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Abstract
The large memory requirements of deep neural
networks limit their deployment and adoption
on many devices. Model compression methods
effectively reduce the memory requirements of
these models, usually through applying transfor-
mations such as weight pruning or quantization.
In this paper, we present a novel scheme for lossy
weight encoding co-designed with weight simpli-
fication techniques. The encoding is based on the
Bloomier filter, a probabilistic data structure that
can save space at the cost of introducing random
errors. Leveraging the ability of neural networks
to tolerate these imperfections and by re-training
around the errors, the proposed technique, named
Weightless, can compress weights by up to 496×
without loss of model accuracy. This results in up
to a 1.51× improvement over the state-of-the-art.

1. Introduction
The continued success of neural networks comes with in-
creasing demands on compute, memory, and networking
resources. Moreover, the correlation between model size
and accuracy suggests that tomorrow’s networks will only
grow larger. This growth presents a challenge for resource-
constrained platforms such as mobile phones and wireless
sensors. A common workflow is to train networks in the
cloud using high-performance devices including GPUs and
even customized hardware (Google, 2017). Trained neural
networks are then distributed to edge devices and used to
make inferences on new data. To make the inferences effi-
cient, devices now leverage special hardware (Apple, 2017;
Qualcomm, 2017), mobile GPUs, or CPUs with heavily
optimized code (Hazelwood et al., 2018).

While many products have been successfully deployed to
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Figure 1. Weightless compresses neural networks by up to three
orders of magnitude, which facilitates efficient transmission of
trained models from the cloud to edge devices.

alleviate the computational costs of network training and
inference, one remaining practical issue is reducing the bur-
den of distributing the latest models, especially in regions of
the world not using high-bandwidth networks. For instance,
it is estimated that, globally, 800 million users will be using
2G networks by 2020 (GSMA, 2014), which can take up to
30 minutes to download just 20 MB of data. By contrast,
today’s neural networks are on the order of tens to hundreds
of MBs, making them difficult to distribute. The limited
storage capacity on resource-constrained devices poses an
additional challenge as more applications look to leverage
neural networks.

Model compression is a popular solution for these problems.
A variety of compression algorithms have been proposed in
recent years and many exploit the intrinsic redundancy in
model weights. Broadly speaking, the majority of this work
has focused on simplification methods (e.g., weight pruning
and quantization), while comparatively little effort has been
spent on devising techniques for encoding and compressing.

In this paper we propose Weightless: a novel lossy compres-
sion method co-designed with weight simplification tech-
niques. Weightless is based on the probabilistic Bloomier
filter data structure (Chazelle et al., 2004). Bloomier filters
inexactly store a function map, and by adjusting the filter
parameter, we can elect to reduce the structure’s size at the
cost of an increased chance of erroneous values. We use the
filters to compactly encode the weights of a neural network
for transmission and storage (Figure 1), exploiting redun-
dancy in the weights to tolerate some errors. Bloomier filters
excel when the encoded data is sparse and the values have a
small contiguous range. Therefore, to maximize compres-
sion, we simplify the weights for encoding by aggressively
pruning connections and clustering values. Finally, the size
of the filters encoding the weights can be further reduced
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using conventional compression techniques. Weightless em-
ploys arithmetic coding, an entropy optimal compression
algorithm, to compress the Bloomier filters. Combined,
Weightless demonstrates compression rates of up to 496×
without loss of accuracy, improving state-of-the-art by up to
1.51×. To conclude, we present a case study showing how
Weightless’ compression ratio scales better with sparsity
than competing methods—as more effective pruning meth-
ods are proposed, Weightless provides even more benefit.

This work demonstrates the efficacy of compressing neu-
ral networks with lossy encoding using probabilistic data
structures. Even after applying the aggressive lossy simplifi-
cation steps of weight pruning and clustering (see Section 2),
there is still sufficient extraneous information left in model
weights to allow an approximate encoding scheme to sub-
stantially reduce the memory footprint without loss of model
accuracy.

2. Related Work
Our goal is to minimize the static memory footprint of a
neural network without compromising accuracy. Neural net-
work weights exhibit ample redundancy, and a wide variety
of techniques have been proposed to exploit this attribute.
We group these techniques into two categories: (1) methods
that modify the loss function or structure of a network to
reduce free parameters and (2) methods that compress a
given network by removing unnecessary information.

The first class of methods aim to directly train a network
with a small memory footprint by introducing specialized
structure or loss. Examples of specialized structure include
low-rank, structured matrices of Sindhwani et al. (2015)
and randomly-tied weights of Chen et al. (2015). Exam-
ples of specialized loss include teacher-student training for
knowledge distillation (Bucila et al., 2006; Hinton et al.,
2015) and diversity-density penalties (Wang et al., 2017).
These methods can achieve significant space savings, but
also typically require modification of the network structure
and full retraining of the parameters.

An alternative approach, which is the focus of this work, is
to compress an existing, trained model. This exploits the fact
that most neural networks contain far more information than
is necessary for accurate inference (Denil et al., 2013). This
extraneous information can be removed to save memory.
Much prior work has explored this opportunity, generally
by applying a two-step process of first simplifying weight
matrices and then encoding them in a more compact form.

For example, pruning by selectively zeroing weight values
(LeCun et al., 1989; Guo et al., 2016) can, in some cases,
eliminate over 99% of the values without penalty. Simi-
larly, most models do not need many bits of information to
represent each weight. Quantization collapses weights to

a smaller set of unique values, for instance via reduction
to fixed-point binary representations (Gupta et al., 2015) or
clustering techniques (Gong et al., 2014).

Simplifying weight matrices can further enable the use of
more compact encoding schemes, improving compression.
For example, two recent works (Han et al., 2016; Choi et al.,
2017) encode pruned and quantized neural networks with
sparse matrix representations. In both works, however, the
encoding step is a lossless transformation, applied on top of
lossy simplification.

3. Weightless
Weightless is a lossy encoding scheme based around
Bloomier filters. We begin by describing what a Bloomier
filter is, how to construct one, and how to retrieve values
from it. Next, we show how the Bloomier filter can be
adapted to encode the weights of a neural network and pro-
pose a set of weight augmentations to improve compression.
Finally, we recount related but ultimately unsuccessful al-
ternative design choices we encountered while developing
Weightless.

3.1. The Bloomier filter

A Bloomier filter generalizes the idea of a Bloom fil-
ter (Bloom, 1970), which are data structures that answer
queries about set membership. Given a subset S of a uni-
verse U , a Bloom filter answers queries of the form, “Is
v ∈ S?”. If v is in S, the answer is always yes; if v is
not in S, there is some probability of a false positive. By
allowing false positives, Bloom filters can dramatically re-
duce the space needed to represent the set. A Bloomier
filter (Chazelle et al., 2004) is a similar data structure but in-
stead encodes a function. For each v in a domain S, the func-
tion has an associated value f(v) in the range R = [0, 2r).
Given an input v, a Bloomier filter always returns f(v) when
v is in S. When v is not in S, the Bloomier filter returns a
null value ⊥, except that some fraction of the time there is a
false positive, and the Bloomier filter returns an incorrect,
non-null value in the range R.

Decoding Let S be the subset of values in U to store, with
|S| = n. A Bloomier filter uses a small number of hash
functions (typically four), and a hash table X of m = cn
cells for some constant c (1.25 in this paper), each hold-
ing t > r bits. For hash functions H0, H1, H2, HM , let
H0,1,2(v) → [0,m) and HM (v) → [0, 2r), for any v ∈ U .
The table X is set up such that for every v ∈ S,

XH0(v) ⊕XH1(v) ⊕XH2(v) ⊕HM (v) = f(v).

Hence, to find the value of f(v), hash v four times, per-
form three table lookups, and exclusive-or together the four
values. In practice, the four hashes of v can be reduced to
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Figure 2. Encoding weights (W) with a Bloomier filter (X) pro-
duces a lossy reconstruction (W′). W′ is an inexact reconstruction
of W from the filter X. To retrieve the value w′

i,j , we hash its
location and exclusive-or the corresponding entries of X together
with a computed mask M . If the resulting value falls within the
range [0, 2r), it is used for w′

i,j , otherwise, it is zero. The red path
shows a false positive due to collisions in X and random M value.

a single 64-bit or 128-bit hash that is separated into four
16-bit or 32-bit values respectively. Like the Bloom filter,
querying a Bloomier filter runs inO(1) time. For u /∈ S, the
result, XH0(u) ⊕XH1(u) ⊕XH2(u) ⊕HM (u), will be uni-
form over all t-bit values. If this result is not in [0, 2r), then
⊥ is returned; if it happened to land in [0, 2r), a false posi-
tive occurs and a result is incorrectly returned. An incorrect
value is therefore returned with probability 2r−t.

Encoding Constructing a Bloomier filter involves finding
values for X such that the relationship above holds for all
values in S. Known construction algorithms involve search-
ing for suitable configurations with randomized algorithms.
In their paper introducing Bloomier filters, Chazelle et al.
(2004) give a greedy algorithm which takes O(n log n) time
and produces a table of size dcnet bits with high proba-
bility. Charles & Chellapilla (2008) provide two slightly
better constructions. First, they give a method with identi-
cal space requirements that runs in O(n) time. They also
show a separate O(n log n)-time algorithm for producing a
smaller table with c closer to 1. Using a more sophisticated
algorithm for construction should allow for a more compact
table and, by extension, improve the overall compression
rate. However, we leave this for future work and use the
construction method presented by Chazelle et al. (2004).

While construction (encoding) can be expensive,
O(n log n)), it is a one-time cost incurred after a
new set of weights is trained. Moreover, the construction’s
absolute runtime is negligible, minutes in the case of
VGG-16, compared to the time it takes to train a network.
On a Intel i7-6700K CPU reconstructing (decoding) the

largest layers of each model takes 0.52, 1.3, and 22.8
seconds for MNIST-300-100, LeNet5, and VGG-16
respectively; on the ARM A53 mobile class CPU used
in smartphones since 2014 (Qualcomm, 2018), the same
layers take 7.1, 18, and 296 seconds to reconstruct. See
supplemental material for additional runtime analysis.

3.2. Approximate weight encoding with Bloomier filters

We propose using the Bloomier filter to compactly store
the weights of a neural network. The function f encodes
the mapping between indices of nonzero weights to their
corresponding values. Given a weight matrix W, define
the domain S to be the set of indices {i, j | wi,j 6= 0}.
Likewise, the range R, corresponding to the weight values,
is [−2a−1, 2a−1)− {0} for a such that all values of W fall
within the interval. Due to weight value clustering (see
below) this range is remapped to [0, 2r) and encodes the
cluster indices. A null response from the filter means the
weight has a value of zero.

Once f is encoded in a filter, an approximation W′ of
the original weight matrix is reconstructed by querying it
with all indices. The original nonzero elements of W are
preserved in the approximation, as are most of the zero
elements. A small subset of zero-valued weights in W′ will
take on nonzero values as a result of random collisions in X,
possibly changing the model’s output. Figure 2 illustrates
the operation of this scheme: an original nonzero is correctly
recalled from the filter on the right and a false positive is
created by an erroneous match on the left (red).

Co-designing weight simplification and Bloomier filters
Because the space used by a Bloomier filter is O(nt), they
are especially useful under two conditions: (1) the stored
function is sparse (small n, with respect to |U |) and (2)
it has a restricted range of output values (small r, since
t > r). To improve overall compression, we co-design
weight simplification methods with these properties. In
particular we leverage weight pruning and quantization.

Pruning networks to enforce sparsity (condition 1) has been
studied extensively (Hassibi & Stork, 1993; LeCun et al.,
1989). In this paper, we consider two different pruning
techniques: (i) magnitude threshold plus retraining and (ii)
dynamic network surgery (DNS) (Guo et al., 2016). Magni-
tude pruning with retraining is straightforward to use and
offers good results. DNS is a recently proposed technique
that prunes the network during training. We were able to
acquire two sets of models, LeNet-300-100 and LeNet5,
that were pruned using DNS and include them in our eval-
uation; as no reference was published for VGG-16 only
magnitude pruning is used. Regardless of how it is accom-
plished, improving sparsity will reduce the overall encoding
size linearly with the number of nonzeros with no effect on
the false positive rate (which depends only on r and t). The
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Figure 3. Trading off filter size and encoding strength. There is an
exponential relationship between the t hyperparameter and both
the number of false positives (red) and model accuracy (blue).

reason for using two methods is to demonstrate the benefits
of Weightless as networks increase in sparsity, the DNS
networks are notably more sparse than those simplified with
magnitude pruning.

Reducing r (condition 2) amounts to restricting the range
of the stored function or minimizing the number of bits re-
quired to represent weight values. Though many solutions
to discretize weights exist (e.g., limited binary precision
and advanced quantization techniques (Choi et al., 2017)),
we use k-means clustering. After clustering the weight val-
ues, the k centroids are saved into an auxiliary table and
the elements of W are replaced with indices into this table.
This style of indirect encoding is especially well-suited to
Bloomier filters, as these indices represent a small, contigu-
ous set of integers. Another benefit of using Bloomier filters
is that k does not have to be a power of 2. When recon-
structing weights from Bloomier filters, the result of the
XORs can be checked with an inequality, rather than a bit-
mask. This allows Bloomier filters to use exactly k nonzero
values. In other methods, like that of Han et al. (2016), k
must be a power of two (or some values are simply wasted).
Bloomier filters thus allow more flexible tradeoffs between
compression and the false positive rate.

Tuning the filter size The use of Bloomier filters introduces
an additional hyperparameter t that sets the filters’ encoding
strength (i.e., the number of bits per cell in the Bloomier
filter). The hyperparameter t trades off the Bloomier filter’s
size and the false positive rate which, in turn, affects model
accuracy, see Figure 3. While t needs to be tuned, we
find it far easier to reason about than other neural network
hyperparameters. Because we encode k clusters, the only
formal constraint is that t must be greater than dlog2 ke.
Each additional t bit reduces the number of false positives
by a factor of 2, limiting the number of reasonable values
for t. When t is too low, the networks experience substantial
accuracy loss. However, higher values of t offer diminishing
returns as weight’s have some implicit resilience to errors.
Experimentally, for the models considered, we find that t
typically falls in the range of 6 to 9.

Baseline error

Lossily encoded model

Figure 4. Retraining VGG-16 FC-1 after encoding FC-0 in a
Bloomier filter. The error increases from 30% to 33% after encod-
ing FC-0. After a few retraining epochs the error is recovered.

Retraining to mitigate the effects of false positives We
encode each layer’s weights sequentially. Because the
weights are fixed, the Bloomier filter’s false positives are de-
terministic. This allows for the retraining of deeper network
layers to compensate for errors. It is important to note that
encoded layers are not retrained (see Algorithm 1). If the
encoded layer was retrained, a new encoding would have
to be constructed (because changing the weights changes
S) and the indices of weights that result in false positives
would differ after every iteration of retraining. Instead, we
find retraining all subsequent layers to be an effective op-
timization, typically allowing us to reduce t by one or two
bits (e.g., going from t = 8→ 6 saves 25%).

Figure 4 demonstrates the process of retraining around false
positives introduced by the Bloomier filter for VGG-16’s
first and largest fully-connected layer (see Table 1: VGG-
16, FC-0). Epoch 0 corresponds to the error of the entire
network with the reconstructed approximation of the fully-
connected layer’s weights. Note that, as the blue line indi-
cates the baseline accuracy, the encoding results in a 3.0%
absolute increase to model validation error. As the deeper
layers are retrained for a couple of epochs, the model’s ac-
curacy significantly improves, and after only 6 epochs the
original and approximate weights achieve nearly indistin-
guishable accuracy.

Compressing Bloomier filters When sending weight ma-
trices over a network, it is not necessary to retain the ability
to access weight values as they are being sent, so it is advan-
tageous to add another layer of compression for transmis-
sion. We use arithmetic coding, a lossless, entropy-optimal
stream code which exploits the distribution of values in the
table (MacKay, 2005). Because the nonzero entries in a
Bloomier filter are, by design, uniformly distributed val-
ues in [1, 2t − 1), improvements from this stage largely
come from the prevalence of zero entries. In this paper, we
use encoding to refer to the use of the Bloomier filter and
compression as arithmetic coding.
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Algorithm 1 Weightless compression method
Result: A, Arithmetic coded Bloomier filters
Input: M← simplified trained model with n layers
ki ← number of clusters per layer
βerr = evaluate(M)
for i = 0 to n− 1 do
t← dlog2 kie+ 1
WP+C ← K-means(Mi, ki)
ωerr ←∞
while βerr < ωerr do
X← BloomierEncode(WP+C , t)
Mi ← BloomierReconstruct(X)
RetrainAndPrune (Mi+1→N )
ωerr ← evaluate(M)
t← t+ 1

end while
Ai ← ArithmeticCode(X)

end for
Transmit A

3.3. The Weightless compression pipeline

The complete Weightless compression flow is given for-
mally in Algorithm 1. Given a simplified model M, (i.e., a
pruned and clustered neural network), a baseline error, βerr,
is measured and saved as an accuracy target all encoding
approximations must uphold. Note that if some accuracy
degradation is tolerable, significant additional compression
can be achieved.

Next, each layer to be compressed is encoded as a Bloomier
filter starting at some minimal t value greater than the min-
imal number of bits needed to represent the clusters. The
approximation of the weights is then computed by querying
the constructed filter for all weight indexes and replaces the
corresponding layer’s weights in the original layer. Deeper
network layers are then retrained to adapt and mitigate the
effects of the errors introduced by the encoding, while simul-
taneously being pruned to maintain simplification criterion
(1) for when they are encoded.

Once training converges, typically after a few epochs, the
network error, ωerr, is computed and compared to the base-
line βerr. If the Bloomier filter encoding increased error,
t is increased (halving the false positives of the filter), and
the process is repeated. In practice, we found setting t to be
trivial given the exponential relationship between t and the
number of errors. (In our experiments, t usually assumes a
value between 6 and 9 for aggressively clustered weights.)
Once an acceptable t is found, the layer’s filter is further
compressed with lossless arithmetic coding.

3.4. Ineffective optimization strategies

We experimented with techniques that ultimately did not
improve compression. We briefly describe notable ones
here to provide additional intuition on using approximate
methods to encode neural network weights.

Encoding with Bloom filters An alternative approach to
encode a weight matrix is to treat every weight wi,j as an
r-bit binary value {wi,j,1, . . . , wi,j,r} and for each bitwi,j,k

that equals 1, add the index (i, j, k) to a Bloom filter. We
can then reconstruct an approximation W′ of W by query-
ing the filter for every bit position independently. Unlike a
Bloomier filter, a Bloom filter depends on the absolute num-
ber of one-bits in a weight matrix, not the number of nonze-
ros. A pruned and clustered LeNet-300-100 has 15,308
one-bits, and sorting the cluster values by frequency to as-
sign the most frequent numbers a cluster index of a power
of two can save an additional 10%. We also considered
retouched Bloom filters (Donnet et al., 2006). A retouched
Bloom filter trades false positives for false negatives by
selectively zeroing out ones in a constructed Bloom filter.
In practice, the remaining nonzero weights after pruning
are critical to model performance. Introducing even a few
false negatives is detrimental to accuracy. As weights are
exceptionally robust to false positives, the trade-off was not
worthwhile. Ultimately, Bloom filters are not competitive
with Bloomier encoding.

Activity pruning When erroneous weights are multiplied
by a zero input they are said to be logically masked (Mukher-
jee et al., 2003). This rate can be artificially inflated by set-
ting small-magnitude activities to zero at runtime, masking
more errors. If a false positive resulted in an abnormally
large erroneous weight, then even small activities might
cause non-negligible errors to arise. We found this was not
the case in practice. The highest magnitude weight errors
were not large enough to propagate with small activities.

Exception lists In an attempt to further reduce t when us-
ing Bloomier filters, we proposed exception lists. Exception
lists are axillary data structures built to track the indexes of
select false positives. Because a Bloomier filter can only fail
by having a zero weight assume a nonzero value, we only
needed to store the relative Bloomier filter hit address of the
false positives to fix the erroneous response and return zero
instead. This proved to be space inefficient as the exception
list size was on the order of the savings gained from reduc-
ing t in the first place. Minimizing t via retraining deeper
layers proved to be a better alternative.
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Table 1. Experimental Setup. Summary of error, baseline parameters (sparsity and number of clusters), and Weightless’ size hyper-
parameter (t) for each layer. We prune LeNet-300-100 and LeNet5 using both magnitude threshold pruning (Magnitude) and dynamic
network surgery (DNS). Top-1 error is reported for all simplified models.

Model Baseline
Pruning Method Error % Layer Size (KB) Nonzero % Clusters t

LeNet-300-100
Magnitude 1.76 FC-0 919 5.0 9 8

FC-1 117 5.0 9 9

DNS 2.03 FC-0 919 1.8 9 9
FC-1 117 1.8 10 8

LeNet5
Magnitude 0.98 CNN-1 36 7.0 9 8

FC-0 2304 5.5 9 7

DNS 0.96 CNN-1 98 3.1 10 8
FC-0 1564 0.73 10 8

VGG-16 Magnitude 35.9 FC-0 392000 2.99 4 6
FC-1 64000 4.16 4 8

4. Experiments
4.1. Experimental setup

We evaluate Weightless on three networks commonly used
to study compression: LeNet-300-100, LeNet5 (LeCun
et al., 1998), and VGG-16 (Simonyan & Zisserman, 2015).
The LeNet networks use MNIST (Lecun & Cortes, 1998)
and VGG-16 uses ImageNet (Russakovsky et al., 2015). The
networks are trained and tested in Keras (Chollet, 2017).
The Bloomier filter was implemented in-house and uses
a Mersenne Twister pseudorandom number generator for
uniform hash functions. To reduce the cost of construct-
ing the filters for VGG-16, we shard the nonzero weights
into ten separate filters, which are built in parallel to reduce
construction time. Sharding does not significantly affect
compression or the false positive rate as long as the number
of shards is small (Broder & Mitzenmacher, 2004).

Table 1 shows the models and simplification parameters
used in our experiments. We apply Weightless to the largest
layers in each model. This corresponds to the first two
fully-connected layers of LeNet-300-100 and VGG-16. For
LeNet5, the second convolutional layer and the first fully-
connected layer are the largest. These layers account for
99.6%, 99.7%, and 86% of the weights in LeNet5, LeNet-
300-100, and VGG-16, respectively.

In all experiments we report the compression ratio with
respect to 32-bit datatypes. To compare against the state-of-
the-art, we reimplemented Deep Compression (Han et al.,
2016) in Keras. Deep Compression implements a lossless
optimization pipeline where pruned and clustered weights
are encoded using compressed sparse row encoding (CSR)
and then compresses the CSR tables with Huffman coding;

in this section we refer to Deep Compression as the appli-
cation of CSR and Huffman coding to simplified weights.
The Deep Compression baseline used here is notably better
than the original publication (e.g., VGG-16 FC-0 went from
91× to 119×).

To make the comparison commensurable, the simplified
weights used as input to Weightless and Deep Compression
are the same, and the resulting post-compression accuracies
are also the same1. While Weightless does provide a trade-
off between compression and model accuracy, we feel the
fairest method when comparing against a lossless technique
is with iso-accuracy. We provide a case study in Section 4.4
that shows the degree to which both methods can improve
compression with either increased sparsity or error.

Weights are pruned using either magnitude threshold or
dynamic network surgery (see Section 3.2). Once pruned,
weights are clustered with k-means. We found that careful
choice of initial seeds helped to minimizing the number
of clusters needed. We use density-based initialization on
a per-layer basis, where initial cluster values are assigned
based on the input weight distribution. Han et al. (2016)
reported that linear cluster initialization yielded the best
results, however, we found that density based initialization
helped avoid empty value ranges (i.e., regions of the weight
distribution not used due to weight pruning). In the extreme,
we require only four cluster (2 bits) for VGG-16 FC-0; this
is a 60% reduction over the 5 bits used in (Han et al., 2016).

1 Weightless’ accuracy can be slightly higher due to training
noise but is never worse.
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Table 2. Weight encoding. Weights encoded using Bloomier filters (Weightless) are smaller than those encoded with CSR (Deep
Compression). Bloomier filters tend to do relatively better on larger models and when using more advanced pruning algorithms (e.g.,
dynamic network surgery). The Improvement column shows Bloomier filters are up to 1.99× more space efficient than CSR.

Model Pruning Method Layer Compression Factor (Size KB)
CSR Bloomier Improvement

LeNet-300-100
Magnitude FC-0 40.1× (22.9) 40.6× (20.1) 1.01×

FC-1 46.9× (2.50) 56.1× (2.09) 1.20×

DNS FC-0 112 × (8.22) 152 × (6.04) 1.36×
FC-1 99.0× (1.18) 174 × (0.67) 1.75×

LeNet5
Magnitude CNN-1 40.7× (0.89) 46.2× (0.78) 1.14×

FC-0 46.6× (46.6) 66.6× (34.6) 1.43×

DNS CNN-1 80.6× (1.21) 97.8× (1.00) 1.21×
FC-0 224× (6.99) 445× (3.52) 1.99×

VGG-16 Magnitude FC-0 81.8× (4790) 142 × (2750) 1.74×
FC-1 71.2× (900) 74.6× (860) 1.05×

Table 3. Compressing encoded weights. Weights encoded with Bloomier filters or CSR can be further compressed for transmission
or storage. Below are the results of applying arithmetic coding to Bloomier filters (Weightless) and Huffman coding to CSR (Deep
Compression). We find Weightless offers up to a 1.51× improvement over Deep Compression.

Model Pruning Method Layer Compression Factor (Size KB)
Deep Compression Weightless Improvement

LeNet-300-100
Magnitude FC-0 59.1× (15.6) 60.1× (15.3) 1.02×

FC-1 56.0× (2.09) 64.3× (1.82) 1.15×

DNS FC-0 153× (5.98) 174× (5.27) 1.13×
FC-1 129× (0.91) 195× (0.60) 1.51×

LeNet5
Magnitude CNN-1 42.8× (0.84) 51.6× (0.70) 1.21×

FC-0 59.1× (39.0) 74.2× (31.1) 1.25×

DNS CNN-1 89.5× (1.09) 114.4× (0.86) 1.28×
FC-0 333× (4.70) 496× (3.16) 1.49×

VGG-16 Magnitude FC-0 119× (3280) 157× (2500) 1.31×
FC-1 88.4× (720) 85.8× (740) 0.97×

4.2. Encoding simplified weights

Given a simplified baseline model, we first evaluate how
well Bloomier filters encode sparse weights. Results for
Bloomier encoding are presented in Table 2 and show that
the filters perform exceptionally well. In the extreme case,
the largest fully-connected layer in LeNet5 is compressed
by 445×, a 1.99× improvement over CSR.

The size of a Bloomier filter is proportional to mt, and so
sparsity and clustering determine how compact they can
be. Our results suggest that sparsity is more important
than the number of clusters for reducing the encoding filter
size. This can be seen by comparing each LeNet5 models’
magnitude pruning results to those of DNS—while DNS
needs additional clusters, the increased sparsity ultimately
results in a substantial size reduction. We suspect this is

due to the ability of neural networks to tolerate a high false
positive rate. The t value used here is already on the knee
of the exponential false positive curve (see Figure 3). At
this point, even if k could be reduced, it is unlikely t can be
since the additional encoding strength saved by reducing k
does little to protect against the doubling of false positives
when in this range.

A notable result from encoding is that for VGG-16 FC-0,
there are more false positives in the reconstructed weights
than nonzeros in the original, simplified weights. Using
t = 6 results in over 6.2 million false positives while after
simplification there are only 3.07 million nonzero weights.
Before retraining, Bloomier filter encoding increased the
top-1 error by 3.0 percentage points. This is why we see
Bloomier filters work so well here–most applications cannot
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>3x

Weightless

Deep Compression

Figure 5. Weightless exploits sparsity more effectively than Deep
Compression. By setting pruning thresholds in LeNet5 FC-0 to pro-
duce specific nonzero ratios, we can study how compression scales
with sparsity. Weightless’ accuracy guarantees from Algorithm 1
hold here.

function with this level of approximation, nor do they have
an analogous retrain mechanism.

4.3. Compressing Bloomier encoded weights

When sending a model over a network, an additional stage
of compression can be used to optimize for size. Deep
Compression uses Huffman coding, and we propose arith-
metic coding in Weightless, as described in Section 3.2.
The results in Table 3 show that while Deep Compression
gets relatively more benefit from a final compression stage,
Weightless remains a substantially better scheme overall.
A detailed analysis of the benefits from each space saving
technique can be found in the supplemental material. Data
includes compression without encoding as well as Bloomier
with Huffman coding and CSR with arithmetic coding.

4.4. Scaling with sparsity and model error

Recent work continues to demonstrate better ways to instill
sparsity in neural networks (e.g., (Guo et al., 2016; Ullrich
et al., 2017; Narang et al., 2017)). Looking forward, it is
useful to quantify how Weightless scales with increased
sparsity. As a proxy for improved pruning techniques we
set the threshold for magnitude pruning to produce varying
ratios of nonzero values for LeNet5 FC-0. We then perform
retraining and clustering as usual and compare the compres-
sion results of Weightless and Deep Compression. (We note
that the requirement on ωerr in Algorithm 1 is upheld.)

Figure 5 shows that as sparsity increases, Weightless deliv-
ers far better compression ratios. Because the false positive
rate of Bloomier filters is controlled independent of the num-
ber of nonzero entries and addresses are hashed, not stored,
Weightless scales exceptionally well with sparsity. On the
other hand, as the total number of entries in CSR decreases,
the magnitude of every index pointer grows. This results
in the metadata (i.e., the pointer/index tables) required to

5.6x
Weightless

Deep Compression

Figure 6. Weightless scales compression better with model error.
This property can be leveraged in applications where trading ac-
curacy for efficiency is advantageous. Weightless offers more
compression at each iso-accuracy point. Points are generated by
sweeping the pruning threshold for LeNet5 FC-0 to increase spar-
sity and sweeping t from 6 to 9 for Weightless.

reconstruct the weights to dominate CSR’s space whereas a
Bloomier filter requires no structural information.

An analogous scaling argument can be made using model
error. In Figure 6, we show how the two methods scale com-
pression when accuracy is compromised using the LeNet5
model. Here, Weightless has two sources of approximation–
the weights can be more aggressively pruned or t can be
reduced. Deep Compression can only leverage the sparsity.
The benefits from Weightless’ tuning t to fit the available
sparsity is immediately obvious. When considering the er-
ror range of 0.98% to 4.0%, Weightless outperforms Deep
Compression by up to 5.6×.

5. Conclusion
This paper demonstrates a novel lossy encoding scheme,
called Weightless, for compressing sparse weights in deep
neural networks. The lossy property of Weightless stems
from its use of the Bloomier filter, a probabilistic data struc-
ture for approximately encoding functions. By first sim-
plifying a model with weight pruning and clustering, we
transform its weights to best align with the properties of
the Bloomier filter to maximize compression. Combined,
Weightless achieves compression of up to 496×, improving
the previous state-of-the-art by 1.51×.

We also see avenues for continuing this line of research.
First, as better mechanisms for pruning model weights are
discovered, end-to-end compression with Weightless will
improve. Second, the theory community has already devel-
oped more advanced construction algorithms for Bloomier
filters, which promise asymptotically better space utiliza-
tion compared to the method used in this paper. Finally,
by demonstrating the opportunity for using lossy encoding
schemes for model compression, we hope we have opened
the door for more research on encoding algorithms and
novel uses of probabilistic data structures.
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