance decomposition on the second term above and noting that s2
k

(
y(0:k−1)

)
and f̄k

(
y(0:k−1)

)
−

βk
(
y(0:k−1)

)
are respectively the variance and expectation of fk

(
y(0:k), γk+1

(
y(0:k)

))
, we can rearrange the right-hand

size of (46) to give

σk

(
y(0:k−1)

)
≤
(
Ak

(
y(0:k−1)

)) 1
2

+

(
s2
k

(
y(0:k−1)

)
+
(
βk

(
y(0:k−1)

))2
) 1

2

. (47)

Here s2
k is independent of the number of samples used at any level of the estimate, while Ak and β2

k are independent of
Nd ∀d ≤ k. Now by Jensen’s inequality, we have that(

βk

(
y(0:k−1)

))2

≤ Ak
(
y(0:k−1)

)
(48)

noting that the only difference in the definition of
(
βk
(
y(0:k−1)

))2
and Ak

(
y(0:k−1)

)
is whether the squaring occurs inside

or outside the expectation. Therefore, presuming that Ak does not increase with Nd ∀d > k, neither will σ2
k

(
y(0:k−1)

)
, and

so the variance term will converge to zero with rate O(1/Nk). Further, if Ak → 0 as Nk+1, . . . , ND →∞, then for a large
number of inner samples σ2

k → s2
k and thus we will have v2

k

(
y(0:k−1)

)
≤ s2k

Nk
+O (ε) where O (ε) represents higher order
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terms that are dominated in the limit Nk, . . . , ND →∞. Provided this holds, we will also, therefore, have that

Ek

(
y(0:k−1)

)
=
σ2
k

(
y(0:k−1)

)
Nk

+ β2
k

(
y(0:k−1)

)
=
s2
k

(
y(0:k−1)

)
Nk

+ β2
k

(
y(0:k−1)

)
+O(ε). (49)

We now show that Lipschitz continuity is sufficient for Ak → 0 and derive a concrete bound on the variance by bounding
Ak. By definition of Lipschitz continuity, we have that(

Ak

(
y(0:k−1)

)) 1
2 ≤

(
E
[
K2
k

(
Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))2
∣∣∣∣y(0:k−1)

]) 1
2

= Kk

(
ωk

(
y(0:k−1)

)) 1
2

(50)

where we remember that ωk
(
y(0:k−1)

)
= E

[
Ek+1

(
y(0:k)

)∣∣y(0:k−1)
]

is the expected MSE of the next level estimator. Once
we also have an expression for the bias, we will thus be able to use this bound on Ak along with (44), (45), and (47) to
inductively derive a bound on the error.

For the case where we only assume Lipschitz continuity then we will simply use the bound on the bias given by (48) leading
to

Ek

(
y(0:k−1)

)
≤
σ2
k

(
y(0:k−1)

)
Nk

+Ak

(
y(0:k−1)

)
. (51)

≤
s2
k

(
y(0:k−1)

)
+ 2Ak

(
y(0:k−1)

)
+ 2

(
Ak
(
y(0:k−1)

)) 1
2
(
s2
k

(
y(0:k−1)

)
+Ak

(
y(0:k−1)

)) 1
2

Nk
+Ak

(
y(0:k−1)

)
=
s2
k

(
y(0:k−1)

)
+ 2K2

kωk
(
y(0:k−1)

)
Nk

+K2
kωk

(
y(0:k−1)

)
+

2Kk

(
ωk
(
y(0:k−1)

)) 1
2
(
s2
k

(
y(0:k−1)

)
+K2

kωk
(
y(0:k−1)

)) 1
2

Nk

≤
s2
k

(
y(0:k−1)

)
+ 4K2

kωk
(
y(0:k−1)

)
+ 2Kk

(
ωk
(
y(0:k−1)

)) 1
2 sk

(
y(0:k−1)

)
Nk

+K2
kωk

(
y(0:k−1)

)
(52)

which fully defines a bound on conditional the variance of one layer given the mean squared error of the layer below. In
particular as ωD

(
y(0:D−1)

)
= 0 we now have

ED

(
y(0:D−1)

)
≤
s2
D

(
y(0:D−1)

)
ND

=
E
[(
fD
(
y(0:D)

)
− γD

(
y(0:D)

))2∣∣∣y(0:D−1)
]

ND

which is the standard error for Monte Carlo convergence. We further have

ωD−1

(
y(0:D−2)

)
= E

[
ED

(
y(0:D−1)

)∣∣∣y(0:D−2)
]

=
ζ2
D,D−1

(
y(0:D−2)

)
ND

.

and thus

ED−1

(
y(0:D−2)

)
≤
s2
D−1

(
y(0:D−2)

)
ND−1

+
4K2

D−1ζ
2
D,D−1

(
y(0:D−2)

)
NDND−1

+
2KD−1sD−1

(
y(0:D−2)

)
ζD,D−1

(
y(0:D−2)

)
ND−1

√
ND

+
K2
D−1ζ

2
D,D−1

(
y(0:D−2)

)
ND

.

(53)

This leads to the following result for the single nesting case

E0 ≤
ς20
N0

+
4K2

0 ς
2
1

N0N1
+

2K0ς0ς1

N0

√
N1

+
K2

0 ς
2
1

N1
(54)

≈ ς20
N0

+
K2

0 ς
2
1

N1
= O

(
1
N0

+ 1
N1

)
where the approximation becomes exact as N0, N1 →∞. Note that there is no O (ε) term

as this bound is exact in the finite sample case.

Things quickly get messy for double nesting and beyond so we will ignore non-dominant terms in the limitN0, . . . , ND →∞
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and resort to using O(ε) for these instead. We first note that removing dominated terms from (52) gives

Ek

(
y(0:k−1)

)
≤ s2

k

Nk
+K2

kωk

(
y(0:k−1)

)
+O(ε) (55)

as s2
k does not decrease with increasing Nk+1:D whereas the other terms do. We therefore also have

ωk

(
y(0:k−1)

)
= E

[
Ek+1

(
y(0:k)

)∣∣∣y(0:k−1)
]

≤ E

[
s2
k+1

(
y(0:k)

)
Nk+1

+K2
k+1ωk+1

(
y(0:k)

)∣∣∣∣∣y(0:k−1)

]
+O(ε) (56)

and therefore by recursively substituting (56) into itself we have

K2
kωk

(
y(0:k−1)

)
≤

D∑
d=k+1

(∏d−1
`=k K

2
`

)
E
[
s2
d

(
y(0:d−1)

)∣∣y(0:k−1)
]

Nd
+O(ε). (57)

Now noting that ζ2
d,k

(
y(0:k−1)

)
= E

[
s2
d

(
y(0:d−1)

)∣∣y(0:k−1)
]
, substituting (57) back into (55) gives

Ek

(
y(0:k−1)

)
=
s2
k

(
y(0:k−1)

)
Nk

+

D∑
d=k+1

(∏d−1
`=k K

2
`

)
ζ2
d,k

(
y(0:k−1)

)
Nd

+O(ε). (58)

By definition we have that ζ2
0,0 = s2

0 = ς20 and ζ2
d,0 = ς2d and as (58) holds in the case k = 0, the mean squared error of the

overall estimator is as follows

E
[
(I0 − γ0)

2
]

= E0 ≤
ς20
N0

+

D∑
k=1

(∏k−1
`=0 K

2
`

)
ς2k

Nk
+O(ε) (59)

and we have the desired result for the Lipschitz case.

Continuously Differentiable Case

We now revisit the bound for the bias in the continuously differentiable case to show that a tighter overall bound can be
found. We first remember that

βk

(
y(0:k−1)

)
= E

[
fk

(
y(0:k), Ik+1

(
y(0:k)

))
− fk

(
y(0:k), γk+1

(
y(0:k)

))∣∣∣y(0:k−1)
]
.

Taylor’s theorem implies that for any continuously differentiable fk we can write

fk

(
y(0:k), Ik+1

(
y(0:k)

))
− fk

(
y(0:k), γk+1

(
y(0:k)

))
=
∂fk

(
y(0:k), γk+1(y(0:k))

)
∂γk+1

(
Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))
+

1

2

∂f2
k

(
y(0:k), γk+1(y(0:k))

)
∂γ2

k+1

(
Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))2

+ h3

(
Ik+1

(
y(0:k)

))(
Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))3

(60)

where limx→γk+1(y(0:k)) h3(x) = 0. Consequently, the last term is O
((
Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))3)
and so will

diminish in magnitude faster than the first two terms provided that the derivatives are bounded, which is guaranteed by our
assumptions. We will thus use O(ε) for this term and note that it is dominated in the limit.

Now defining

δ`,k = E

[
∂f `k

(
y(0:k), γk+1(y(0:k))

)
∂γ`k+1

(
Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))`∣∣∣∣∣y(0:k−1)

]
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then we have

β2
k

(
y(0:k−1)

)
=δ2

1,k +
δ2
2,k

4
+ δ1,kδ2,k +O(ε).

By using the tower property we further have that

δ`,k = E

[
E

[
∂f `k

(
y(0:k), γk+1(y(0:k))

)
∂γ`k+1

(
Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))`∣∣∣∣∣y(0:k)

]∣∣∣∣∣y(0:k−1)

]

= E

[
∂f `k

(
y(0:k), γk+1(y(0:k))

)
∂γ`k+1

E
[(
Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))`∣∣∣∣y(0:k)

]∣∣∣∣∣y(0:k−1)

]

≤ E

[∣∣∣∣∣∂f `k
(
y(0:k), γk+1(y(0:k))

)
∂γ`k+1

∣∣∣∣∣
∣∣∣∣E [(Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))`∣∣∣∣y(0:k)

]∣∣∣∣
∣∣∣∣∣y(0:k−1)

]

≤

(
sup
y(0)

∣∣∣∣∣∂`fk
(
y(0:k), γk+1(y(0:k))

)
∂γ`k+1

∣∣∣∣∣
)
E

[∣∣∣∣E [(Ik+1

(
y(0:k)

)
− γk+1

(
y(0:k)

))` ∣∣∣∣y(0:k)

]∣∣∣∣
∣∣∣∣∣y(0:k−1)

]
.

Now for the particular cases of ` = 1 and ` = 2 then the derivative terms where defined in the theorem and the expectations
correspond respectively to our definitions of λk and ωk giving

δ1,k ≤ Kkλk

(
y(0:k−1)

)
δ2,k ≤ Ckωk

(
y(0:k−1)

)
and therefore

β2
k

(
y(0:k−1)

)
≤ K2

kλ
2
k

(
y(0:k−1)

)
+
C2
k

4
ω2
k

(
y(0:k−1)

)
+Kk Ck λk

(
y(0:k−1)

)
ωk

(
y(0:k−1)

)
+O(ε)

=

(
Kkλk

(
y(0:k−1)

)
+
Ck
2
ωk

(
y(0:k−1)

))2

+O(ε). (61)

Remembering (49) we can recursively define the error bound in the same manner as the Lipschitz case. We can immediately
see that, as βD = 0 without any nesting, we recover the bound from the Lipschitz case for the inner most estimator as
expected. As the innermost estimator is unbiased we also have λD−1

(
y(0:D−2)

)
= 0 and so

β2
D−1

(
y(0:D−2)

)
≤
C2
D−1

4
ω2
D−1

(
y(0:D−2)

)
+O(ε)

≤
C2
D−1

4

(
E

[
s2
D

(
y(0:D−1)

)
ND

∣∣∣∣∣y(0:D−2)

])2

+O(ε)

=
C2
D−1 ζ

4
D,D−1

(
y(0:D−2)

)
4N2

D

+O(ε).

Going back to our original bound on σ2
D−1

(
y(0:D−2)

)
given in (47) and substituting for βD−1

(
y(0:D−2)

)
we now have

σD−1

(
y(0:D−2)

)
≤
(
AD−1

(
y(0:D−2)

)) 1
2

+

(
s2
D−1

(
y(0:D−2)

)
+
C2
D−1 ζ

4
D,D−1

(
y(0:D−2)

)
4N2

D

+O(ε)

) 1
2

. (62)

There does not appear to be tighter bound for AD−1

(
y(0:D−2)

)
than in the Lipschitz continuous case and so using the same

bound of AD−1

(
y(0:D−2)

)
≤ K2

D−1ζ
2
D,D−1

(
y(0:D−2)

)
/ND−1 we have

ED−1

(
y(0:D−2)

)
≤
σ2
D−1

(
y(0:D−2)

)
ND−1

+
C2
D−1 ζ

4
D,D−1

(
y(0:D−2)

)
4N2

D

+O(ε)
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≤
s2
D−1

(
y(0:D−2)

)
ND−1

+
K2
D−1ζ

2
D,D−1

(
y(0:D−2)

)
NDND−1

+
C2
D−1 ζ

4
D,D−1

(
y(0:D−2)

)
4N2

D

(
1 +

1

ND−1

)

+
2KD−1ζD,D−1

(
y(0:D−2)

)
ND−1

√
ND

(
sD−1

(
y(0:D−2)

)2

+
C2
D−1 ζ

4
D,D−1

(
y(0:D−2)

)
4N2

D

) 1
2

+O(ε).

(63)

Therefore for the single nesting case, we now have

E0 ≤
ς20
N0

+
K2

0 ς
2
1

N0N1
+

2K0ς1

N0

√
N1

√
ς20 +

C2
0 ς

4
1

4N2
1

+
C2

0 ς
4
1

4N2
1

(
1 +

1

N0

)
+O

(
1

N3
1

)
(64)

≈ ς20
N0

+
C2

0 ς
4
1

4N2
1

= O
(

1
N0

+ 1
N2

1

)
where again the approximation becomes tight when N0, N1 →∞. Here we have used the

fact that the only O(ε) term comes from the Taylor expansion and is equal to O
(

1
N3

1

)
because we have δ1,D−1 = 0 and

therefore

O(ε) =O (δ2,D−1δ3,D−1 + δ2,D−1δ4,D−1)

=O

(
δ2,D−1E

[(
I1

(
y(0)

)
− γ1

(
y(0)

))3
∣∣∣∣y(0)

])
+O

(
δ2,D−1E

[(
I1

(
y(0)

)
− γ1

(
y(0)

))4
∣∣∣∣y(0)

])

=O

 1

N1
E

( 1

N1

N1∑
n=1

f1

(
y(0:1)
n

)
− E

[
f1

(
y(0:1)

)∣∣∣y(0)
])3

∣∣∣∣∣∣y(0)


+O

 1

N1
E

( 1

N1

N1∑
n=1

f1

(
y(0:1)
n

)
− E

[
f1

(
y(0:1)

)∣∣∣y(0)
])4

∣∣∣∣∣∣y(0)


now noting that the y(0:1)

n are i.i.d., and that E
[
f1

(
y

(0:1)
1

)
− E

[
f1

(
y(0:1)

)∣∣y(0)
]∣∣∣y(0)

]
= 0 such many of the cross terms

when expanding the brackets are zero, we have

=O

(
1

N4
1

N1∑
n=1

E
[(
f1

(
y

(0:1)
1

)
− E

[
f1

(
y(0:1)

)∣∣∣y(0)
])3
∣∣∣∣y(0)

])

+O

(
1

N5
1

N1∑
n=1

E
[(
f1

(
y

(0:1)
1

)
− E

[
f1

(
y(0:1)

)∣∣∣y(0)
])4
∣∣∣∣y(0)

])

+O

 3

N5
1

N1∑
n=1

N1∑
m=1,m6=n

(
E
[(
f1

(
y

(0:1)
1

)
− E

[
f1

(
y(0:1)

)∣∣∣y(0)
])2
∣∣∣∣y(0)

])2


=O

(
1

N3
1

)
+O

(
1

N4
1

)
+O

(
1

N3
1

)
= O

(
1

N3
1

)
as required.

Returning to calculating the bound for the repeated nesting case then by substituting (61) into (49) we have more generally

Ek

(
y(0:k−1)

)
≤
s2
k

(
y(0:k−1)

)
Nk

+

(
Kkλk

(
y(0:k−1)

)
+
Ck
2
ωk

(
y(0:k−1)

))2

+O(ε). (65)

Now remembering that ωk
(
y(0:k−1)

)
= E

[
Ek+1

(
y(0:k)

)∣∣y(0:k−1)
]

from (49) we have

ωk

(
y(0:k−1)

)
= E

[
s2
k+1

(
y(0:k)

)
Nk+1

+ β2
k+1

(
y(0:k)

)∣∣∣∣∣y(0:k−1)

]
+O(ε)

=
ζ2
k+1,k

Nk+1
+ E

[
β2
k+1

(
y(0:k)

)∣∣∣y(0:k−1)
]

+O(ε). (66)
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We also have that except at k = D − 1 and k = D (for which both λk and βk+1 are zero), then

λk

(
y(0:k−1)

)
= E

[∣∣∣βk+1

(
y(0:k)

)∣∣∣ ∣∣∣∣∣y(0:k)

]
� E

[
β2
k+1

(
y(0:k)

)∣∣∣y(0:k−1)
]

for sufficiently large Nk+1, . . . , ND. This means that when we substitute (66) into (65), the second term in (66) becomes
dominated giving

Ek

(
y(0:k−1)

)
≤
s2
k

(
y(0:k−1)

)
Nk

+

(
Kkλk

(
y(0:k−1)

)
+
Ckζ

2
k+1,k

2Nk+1

)2

+O(ε). (67)

Now as β2
k+1

(
y(0:k)

)
= Ek+1

(
y(0:k)

)
− s2k+1(y

(0:k))
Nk+1

we have

λk

(
y(0:k−1)

)
= E

√Ek+1

(
y(0:k)

)
−
s2
k+1

(
y(0:k)

)
Nk+1

∣∣∣∣∣∣y(0:k−1)

+O(ε)

and substituting in (67) gives

λk

(
y(0:k−1)

)
≤ E

[
Kk+1λk+1

(
y(0:k)

)
+
Ck+1ζ

2
k+2,k+1

2Nk+2

∣∣∣∣∣y(0:k−1)

]
+O(ε)

=
Ck+1ζ

2
k+2,k

2Nk+2
+Kk+1E

[
λk+1

(
y(0:k)

)∣∣∣y(0:k−1)
]

+O(ε)

≤
Ck+1ζ

2
k+2,k

2Nk+2
+

D−2∑
d=k+1

E

[(
d∏

`=k+1

K`

)
Cd+1ζ

2
d+2,d

2Nd+2

∣∣∣∣∣y(0:k−1)

]
+O(ε)

≤
Ck+1ζ

2
k+2,k

2Nk+2
+

D−2∑
d=k+1

(
d∏

`=k+1

K`

)
Cd+1ζ

2
d+2,k

2Nd+2
+O(ε)

and thus

Ek

(
y(0:k−1)

)
≤
s2
k

(
y(0:k−1)

)
Nk

+
1

4

(
Ckζ

2
k+1,k

Nk+1
+

D−2∑
d=k

(
d∏
`=k

K`

)
Cd+1ζ

2
d+2,k

Nd+2

)2

+O(ε).

and therefore

E
[
(I0 − γ0)

2
]

= E0 ≤
ς20
N0

+
1

4

(
C0ς

2
1

N1
+

D−2∑
k=0

(
k∏
d=0

Kd

)
Ck+1ς

2
k+2

Nk+2

)2

+O(ε)

as required and we are done.

Appendix E Proof of Theorem 4 - Convergence Rate for Finite Realisations of y

Theorem 4. If f is Lipschitz continuous, then the mean squared error of IN =
∑C
c=1(P̂N )c (f̂N )c as an estimator for I as

per (10) converges at rate O(1/N).

Proof. Denote Pc = P (y = yc) and fc = f(yc, γ(yc)) noting that as the yc are fixed values, so are Pc and fc. Then,
Minkowski’s inequality allows us to bound the mean squared error as

E
[
(IN − I)2

]
= ‖IN − I‖22 ≤

(
C∑
c=1

Wc

)2

where Wc :=
∥∥∥(P̂N )c (f̂N )c − Pc fc

∥∥∥
2
.

Moreover, again by Minkowski, we have Wc ≤ Uc + Vc where

Uc =
∥∥∥(P̂N )c (f̂N )c − (P̂N )c fc

∥∥∥
2
, Vc =

∥∥∥(P̂N )c fc − Pc fc
∥∥∥

2
.
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Factoring out (P̂N )c in Uc and noting that each yn and zn,c are sampled independently gives

Uc =

√
E
[
(P̂N )2

c

(
(f̂N )c − fc

)2
]

=

√
E
[
(P̂N )2

c

]√
E
[(

(f̂N )c − fc
)2
]
.

Using Minkowski’s inequality, we may write the first right-hand term as√
E
[
(P̂N )2

c

]
=
∥∥∥(P̂N )c

∥∥∥
2
≤ 1

N

N∑
n=1

‖I(yn = yc)‖2 =
1

N

N∑
n=1

E
[
I(yn = yc)

2
]

=
1

N

N∑
n=1

Pc = Pc.

For the second term, note that by Lipschitz continuity, we have for some constant K > 0√
E
[(

(f̂N )c − fc
)2
]

=
∥∥∥(f̂N )c − fc

∥∥∥
2
≤ K

∥∥∥∥∥ 1

N

N∑
n=1

φ(yc, zn,c)− γ(yc)

∥∥∥∥∥
2

= K ·O(1/
√
N) = O(1/

√
N),

since 1
N

∑N
n=1 φ(yc, zn,c) is a Monte Carlo estimator for γ(yc). Altogether then, we have that

Uc = Pc ·O(1/
√
N) = O(1/

√
N).

We can also factor out fc in Vc to obtain

Vc = |fc| ·
∥∥∥(P̂N )c − Pc

∥∥∥
2

= |fc| ·O(1/
√
N) = O(1/

√
N),

since (P̂N )c is a Monte Carlo estimator for Pc. Now by noting that (A+B)2 ≤ 2(A2 +B2) for any A,B ∈ R, an inductive
argument shows that (

L∑
`=1

A`

)2

≤ 2dlog2 Le
L∑
`=1

A2
`

for all A1, · · · , AL ∈ R. We can now show that our asymptotic bounds for Uc and Vc entail that our overall mean squared
error satisfies

E
[
(IN − I)2

]
≤ 2dlog2 Ce

C∑
c=1

W 2
c ≤ 2dlog2 Ce

C∑
c=1

(Uc + Vc)
2 ≤ 2dlog2 Ce+1

C∑
c=1

U2
c + V 2

c

= 2dlog2 Ce+1
C∑
c=1

O(1/N) +O(1/N) = O(1/N),

as desired.

Appendix F Proof for Theorem 5 - Products of Expectations

Theorem 5. Consider the NMC estimator

IN =
1

N

N∑
n=1

f

(
yn,

L∏
`=1

1

M`

M∑̀
m=1

ψ`(yn, z
′
n,`,m)

)
where each yn ∈ Y and z′n,`,m ∈ Z` are independently drawn from yn ∼ p(y) and z′n,`,m|yn ∼ p(z`|yn), respectively. If f
is linear, the estimator converges almost surely to I , with a convergence rate of O(1/N) in the mean square error for any
fixed choice of {M`}`=1:L.

Proof. Consider fixed sizes of nested sample sets, {M`}`=1:L. For each y ∈ Y and

x = {{z′`,m}m=1:M`
}`=1:L ∈ X = ZM1

1 ⊗ · · · ⊗ ZML

L ,

define

η(y, x) = f

(
y,

L∏
`=1

1

M`

M∑̀
m`=1

ψ`(y, z
′
`,m)

)
.
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Now, IN = 1
N

∑N
n=1 η(yn, xn) is a standard MC estimator on the space Y ⊗ X . Thus, IN

a.s.→ E[IN ] with convergence
properties and rate as per standard MC. We finish the proof by showing that E[IN ] = I when f is linear:

E[IN ] = E

[
1

N

N∑
n=1

f

(
yn,

L∏
`=1

1

M`

M∑̀
m=1

ψ`(yn, z
′
n,`,m)

)]
= E

[
E

[
f

(
y1,

L∏
`=1

1

M`

M∑̀
m=1

ψ`(y1, z
′
1,`,m)

)∣∣∣∣∣y1

]]
,

now using the linearity of f

= E

[
f

(
y1,E

[
L∏
`=1

1

M`

M∑̀
m=1

ψ`(y1, z
′
1,`,m)

∣∣∣∣∣y1

])]
,

and using the fact that terms for different ` are by construction independent

= E

[
f

(
y1,

L∏
`=1

E

[
1

M`

M∑̀
m=1

ψ`(y1, z
′
1,`,m)

∣∣∣∣∣y1

])]
= E

[
f

(
y1,

L∏
`=1

E
[
ψ`(y1, z

′
1,`,1)

∣∣y1

])]
= I,

as required.

Appendix G Optimizing the Convergence Rates

We have shown that the mean squared error converges at a rate

O

(
D∑
k=0

1

Nk

)
or O

 1

N0
+

(
D∑
k=1

1

Nk

)2


depending on the smoothness assumptions that can be made about f . Here we show that given a sample budget for the inner
most estimator T =

∏D
k=0Nk, then these bounds are optimized by setting N0 ∝ N1 ∝ · · · ∝ ND and N0 ∝ N2

1 ∝ · · · ∝
N2
D respectively for the two cases and that this gives bounds of O

(
1/T

1
D+1

)
and O

(
1/T

2
D+2

)
respectively. For the single

nested case, this gives bounds of O(1/
√
T ) and O(1/T 2/3) respectively.

We start by explaining why T is an appropriate measure of the overall computational cost. First note that for each sample of
y(0:k), the NMC estimator requires Nk samples of y(k+1). Thus there are N0 samples of the outermost level, N0 ×N1 of
the next level, and T =

∏D
k=0Nk samples of the innermost level, regardless of the setup. In other words, each individual

estimate of the innermost level uses ND samples and we generate
∏D−1
k=0 Nk = T/ND of these estimates because we need

to generate one estimate for each sample of the layer above. Thus what we can vary for a fixed T is whether we use more
estimates each using fewer samples, or fewer estimates each using more samples.

Now the total cost of generating I0 scales with sum the costs of each individual layer, namely

Cost =

D∑
k=0

ck

k∏
`=0

N`

where ck is the per sample cost local computations made at the kth layer (i.e. sampling y(0:k) and evaluating fk for given
inputs), which is independent of the Nk. For large ND, we see that the dominant cost is that of the inner most layer, namely
cT
∏D
`=0N` = cTT , and we asymptotically spend 100% of our time dealing with the innermost estimator. To give intuition

to this, think about writing the estimator as a hierarchy of nested for loops; as the length of the loops increases we spend an
increasing proportion of our time inside the innermost loop. Consequently, in the asymptotic regime, our computational cost
is O(T ) and we can use T is an appropriate measure of the overall computational cost.

To derive the optimal rates, we first consider the single nested case where D = 1, N0 = N , and N1 = M . Consider setting
N = τ(M) then T = τ(M) ·M and our bounds become O(R), where

R = 1/τ(M) + 1/M and R = 1/τ(M) + 1/M2.

for the two cases respectively.

In this first case supposing τ(M) = O(M) easily gives

T = Mτ(M) = O
(
M2
)
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and as such

R = O

(
1

M

)
= O

(
1√
T

)
(68)

as M →∞. In contrast, consider the case that τ(M)�M as M →∞. We then have 1√
M
� 1√

τ(M)
as M →∞, so that

R = O

(
1

M

)
� 1√

M

1√
τ(M)

=
1√
T
.

Comparing with (68), we observe that, for the same total budget of samples T , this choice of τ provides a strictly weaker
convergence guarantee than in the previous case. When M � τ(M) also then we have 1√

τ(M)
� 1√

M
as M →∞ and so

R = O

(
1

τ(M)

)
� 1√

M

1√
τ(M)

=
1√
T

which is again a weaker bound. We thus see that the O(1/N + 1/M) bound is optimized when N ∝ M , giving a
convergence rate of O(1/

√
T ).

In the second case suppose that τ(M) = O(M2) as M →∞. This now gives

T = Mτ(M) = O
(
M3
)

and therefore

R = O

(
1

M2

)
= O

(
1

T 2/3

)
as M →∞. Now considering the cases τ(M)�M2 leads to 1

M4/3 � 1
τ(M)2/3

and thus

R = O

(
1

M2

)
� 1

M2/3

1

τ(M)2/3
=

1

T 2/3
.

Similarly, if τ(M)�M2 then 1
τ(M)1/3

� 1
M2/3 and thus

R = O

(
1

τ(M)

)
� 1

M2/3

1

τ(M)2/3
=

1

T 2/3
.

Both of these cases lead to weaker bounds and so we see that the O(1/N + 1/M2) bound is tightest when N ∝M2, giving
a convergence rate of O(1/T 2/3).

We now consider the repeated nesting case without continuously differentiability such that our bound is O
(∑D

k=0
1
Nk

)
.

Here we can immediately see that N0 ∝ N1 ∝ · · · ∝ ND leads to Nk ∝ T
1

D+1 and thus O
(

1/T
1

D+1

)
convergence. If we

were to set any Nk � T
1

D+1 then this term would dominate the sum and lead to a worse converge. Thus the result from the
single nested case trivially extends to the multiple nested case, giving the required result.

Finally considering repeated nesting for the bound O
(

1
N0

+
(∑D

k=1
1
Nk

)2
)

then we have from the previous result that

N1 ∝ N2 ∝ · · · ∝ ND is required for optimality as otherwise one of the terms in the summation dominates the other terms.
If we now define M =

∏D
k=1Nk = T/N0 then we get a convergence rate of O(1/N0 + 1/M2) which is identical to the

single nesting case for this tighter bound. We, therefore, have that the optimal configuration must be N0 ∝ N2
1 ∝ · · · ∝ N2

D

giving a bound of O
(

1/T
2

D+2

)
as it gives N0 ∝ T

2
D+2 .

Appendix H Additional details pertaining to cancer simulator

In this section, we elucidate some more details about the cancer simulator described in the manuscript, provide more rigorous
mathematical definitions for the relevant terms using the same nomenclature, and also include more results figures.
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Figure 7. Projected expenditure (proportional to IN,M ) evaluated at different values of Ttreat. The budget constraint is shown by the
horizontal red line. The optimal value of Ttreat is found by the intersection and occurs at Ttreat = 12.5%. Evaluated was carried out at
100 Ttreatı. Only the bottom 20% is pictured as this is the operating range for most treatment centers.

H.1 Simulator details

We define I(Ttreat) to be the expected proportion of patients who receive treatment. A particular patient is represented by
y ∈ Rd. Specifically, y consists of only a single real number (d = 1) representing the size of the tumor upon discovery.
Initial tumor size is drawn from a scaled Rayleigh distribution. The outcome of the simulator is then φ(y, z) ∈ {0, 1}, and is
the binary outcome of whether that particular patient and sample of unobserved parameters yield an expected tumor size
below the threshold, Topp, after a fixed time duration, tmax. The simulator is a pair of coupled, parameterized differential
equations for the action of an anti-tumor treatment such as chemotherapy, as described in Enderling & Chaplain (2014):

dc

dt
= −λc log

( c
K

)
− ξc (69)

dK

dt
= φc− ψKc2/3, (70)

where c(t, x) ∈ R+ represents tumor size, with initial size yn. Similarly, K(t, x) ∈ R+ represents the notion of a carrying
capacity, with the initial carrying capacity, K(0, z), set to a known constant K0. The magnitude of the patient response to an
anti-tumor treatment (such as chemotherapy) is represented by ξ ∈ [0, 1], drawn from a beta distribution. {λ, ψ, φ} ∈ R3

+

represent the parameters of the simulator. We also define xn,m = {λ, ψ, φK0, ξ} and zn,m = {xn,m, Topp, tmax}, where all
but ξ are set to constant values. Expanding this to condition all values on yn is trivial given domain knowledge. Alternatively,
they could also be drawn at random, but not be conditioned on yn. Such relations are omitted here for simplicity.

We can now fully define φ as:

φ(yn, zn,m) = I(c(tmax, xn,m) < Topp). (71)

Taking the expectation of φ over M different realizations of z yields the estimate (γ̂M )n. This value is the probability that
treatment will be successful for a particular patient, marginalizing over possible unobserved dynamics. This is the point at
which clinician decides whether initiate the treatment plan. This decision is represented f(yn, (γ̂M )n) ∈ [0, 1] as:

f(yn, (γ̂M )n) = I((γ̂M )n > Ttreat) (72)

where Ttreat is the minimum probability of success required for that patient to receive the treatment, and again, could be
conditioned on y also. Taking the expectation of f over patients yields the expected frequency with which the treatment will
be delivered, given a value of Ttreat. The hospital wishes to estimate the value Ttreat that maximizes the number of patients
treated, while only treating those patients with the highest probability of success, and (in expectation) staying within the
budgetary constraint.

The model is completed by the definition of the following distributions and parameters.

K0 = 100000000, φ = 0.001, ψ = 0.05, λ = 0.5, ξ ∼ Beta(5, 2),

c0 ∼ 1000 ∗ Rayleigh(10), Topp = 2000, Ttreat = 0.35, tmax = 250, tstep = 0.01
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H.2 Budget result

In the example outlined above, the treatment center is not actually attempting to evaluate the value of I , but to find the
optimal value of Ttreat subject to a budgetary constraint. A simplistic way of evaluating the optimal value is to perform a
dense search over different values of the parameter, each time evaluating the estimated expenditure, and select the best
performing value.

Figure 7 shows the variation of predicted expenditure against the threshold probability, as well as the budget constraint. The
intersection of these curves is the optimal setting of Topp, here evaluated to be 12.5%. From the blue line, it is clear that the
relationship between expenditure and treatment probability is non-linear, especially at the extrema of the distribution, and
hence the use of NMC was necessarily for evaluating the optimal value.

Appendix I Bayesian Experimental Design

Bayesian experimental design provides a framework for designing experiments in a manner that is optimal from an
information-theoretic viewpoint (Chaloner & Verdinelli, 1995; Sebastiani & Wynn, 2000). By minimizing the entropy in the
posterior distribution of the parameters of interest, one can maximize the information gathered by the experiment.

Let the parameters of interest be denoted by θ ∈ Θ for which we define a prior distribution p(θ). Let the probability of
achieving outcome y ∈ Y , given parameters θ and a design d ∈ D, be defined by likelihood model p(y|θ, d). Under our
model, the outcome of the experiment given a chosen d is distributed according to

p(y|d) =

∫
Θ

p(y, θ|d)dθ =

∫
Θ

p(y|θ, d)p(θ)dθ. (73)

where we have used the fact that p(θ) = p(θ|d) because θ is independent of the design. Our aim is to choose the optimal
design d under some criterion. We, therefore, define a utility function, U(y, d), representing the utility of choosing a design
d and getting a response y. Typically our aim is to maximize information gathered from the experiment, and so we set
U(y, d) to be the gain in Shannon information between the prior and the posterior:

U(y, d) =

∫
Θ

p(θ|y, d) log(p(θ|y, d))dθ −
∫

Θ

p(θ) log(p(θ))dθ (74)

However, we are still uncertain about the outcome. Thus, we use the expectation of U(y, d) with respect to p(y|d) as our
target:

Ū(d) =

∫
Y
U(y, d)p(y|d)dy

=

∫
Y

∫
Θ

p(y, θ|d) log(p(θ|y, d))dθdy −
∫

Θ

p(θ) log(p(θ))dθ

=

∫
Y

∫
Θ

p(y, θ|d) log

(
p(θ|y, d)

p(θ)

)
dθdy. (75)

noting that this corresponds to the mutual information between the parameters θ and the observations y. The Bayesian-
optimal design is then given by

d∗ = argmax
d∈D

Ū(d). (76)

Finding d∗ is challenging because the posterior p(θ|y, d) is rarely known in closed form. To solve the problem, we proceed
by rearranging (75) using Bayes’ rule (remembering that p(θ) = p(θ|d)):

Ū(d) =

∫
Y

∫
Θ

p(y, θ|d) log

(
p(θ|y, d)

p(θ)

)
dθdy

=

∫
Y

∫
Θ

p(y, θ|d) log

(
p(y|θ, d)

p(y|d)

)
dθdy

=

∫
Y

∫
Θ

p(y, θ|d) log(p(y|θ, d))dθdy −
∫
Y
p(y|d) log(p(y|d))dy.

(77)

The first of these terms can now be evaluated using standard MC approaches as the integrand is analytic. In contrast, the
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second term is not directly amenable to standard MC estimation as the marginal p(y|d) represents an expectation and taking
its logarithm represents a non-linear functional mapping.

To derive an estimator, we will now consider these terms separately. Starting with the first term,

Ū1(d) =

∫
Y

∫
Θ

p(y, θ|d) log(p(y|θ, d))dθdy ≈ 1

N

N∑
n=1

log(p(yn|θn, d)) (78)

where θn ∼ p(θ) and yn ∼ p(y|θ = θn, d). We note that evaluating (78) involves both sampling from p(y|θ, d) and directly
evaluating it point-wise. The latter of these cannot be avoided, but in the scenario where we do not have direct access to
a sampler for p(y|θ, d), we can use the standard importance sampling trick, sampling instead yn ∼ q(y|θ = θn, d) and
weighting the samples in (78) by wn = p(yn|θn,d)

q(yn|θn,d) .

Now considering the second term we have

Ū2(d) =

∫
Y
p(y|d) log(p(y|d))dy ≈ 1

N

N∑
n=1

log

(
1

M

M∑
m=1

p(yn|θn,m, d)

)
(79)

where θn,m ∼ p(θ) and yn ∼ p(y|d). Here we can sample the latter by first sampling an otherwise unused θn,0 ∼ p(θ) and
then sampling yn ∼ p(y|θn,0, d). Again we can use importance sampling if we do not have direct access to a sampler for
p(y|θn,0, d).

Putting (78) and (79) together (and renaming θn from (78) as θn,0 for notational consistency with (79)) we now have the
following complete estimator given in the main paper and implicitly used by (Myung et al., 2013) amongst others

Ū(d) ≈ 1

N

N∑
n=1

[
log(p(yn|θn,0, d))− log

(
1

M

M∑
m=1

p(yn|θn,m, d)

)]
(80)

where θn,m ∼ p(θ) ∀m ∈ 0 : M, n ∈ 1 : N and yn ∼ p(y|θ = θn,0, d) ∀n ∈ 1 : N .

We now show that if y can only take on one of C possible values (y1, . . . , yC), we can achieve significant improvements in
the convergence rate by using a similar to that introduced in Section 3.2 to convert to single MC estimator:

Ū(d) =

∫
Y

∫
Θ

p(y, θ|d) log(p(y|θ, d))dθdy −
∫
Y
p(y|d) log(p(y|d))dy

=

∫
Θ

[
C∑
c=1

p(θ)p(yc|θ, d) log(p(yc|θ, d))

]
dθ −

C∑
c=1

p(yc|d) log(p(yc|d))

≈ 1

N

N∑
n=1

C∑
c=1

p(yc|θn, d) log (p(yc|θn, d))−
C∑
c=1

[(
1

N

N∑
n=1

p(yc|θn, d)

)
log

(
1

N

N∑
n=1

p(yc|θn, d)

)]
(81)

where θn ∼ p(θ) ∀n ∈ 1, . . . , N . As C is a fixed constant, the MSE for first term clearly converges at the standard
MC error rate of O(1/N). Similarly each P̂N (yc|d) = 1

N

∑N
n=1 p(yc|θn, d) term also converges at a rate O(1/N) to

p(yc|d). Now noting that P̂N (yc|d) ≤ 1 and that f(x) = x log x is Lipschitz continuous in the range (0, 1], each
P̂N (yc|d) log

(
P̂N (yc|d)

)
term must also converge at the MC error rate if p(yc|d) > 0 ∀c = 1, . . . , C. Finally if we assume

that when p(yc|d) = 0 then P̂N (yc|d) = 0 almost surely for sufficiently large N , then the second term also converges at
the MC error when p(yc|d) = 0. We now have a finite sum of terms which each convergence to Ū(d) with MC MSE rate
O(1/N), and so the overall estimator (81) must also converge at this rate. This compares to O(1/T 2/3) for (80) (assuming
we take N ∝ M2), noting that generating T samples for (80) has the same cost up to a constant factor as generating N
for (81). To the best of our knowledge, this is the first introduction of this superior estimator in the literature.

We finish by showing that the theoretical advantages of this reformulation also leads to empirical gains in the estimation of
Ū(d). For this, we consider a model used in psychology experiments for delay discounting introduced by (Vincent, 2016;
Vincent & Rainforth, 2017). Our experiment comprises of asking questions of the form “Would you prefer £A now, or £B
in D days?” and we wish to choose the question variables d = {A,B,D} in the manner that will give the most incisive
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Figure 8. Estimated expected utilities Ū(d)for different values of one of the design parameters A ∈ {1, 2, . . . , 100} given a fixed total
sample budget of T = 104. Here the lines correspond to 10 independent runs, showing that the variance of (80) is far higher than (81).

questions. The target participant is presumed to have parameters θ = {k, α} and the following response model

y ∼ Bernoulli

(
0.01 + 0.98 · Φ

(
1

α

(
B

1 + ekD
−A

)))
(82)

where y = 1 indicates choosing the delayed response and Φ represents the cumulative normal distribution. As more
questions are asked, the distribution over the parameters θ is updated, such that the most optimal question to ask at a
particular time depends on the previous questions and responses. For the sake of brevity, when comparing the performance
of (80) and (81) we will neglect the problem of how best to optimize the design, and consider only the problem of evaluating
Ū(d). We will further consider the case where B = 100 and D = 50 are fixed and we are only choosing the delayed value
A. We presume the following distribution on the parameters

k ∼ N (−4.5, 0.52)

α ∼ Γ(2, 2).

We first consider convergence in the estimate of Ū(d) for the case A = 70 for our suggested method (81) and the naı̈ve
solution (80), the results of which are shown in Figure 2a in the main paper. Here we see that the convergence rates of the
two methods are both as expected and that our suggested method offers significant empirical performance improvements.

We next consider setting a total sample budget T = 104 and look at the variation in the estimated values of Ū(d) for different
values of A for the two methods as shown in Figure 8. This shows that the improvement in MSE leads to clearly visible
improvements in the characterization of Ū(d) that will translate to improvements in seeking the optimum.
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