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A Proof of SNR Convergence Rates
Theorem 1. Assume that when M = K = 1, the expected gradients; the variances of the gradients; and the first four
moments of w1,1,∇θw1,1, and∇φw1,1 are all finite and the variances are also non-zero. Then the signal-to-noise ratios of
the gradient estimates converge at the following rates
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where Z := pθ(x) is the true marginal likelihood.

Proof. We start by considering the variance of the estimators. We will first exploit the fact that each Ẑm,K is independent
and identically distributed and then apply Taylor’s theorem1 to log Ẑm,K about Z, using R1(·) to indicate the remainder
term, as follows.
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Now we have by the mean-value form of the remainder that for some Z̃ between Z and Ẑ1,K
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1This approach follows similar lines to the derivation of nested Monte Carlo convergence bounds in (Rainforth, 2017; Rainforth et al.,
2018; Fort et al., 2017) and the derivation of the mean squared error for self-normalized importance sampling, see e.g. (Hesterberg, 1988).
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with the square of the estimator error, whereas other comparable terms vary only with the unsquared difference. The
assumptions on moments of the weights and their derivatives further guarantee that these terms are finite. More precisely,
we have Z̃ = Z + α(Ẑ1,K − Z) for some 0 < α < 1 where ∇θ,φα must be bounded with probability 1 as K → ∞ to
maintain our assumptions. It follows that∇θ,φR1(Ẑ1,K) = O((Ẑ1,K − Z)2) and thus that
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using the fact that the third and fourth order moments of a Monte Carlo estimator both decrease at a rate O(1/K2).
Considering now the expected gradient estimate and again using Taylor’s theorem, this time to a higher number of terms,
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Using a similar process as in variance case, it is now straightforward to show that∇θ,φE
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is thus similarly dominated (also giving us (7)).
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For φ, then because∇φZ = 0, we instead have
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and we are done.
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B Derivation of Optimal Parameters for Gaussian Experiment
To derive the optimal parameters for the Gaussian experiment we first note that
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Qφ(z1:K |x(n)) is as per (2) and the form of the Kullback-Leibler (KL) is taken from (Le et al., 2018). Next, we note that
φ only controls the mean of the proposal so, while it is not possible to drive the KL to zero, it will be minimized for
any particular θ when the means of qφ(z|x(n)) and pθ(z|x(n)) are the same. Furthermore, the corresponding minimum
possible value of the KL is independent of θ and so we can calculate the optimum pair (θ∗, φ∗) by first optimizing for θ
and then choosing the matching φ. The optimal θ maximizes log
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giving φ∗ := (A∗, b∗), where A∗ = I/2 and b∗ = µ∗/2.

C Additional Empirical Analysis of SNR
C.1 Histograms for VAE
To complete the picture for the effect of M and K on the distribution of the gradients, we generated histograms for the
K = 1 (i.e. variational auto-encoder (VAE)) gradients as M is varied. As shown in Figure C.1a, we see the expected effect
from the law of large numbers that the variance of the estimates decreases with M , but not the expected value.
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Figure C.1: Histograms of gradient estimates ∆M,K for the generative network and the inference network using the VAE
(K = 1) objectives with different values of M .

C.2 Convergence of RMSE for Generative Network

Figure C.2: RMSE in µ gradient estimate to∇µ logZ

As explained in the main paper, the SNR is not an en-
tirely appropriate metric for the generative network – a
low SNR is still highly problematic, but a high SNR does
not indicate good performance. It is thus perhaps better to
measure the quality of the gradient estimates for the gen-
erative network by looking at the root mean squared error
(RMSE) to ∇µ logZ, i.e.

√
E [‖∆M,K −∇µ logZ‖22].

The convergence of this RMSE is shown in Figure C.2
where the solid lines are the RMSE estimates using 104

runs and the shaded regions show the interquartile range
of the individual estimates. We see that increasing M
in the VAE reduces the variance of the estimates but has
negligible effect on the RMSE due to the fixed bias. On the other hand, we see that increasing K leads to a monotonic
improvement, initially improving at a rate O(1/K) (because the bias is the dominating term in this region), before settling
to the standard Monte Carlo convergence rate of O(1/

√
K) (shown by the dashed lines).



Tighter Variational Bounds are Not Necessarily Better

C.3 Experimental Results for High Variance Regime
We now present empirical results for a case where our weights are higher variance. Instead of choosing a point close to the
optimum by offsetting parameters with a standard deviation of 0.01, we instead offset using a standard deviation of 0.5. We
further increased the proposal covariance to I to make it more diffuse. This is now a scenario where the model is far from its
optimum and the proposal is a very poor match for the model, giving very high variance weights.
We see that the behavior is the same for variation in M , but somewhat distinct for variation in K. In particular, the
signal-to-noise ratio (SNR) and DSNR only decrease slowly with K for the inference network, while increasing K no longer
has much benefit for the SNR of the inference network. It is clear that, for this setup, the problem is very far from the
asymptotic regime in K such that our theoretical results no longer directly apply. Nonetheless, the high-level effect observed
is still that the SNR of the inference network deteriorates, albeit slowly, as K increases.
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Figure C.3: Histograms of gradient estimates as per Figure 1.
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Figure C.4: Convergence of signal-to-noise ratios of gradient estimates as per Figure 2.



Tighter Variational Bounds are Not Necessarily Better

(a) Convergence of DSNR for inference network (b) Convergence of DSNR for generative network

Figure C.5: Convergence of directional signal-to-noise ratio of gradients estimates as per Figure 3.

(a) Convergence of DSNR for inference network (b) Convergence of DSNR for generative network

Figure C.6: Convergence of directional signal-to-noise ratio of gradient estimates where the true gradient is taken as
E [∆1,1000] as per Figure 4.

D Convergence of Deep Generative Model for Alternative Parameter Settings
Figure D.1 shows the convergence of the introduced algorithms under different settings to those shown in Figure 5. Namely
we consider M = 4,K = 16 for partially importance-weighted auto-encoder (PIWAE) and multiply importance-weighted
auto-encoder (MIWAE) and β = 0.05 for combination importance-weighted auto-encoder (CIWAE). These settings all
represent tighter bounds than those of the main paper. Similar behavior is seen in terms of the IWAE-64 metric for all
algorithms. PIWAE produced similar mean behavior for all metrics, though the variance was noticeably increased for log p̂(x).
For CIWAE and MIWAE, we see that the parameter settings represent an explicit trade-off between the generative network and
the inference network: log p̂(x) was noticeably increased for both, matching that of IWAE, while −KL(Qφ(z|x)||Pθ(z|x))
was reduced. Critically, we see here that, as observed for PIWAE in the main paper, MIWAE and CIWAE are able to match the
generative model performance of IWAE whilst improving the KL metric, indicating that they have learned better inference
networks.
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Figure D.1: Convergence of different evaluation metrics for each method. Plotting conventions as per Figure 5.
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E Convergence of Toy Gaussian Problem
We finish by assessing the effect of the outlined changes in the quality of the gradient estimates on the final optimization for
our toy Gaussian problem. Figure E.1 shows the convergence of running Adam (Kingma & Ba, 2014) to optimize µ, A,
and b. This suggests that the effects observed predominantly transfer to the overall optimization problem. Interestingly,
setting K = 1 and M = 1000 gave the best performance on learning not only the inference network parameters, but also
the generative network parameters.
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Figure E.1: Convergence of optimization for different values of K and M . (Top, left) ELBOIS during training (note this
represents a different metric for different K). (Top, right) L2 distance of the generative network parameters from the true
maximizer. (Bottom) L2 distance of the inference network parameters from the true maximizer. Plots show means over 3
repeats with ±1 standard deviation. Optimization is performed using the Adam algorithm with all parameters initialized by
sampling from the uniform distribution on [1.5, 2.5].
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