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Theorem 1. Forall &« > 1 and €, > 0, for m sufficiently

large, there exists a family of functions F and a function
Mpyac(-) such that

e forall €,8' > 0: F is a-PMAC-learnable with sample
complexity Mpyac(n,d', €, a), and

o given strictly less than Mpyac(n, 8,1 — (1 — €)Y/™ )
samples, F is not a-DOPS, i.e.,

MDOPS(n7m76> €, a) > MPMAC(n7 J, 1_(1_6)1/17170[)'

Proof. Fixa > lande > 0. Definep := 1—(1—¢)"/ "4,
for some small constant ¢, > 0, and let Si,...,S5;,, be
1/p arbitrary distinct sets. The hard class of functions is

F = {fi}ie[l/p] where

itS=25;

otherwise

Consider the distribution D which is the uniform distribution
over sets S1,. .., 571/, $0 S is drawn with probability p
for all j € [1/p]. We first argue that the sample complexity
for PMAC-learning f over D is at most

0 ife >p
10%(1/5/) lf €/ < P

Mpyac (7% 6/7 5/7 04) = {
log(1/(1-p))

Note that if ¢ > p, f(S) = 1/2 for all S is correct with
probability 1 — p > 1 — ¢ over S ~ D and with probability
1 over the samples. If € < p, if there exists sample .S; such
that f(S;) = a, then f(S;) = «, and f(S) = 1/2 for all
other S. Note that that this is correct with probability 1 over
S ~ Dif S, is in the samples. The probability that .S, is in

"Harvard University 2Tel Aviv University. Correspondence to:
Nir Rosenfeld <nir.rosenfeld @g.harvard.edu>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

the samples

log(1/6")

1—(1—p)™=1—(1—p)le/tT-rD

log (")
— 1 — elostizp o8(1-p)

—1-4"

Thus, f is correct with probability 1 — ¢’ over the samples.
Next, we argue that for all § > 0 and m sufficiently large,
the sample complexity for DOPS is at least

MPMAc(n, 5, 1 — (]. — 6)1/m7 O[) =
log(1/9)
M, 0,p— €s5,00) = ———————.

o100 = €00 = igg 11 - p)
Consider the random function f; where i € [1/p] is uni-
formly random. Let F’ be the randomized collection of
functions f; such that S; is in the testing set but not in the
training set. Since .S; is not in the testing set, we have that
for all f; € 7' and for all sets S in the testing set,

fi(S) = 1.

Thus, the functions in F’ are indistinguishable from the
samples in the training set. This implies that the decisions
of the algorithm are independent of the random variable ¢,
conditioned on f; € F'. Let S be the set in the testing set
that is returned by the algorithm, we obtain that

1
E_filS)]=_ Pr_[S=5] p 1.2
i?fie]:/[fZ(S)] i:fiErf'[S S’L] a+i:fi€r.7'—'[S#Sl] 2
< B _|_}
—|F 2

since S is independent of i conditioned on f; € F'. Con-
sider the case where S; is not in the training set with prob-
ability strictly greater than J. The probability that .S; is in
the testing setis 1 — (1 — p)™ = € + €,. Thus a function is
in 7 with probability at least d(e + €,). Note that 1/p is
arbitrarily large if m is arbitrarily large. Thus, |F'| > 2«
with arbitrarily large probability if m is arbitrarily large for
fixed ¢, 4, and . Combining with the previous inequality,
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this implies that

1
EL S <1= - fi(S)
1
=~ B lmax ()

where the last equality is since S; € S for all i € F'.
Thus, there exists at least one function f; € JF such that the
algorithm does not obtain an o-approximation when 5; is
in the testing set and not in the training set.

The probability that S; is in the testing set is 1 — (1 —
p)™ = € + €. Thus, S; needs to be in the training set with
probability at least 1 — J, otherwise we don’t get an a--apx
with probability 1 — €. The probability that .S; is not in the
training set is (1 — p)"™. Thus, we need 6 > (1 — p)™, or

81/
log(1/(1 —p))
= Mewac(n, 0,p — €5, Q)

= mpwac(n, 6,1 — (1 — e)l/m, Q).



