
Spurious Local Minima are Common in Two-Layer ReLU Neural Networks

A. Additional Proofs
A.1. Lower bound on λmin

We wish to verify that the Hessian of a point returned by the gradient descent algorithm is positive definite, as well as
provide a lower bound for its smallest eigenvalue, avoiding the possibility of errors due to floating-point computations.

Since the Hessians we encounter have relatively small entries and are well-conditioned, it turns out that computing the
spectral decomposition in floating-point arithmetic provides a very good approximation of the true spectrum of the matrix.
Therefore, instead of performing spectral decomposition symbolically from scratch, our algorithmic approach is to use the
floating-point decomposition, and merely bound its error, using simple quantities which are easy to compute symbolically.
Specifically, given the (floating-point, possibly approximate) decomposition UDU> of a matrix A, we bound the error
using the distance of UDU> from A, as well as the distance of U from its projection on the subspace of orthogonal
matrices given by Ū := U

(
U>U

)−0.5
. Formally, we use the following algorithm (where numerical computations refer to

operations in floating-point arithmetic):

Input: Square matrix A ∈ Rd×d.
Output: A lower bound on the smallest eigenvalue of A if it is positive-definite and −1 otherwise.
- Numerically compute A′, a double precision estimate of A.
- Symbolically compute ε1 = ||A−A′||F .
- Numerically compute U,D ∈ Rd×d s.t. A′ ≈ UDU>, D is diagonal.
- Symbolically compute E = I− U>U , A′′ = UDU>, ε2 = ||A′ −A′′||F .
- Symbolically compute an upper bound B = 1 + ||U − I||F on ||U ||sp.
- Symbolically compute an upper bound C = ||E||F on ||E||sp.
- Let λmin, λmax denote the smallest and largest diagonal entries of D respectively, then symbolically compute ε3 =

B2

(
2λmax

(
1√
1−C − 1

)
+
(

1√
1−C − 1

)2)
.

- Return λmin − ε1 − ε2 − ε3 if it is larger than 0 and −1 otherwise.

Algorithm analysis: For the purpose of analyzing the algorithm, the following two lemmas will be used. We will also
make use of the following version of Weyl’s inequality, stated below for completeness.

Theorem 2 (Weyl’s inequality). Suppose A,B, P ∈ Rd×d are real symmetric matrices such that A − B = P . Assume
that A,B have eigenvalues α1 ≥ . . . ≥ αd, β1 ≥ . . . ≥ βd respectively, and that ||P ||sp ≤ ε. Then

|αi − βi| ≤ ε ∀i ∈ [d] .

Lemma 4. For any natural n ≥ 0 we have

4−n
n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
= 1.

Proof. Clearly, for any |x| < 1 we have

1

1− x
=

∞∑
k=0

xk. (11)
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Using the generalized binomial theorem, we have for any |x| < 1

1√
1− x

=

∞∑
k=0

(
k − 0.5

k

)
xk =

∞∑
k=0

∏k−1
i=0 (k − i− 0.5)

k!
xk

=

∞∑
k=0

∏k−1
i=0 (2k − 2i− 1)

2kk!
xk =

∞∑
k=0

2kk!
∏k−1
i=0 (2k − 2i− 1)

4k (k!)
2 xk

=

∞∑
k=0

∏k−1
i=0 (2k − 2i)

∏k−1
i=0 (2k − 2i− 1)

4k (k!)
2 xk =

∞∑
k=0

(2k)!

4k (k!)
2x

k

=

∞∑
k=0

(
2k

k

)
4−kxk. (12)

Consider the k-th coefficient in the expansion of the square of Eq. (12), which is well defined as the sum converges
absolutely for any |x| < 1. From Eq. (11), these coefficients are all 1. However, these are also given by the expansion
of the square of Eq. (12). Specifically, the k-th coefficient in the square is given as the sum of all xk coefficients in the
expansion of the root, that is, it is a convolution of the coefficients in Eq. (12) with index ≤ k, thus we have

4−n
n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
= 1.

Lemma 5. Let U>U be a diagonally dominant matrix, let E = I−U>U satisfying ||E||sp ≤ C < 1. Then
(
U>U

)−0.5
=∑∞

n=0

(
2n
n

)
4−nEn. Moreover, E′ :=

∑∞
n=1

(
2n
n

)
4−nEn satisfies ||E′||sp ≤

(
1√
1−C − 1

)
.

Proof. Consider the series given by the partial sums

Sn =

n∑
k=0

(
2k

k

)
4−kEk,

and observe that

U>US2
n = (I− E)

(
n∑
k=0

(
2k

k

)
4−kEk

)2

= (I− E)

(
n∑
k=0

Ek +
2n∑

k=n+1

βkE
k

)

= I− En+1 + (I− E)En+1
n−1∑
k=0

βn+k+1E
k, (13)
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where the second equality is due to Lemma 4, and holds for some βk ∈ (0, 1), k ∈ {n+ 1, . . . , 2n}. Now, since

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣(I− E)En+1

n−1∑
k=0

βn+k+1E
k

∣∣∣∣∣
∣∣∣∣∣
sp

≤ lim
n→∞

||I− E||sp ||E||
n+1
sp

∣∣∣∣∣
∣∣∣∣∣
n−1∑
k=0

βn+k+1E
k

∣∣∣∣∣
∣∣∣∣∣
sp

≤ lim
n→∞

||I− E||sp ||E||
n+1
sp

(
n−1∑
k=0

βn+k+1 ||E||ksp

)

≤ lim
n→∞

||I− E||sp ||E||
n+1
sp

(
n−1∑
k=0

Ck

)
≤ lim
n→∞

||I− E||sp ||E||
n+1
sp (1− C)

−1

=0,

we have that Eq. (13) reduces to I as n→∞, concluding the proof of the lemma.

Turning back to the algorithm analysis, we wish to numerically compute the eigenvalues ofA and bound their deviation due
to roundoff errors. Other than the inaccuracy in computing A′′ ≈ A′, another obstacle is that U is not exactly orthogonal,
however it is very close to orthogonal in the sense that E = I − U>U has a small norm. Let Ū = U

(
U>U

)−0.5
be the projection of U onto the space of orthogonal matrices in Rd×d. Clearly,

(
U>U

)−0.5
is well defined if U>U is

diagonally-dominant, hence positive-definite, which can be easily verified. Also,

Ū>Ū = U
(
U>U

)−0.5 (
U
(
U>U

)−0.5)>
= U

(
U>U

)−0.5 (
U>U

)−0.5
U>

= U
(
U>U

)−1
U>

= UU−1
(
U>
)−1

U>

= I.

We now upper bound
∣∣∣∣A′′ − Ā∣∣∣∣sp, where Ā = ŪDŪ> and therefore its spectrum is given to us explicitly as the diagonal

entries of D, diag (D). Compute∣∣∣∣A′′ − Ā∣∣∣∣sp =
∣∣∣∣UDU> − ŪDŪ>∣∣∣∣sp

=

∣∣∣∣∣∣∣∣UDU> − U (U>U)−0.5D (U (U>U)−0.5)>∣∣∣∣∣∣∣∣
sp

=
∣∣∣∣∣∣U (D − (U>U)−0.5D (U>U)−0.5)U>∣∣∣∣∣∣

sp

=
∣∣∣∣U (D − (I + E′)D (I + E′))U>

∣∣∣∣
sp

=
∣∣∣∣U (E′D +DE′ + E′2

)
U>
∣∣∣∣

sp

≤ ||U ||2sp

∣∣∣∣E′D +DE′ + E′2
∣∣∣∣

sp

≤ ||U ||2sp

(
2 ||D||sp ||E

′||sp + ||E′||2sp

)
≤ B2

(
2λmax

(
1√

1− C
− 1

)
+

(
1√

1− C
− 1

)2
)

= ε3.
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Estimating the spectrum diag (D) of A using the spectrum of Ā yields an approximation error of∣∣∣∣A− Ā∣∣∣∣sp =
∣∣∣∣A−A′ +A′ −A′′ +A′′ − Ā

∣∣∣∣
sp

≤ ||A−A′||sp + ||A′ −A′′||sp +
∣∣∣∣A′′ − Ā∣∣∣∣sp

≤ ε1 + ε2 + ε3,

where in the last inequality we used the fact that the Frobenius norm upper bounds the spectral norm, which also proves
that C is an upper bound on ||E′||sp. Verifying the upper bound given by B, we compute

||U ||sp = ||U − I + I||sp ≤ ||U − I||sp + ||I||sp ≤ 1 + ||U − I||F .

Whenever U is close to unity, this provides a sharper upper bound than taking C = ||U ||F .

Finally, applying Weyl’s inequality (Thm. 2) to A and Ā, we have that the spectra of the two cannot deviate by more than
ε1 + ε2 + ε3, concluding the proof of the algorithm.

A.2. Upper Bound on Remainder Term Rwn
1 ,u

In a nutshell, to derive an upper bound L on the third order term in Eq. (3), we show that the second order term in any
direction is L-Lipschitz. Recalling that the purpose of this upper bound is to provide the radius of the ball enclosing a
minimum in the vicinity of wn

1 (see Lemma 1), we observe, however, that Lemma 9 suggests L depends on the norm
each neuron attains inside the ball, and therefore also on the radius of the ball enclosing the minimum. To circumvent this
circular dependence between the radius and the third order bound, we first fixed the radius around wn

1 where we bound
the third order term5, and then checked whether the resulting radius enclosing the ball is smaller than the one used for the
bound, thus validating the result.

In what follows, the ball where the third order bound is derived on is referred to as some compact subset of the weight
space A ⊆ Rkn. We now define some notation that will be used throughout the rest of this section. Given A, define

wmin = min
wn

1 ∈A
min
i∈[n]
||wi||2 ,

wmax = max
wn

1 ∈A
max
i∈[n]
||wi||2 .

That is, wmin and wmax are the neurons with minimal and maximal norm among all possible network weights in the set
A, respectively. Similarly, defining vmax to be the target parameter vector with maximal 2-norm, the necessary bound is
now given by the following theorem:

Theorem 3. Suppose ∇2F (·) is differentiable on A ⊆ Rkn. Then

sup
wn

1 ∈A
u:||u||2=1

∑
i1,i2,i3

∂3

∂wi1∂wi2∂wi3
F (wn

1 )ui1ui2ui3 ≤ LA,

where
LA :=

n

π ||wmin||2
(√

2 (n− 1) (||wmax||+ ||wmin||) + k ||vmax||
)
.

To prove the theorem, we will first need the following two lemmas.

Lemma 6. Suppose ∇2F (·) is differentiable on A ⊆ Rkn. Then

• h1 (w,v) is ||vmax||
π||wmin||2

Lipschitz in w on A.

• h1 (w1,w2) is
√
2||wmax||
π||wmin||2

Lipschitz in (w1,w2) on A.

5specifically, the radius was chosen to be a 10−3 fraction of maxi∈[n] ||wi||2. Testing this value, we observed that restricting the
radius further only slightly improved the bound
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• h2 (w1,w2) is
√
2

π||wmin|| Lipschitz in (w1,w2) on A.

Proof. We begin with computing some useful derivatives:

∂

∂w
cos (θw,v) =

∂

∂w

w>v

||w|| ||v||
=

v

||w|| ||v||
− w

||w||2
w>v

||w|| ||v||
=

nv,w

||w||
.

∂

∂w
sin (θw,v) =

∂

∂w

√
1−

(
w>v

||w|| ||v||

)2

=

− w>v
||w||||v||√

1−
(

w>v
||w||||v||

)2
 nv,w

||w||

= − cos (θw,v)

||w|| sin (θw,v)
nv,w = −cos (θw,v)

||w||
n̄v,w.

∂

∂w
θw,v =

∂

∂w
arccos

(
w>v

||w|| ||v||

)
= − 1√

1−
(

w>v
||w||||v||

)2 nv,w

||w||
= − n̄v,w

||w||
.

Now, differentiating the spectral norms of h1 and h2 using Lemma 9 yields

∂

∂w
||h1 (w,v)||sp =

∂

∂w

sin (θw,v) ||v||
π ||w||

= −cos (θw,v) ||v||
π ||w||2

n̄v,w +
sin (θw,v) ||v||

π ||w||2
w̄

=
||v||

π ||w||2
(sin (θw,v) w̄ − cos (θw,v) n̄v,w) ,

therefore ∣∣∣∣∣∣∣∣ ∂∂w ||h1 (w,v)||sp

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ ||v||π ||w||2

(sin (θw,v) w̄ − cos (θw,v) n̄v,w)

∣∣∣∣∣
∣∣∣∣∣
2

=
||v||

π ||w||2
√

(sin (θw,v) w̄ − cos (θw,v) n̄v,w)
>

(sin (θw,v) w̄ − cos (θw,v) n̄v,w)

=
||v||

π ||w||2
√

sin2 (θw,v) ||w̄||2 + cos2 (θw,v) ||n̄v,w||2

=
||v||

π ||w||2
.

Next, differentiating with respect to v gives

∂

∂v
||h1 (w,v)||sp =

∂

∂v

sin (θw,v) ||v||
π ||w||

= −cos (θw,v) ||v||
π ||w|| ||v||

n̄w,v +
sin (θw,v)

π ||w||
v̄

=
1

π ||w||
(sin (θw,v) v̄ − cos (θw,v) n̄w,v) ,
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so ∣∣∣∣∣∣∣∣ ∂∂v ||h1 (w,v)||sp

∣∣∣∣∣∣∣∣
2

=
1

π ||w||
(sin (θw,v) v̄ − cos (θw,v) n̄w,v) =

1

π ||w||
.

Concluding the derivation for the spectral norm of the gradient of h1 we get

∣∣∣∣∣∣∣∣ ∂

∂ (w,v)
||h1 (w,v)||sp

∣∣∣∣∣∣∣∣
2

=

√√√√( 1

π ||w||

)2

+

(
||v||

π ||w||2

)2

=
1

π ||w||2
√
||w||2 + ||v||2. (14)

Similarly, for h2 we have

∂

∂w
||h2 (w,v)||sp =

∂

∂w

1

2π
(π − θw,v + sin (θw,v))

=
1

2π

(
n̄w,v

||w||
− cos (θw,v)

||w||
n̄v,w

)
=

1− cos (θw,v)

2π ||w||
n̄v,w,

thus ∣∣∣∣∣∣∣∣ ∂∂w ||h2 (w,v)||sp

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣1− cos (θw,v)

2π ||w||
n̄v,w

∣∣∣∣∣∣∣∣
2

=
1− cos (θw,v)

2π ||w||
≤ 1

π ||w||
.

For the gradient with respect to v we have

∂

∂v
||h2 (w,v)||sp =

∂

∂v

1

2π
(π − θw,v + sin (θw,v))

=
1

2π

(
n̄w,v

||v||
− cos (θw,v)

||v||
n̄w,v

)
=

1− cos (θw,v)

2π ||v||
n̄w,v,

which implies ∣∣∣∣∣∣∣∣ ∂∂v ||h2 (w,v)||sp

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣1− cos (θw,v)

2π ||v||
n̄w,v

∣∣∣∣∣∣∣∣
2

=
1− cos (θw,v)

2π ||v||
.

Concluding the derivation for the spectral norm of the gradient of h2 we get

∣∣∣∣∣∣∣∣ ∂

∂ (w,v)
||h2 (w,v)||sp

∣∣∣∣∣∣∣∣
2

=

√(
1− cos (θw,v)

2π ||w||

)2

+

(
1− cos (θw,v)

2π ||v||

)2

≤ 1

π

√
1

||w||2
+

1

||v||2
. (15)

Finally, since a differentiable function is L-Lipschitz if and only if its gradient’s 2-norm is bounded by L, the lemma
follows from substituting wmin,wmax,vmax in Eq. (14) and Eq. (15).

Lemma 7. Suppose ∇2F (·) is differentiable on A ⊆ Rkn. Then
∣∣∣∣∇2F (·)

∣∣∣∣
sp is LA-Lipschitz in wn

1 on A.

Proof. Since Lemma 6 implies the Lipschitzness of the spectral norms of h̃1, h̃2 in wn
1 ∈ Rkn, we let wn

1 = (w1, . . . ,wn),
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w′n1 = (w′1, . . . ,w
′
n) ∈ A, then compute∣∣∣∣∇2F (wn

1 )−∇2F (w′n1 )
∣∣∣∣

sp

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
1

2
I +

n∑
i,j=1
i 6=j

h̃1 (wi,wj)−
∑

i=1,...,n
j=1,...,k

h̃1 (wi,vj) +

n∑
i,j=1
i 6=j

h̃2 (wi,wj)

−

1

2
I +

n∑
i,j=1
i6=j

h̃1
(
w′i,w

′
j

)
−

∑
i=1,...,n
j=1,...,k

h̃1 (w′i,vj) +

n∑
i,j=1
i 6=j

h̃2
(
w′i,w

′
j

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
sp

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
n∑

i,j=1
i 6=j

(
h̃1 (wi,wj)− h̃1

(
w′i,w

′
j

))
+

∑
i=1,...,n
j=1,...,k

(
h̃1 (wi,vj)− h̃1 (w′i,vj)

)

+

n∑
i,j=1
i6=j

(
h̃2 (wi,wj)− h̃2

(
w′i,w

′
j

))∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
sp

≤
n∑

i,j=1
i6=j

∣∣∣∣∣∣h̃1 (wi,wj)− h̃1
(
w′i,w

′
j

)∣∣∣∣∣∣
sp

+
∑

i=1,...,n
j=1,...,k

∣∣∣∣∣∣h̃1 (wi,vj)− h̃1 (w′i,vj)
∣∣∣∣∣∣

sp

+

n∑
i,j=1
i 6=j

∣∣∣∣∣∣h̃2 (wi,wj)− h̃2
(
w′i,w

′
j

)∣∣∣∣∣∣
sp

≤
n∑

i,j=1
i 6=j

√
2 ||wmax||
π ||wmin||2

||wn
1 −w′n1 ||2 +

∑
i=1,...,n
j=1,...,k

||vmax||
π ||wmin||2

||wn
1 −w′n1 ||2 +

n∑
i,j=1
i 6=j

√
2

π ||wmin||
||wn

1 −w′n1 ||2

=

(
n (n− 1)

√
2 ||wmax||
π ||wmin||2

+ nk
||vmax||
π ||wmin||2

+ n (n− 1)

√
2

π ||wmin||

)
||wn

1 −w′n1 ||2

=
n

π ||wmin||2
(√

2 (n− 1) (||wmax||+ ||wmin||) + k ||vmax||
)
||wn

1 −w′n1 ||2 .

Proof of Thm. 3. Let wn
1 ,w

′n
1 ∈ A. For any u ∈ Rkn with ||u||2 = 1 we have using Lemma 7∣∣u>∇2F (wn

1 )u− u>∇2F (w′n1 )u
∣∣

=
∣∣u> (∇2F (wn

1 )−∇2F (w′n1 )
)
u
∣∣

≤
∣∣∣∣∇2F (wn

1 )−∇2F (w′n1 )
∣∣∣∣

sp

≤LA ||wn
1 −w′n1 ||2 ,

therefore the differentiable on A, Rkn → R function t 7→ u>∇2F (wn
1 + tu)u is LA-Lipschitz for any u ∈ Rkn,

||u|| = 1, hence its derivative on A is upper bounded by LA. Namely, we have that

sup
wn

1 ∈A
u:||u||2=1

∑
i1,i2,i3

∂3

∂wi1∂wi2∂wi3
F (wn

1 )ui1ui2ui3 ≤ LA.
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A.3. Lipschitzness of F (wn
1 ) and Proof of Lemma 2

In this subsection, we turn to proving a Lipschitz bound on the objective in Eq. (6), implying Lemma 2 and showing that
the local minimum identified in Eq. (1) is necessarily non-global. A straightforward approach would be to globally upper
bound ||∇F (wn

1 )|| (excluding the neighborhood of some singular points). However, this approach is quite loose, since
it does not take advantage of the fact that the gradients ∇F (wn

1 ) close to our points of interest are very small. Instead,
we first derive a Lipschitz bound on ∇2F (wn

1 ), implying that ∇F (wn
1 ) does not vary too greatly, and therefore remains

small for any w′n1 in the ball enclosing wn
1 , providing a stronger bound than the more naive approach.

Theorem 4. Suppose F is thrice-differentiable on A ⊆ Rkn. Then for any w′n1 ∈ A,

|F (w′n1 )− F (wn
1 )| ≤ ||w′n1 −wn

1 ||2 (LH ||w′n1 −wn
1 ||2 + ||∇F (wn

1 )||2) ,

where

LH :=
1

2
+ n (n− 1)

(
||wmax||

2π ||wmin||
+

1

2

)
+
nk ||vmax||
2π ||wmin||

.

To prove the theorem, we will need the following lemma:
Lemma 8. Suppose F is thrice-differentiable on A ⊆ Rkn. Then

sup
wn

1 ∈A

∣∣∣∣∇2F (wn
1 )
∣∣∣∣

sp ≤
1

2
+ n (n− 1)

(
||wmax||

2π ||wmin||
+

1

2

)
+
nk ||vmax||
2π ||wmin||

.

Proof. Recall the Hessian of the objective as defined in Eq. (10). Using Lemma 9, the fact that the spectral norms of h1, h2
and h̃1, h̃2 are identical, and the fact that sin (x) ≤ x for any x > 0, we have for any W ∈ A

∣∣∣∣∇2F (wn
1 )
∣∣∣∣

sp =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
1

2
I +

n∑
i,j=1
i6=j

h̃1 (wi,wj)−
∑

i=1,...,n
j=1,...,k

h̃1 (wi,vj) +

n∑
i,j=1
i6=j

h̃2 (wi,wj)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
sp

≤ 1

2
+

n∑
i,j=1
i 6=j

∣∣∣∣∣∣h̃1 (wi,wj)
∣∣∣∣∣∣

sp
+

∑
i=1,...,n
j=1,...,k

∣∣∣∣∣∣h̃1 (wi,vj)
∣∣∣∣∣∣

sp
+

n∑
i,j=1
i6=j

∣∣∣∣∣∣h̃2 (wi,wj)
∣∣∣∣∣∣

sp

≤ 1

2
+

n∑
i,j=1
i 6=j

sin
(
θwi,wj

)
||wj ||

2π ||wi||
+

∑
i=1,...,n
j=1,...,k

sin
(
θwi,vj

)
||vj ||

2π ||wi||

+

n∑
i,j=1
i 6=j

1

2π

(
π − θwi,wj

+ sin
(
θwi,wj

))

≤ 1

2
+

n∑
i,j=1
i 6=j

||wmax||
2π ||wmin||

+
∑

i=1,...,n
j=1,...,k

||vmax||
2π ||wmin||

+

n∑
i,j=1
i6=j

1

2π
π

≤ 1

2
+ n (n− 1)

(
||wmax||

2π ||wmin||
+

1

2

)
+
nk ||vmax||
2π ||wmin||

.

Proof of Thm. 4. For some u ∈ Rkn, consider the function gu (t) = u>∇F (wn
1 + t (w′n1 −wn

1 ))

Since F is thrice-differentiable, we have from the mean value theorem that there exists some tu such that

u> (∇F (w′n1 )−∇F (wn
1 )) =

gu (1)− gu (0)

1− 0

= g′u (tu)

= u>∇2F (wn
1 + tu (w′n1 −wn

1 )) (w′n1 −wn
1 )
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Taking u = ∇F (w′n1 ) +∇F (wn
1 ) and recalling that from Lemma 8 we have that supw′n

1 ∈A
∣∣∣∣∇2F (w′n1 )

∣∣∣∣
sp is bounded

by LH , we get

||∇F (w′n1 )||22 − ||∇F (wn
1 )||22

= (∇F (w′n1 ) +∇F (wn
1 ))
>

(∇F (w′n1 )−∇F (wn
1 ))

= (∇F (w′n1 ) +∇F (wn
1 ))
>∇2F (wn

1 + tu (w′n1 −wn
1 )) (w′n1 −wn

1 )

≤ ||∇F (w′n1 ) +∇F (wn
1 )||2

∣∣∣∣∇2F (wn
1 + tu (w′n1 −wn

1 ))
∣∣∣∣

sp ||w
′n
1 −wn

1 ||2
≤ (||∇F (w′n1 )||2 + ||∇F (wn

1 )||2)LH ||w′n1 −wn
1 ||2 .

Dividing by ||∇F (w′n1 )||2 + ||∇F (wn
1 )||2 and rearranging yields

||∇F (w′n1 )||2 ≤ LH ||w
′n
1 −wn

1 ||2 + ||∇F (wn
1 )||2 .

That is, the target function F is (LH ||w′n1 −wn
1 ||2 + ||∇F (wn

1 )||2)-Lipschitz on A, thus

|F (w′n1 )− F (wn
1 )| ≤ ||w′n1 −wn

1 ||2 (LH ||w′n1 −wn
1 ||2 + ||∇F (wn

1 )||2) .

Proof of Lemma 2. For A which is a ball of radius r centered at wn
1 = (w1, . . . ,wn), we have that ||wmax|| =

maxi ||wi|| + r as well as ||wmin|| = mini ||wi|| − r. Plugging this in Thm. 4 and substituting ||w′n1 −wn
1 ||2 ≤ r

completes the proof of the lemma.

A.4. Technical Proofs

A.4.1. DERIVATION OF ∇2F (wn
1 )

Theorem 5. The Hessian of F at point wn
1 = (w1, . . . ,wn) with respect to target values (v1, . . . ,vk) is given on the

main diagonals
∂2F

∂w2
i

=
1

2
I +

n∑
j=1
j 6=i

h1 (wi,wj)−
k∑
j=1

h1 (wi,vj) ,

and on the off-diagonals by
∂2F

∂wi∂wj
= h2 (wi,wj) ,

where

h1 (w,v) =
sin (θw,v) ||v||

2π ||w||
(
I− w̄w̄> + n̄v,wn̄>v,w

)
,

and
h2 (w,v) =

1

2π

(
(π − θw,v) I + n̄w,vv̄

> + n̄v,ww̄>
)
.

Proof. By a straightforward calculation, we have

∂2f (w,v)

∂w2
i

=
1

2π

||v||

(

1

||w||
− w2

i

||w||3

)
sin (θw,v)− wi

||w||

w>v
||w||||v||√

1−
(

w>v
||w||||v||

)2
(

vi
||w|| ||v||

− wi

||w||2
w>v

||w|| ||v||

)

+
vi√

1−
(

w>v
||w||||v||

)2
(

vi
||w|| ||v||

− wi

||w||2
w>v

||w|| ||v||

)
=

1

2π

(
||v||
||w||

sin (θw,v) + w2
i

||v|| cos (2θw,v)

||w||3 sin (θw,v)
− 2wivi

cos (θw,v)

||w||2 sin (θw,v)
+ v2i

1

||w|| ||v|| sin (θw,v)

)
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∂2f (w,v)

∂wiwj
=

1

2π

||v||
− wiwj||w||3

sin (θw,v)− wi
||w||

w>v
||w||||v||√

1−
(

w>v
||w||||v||

)2
(

vj
||w|| ||v||

− wj

||w||2
w>v

||w|| ||v||

)

+
vi√

1−
(

w>v
||w||||v||

)2
(

vj
||w|| ||v||

− wj

||w||2
w>v

||w|| ||v||

)
=

1

2π

(
wiwj

||v|| cos (2θw,v)

||w||3 sin (θw,v)
− (wivj + wjvi)

cos (θw,v)

||w||2 sin (θw,v)
+ vivj

1

||w|| ||v|| sin (θw,v)

)

Hence

∂2f (w,v)

∂w2
=

1

2π

(
||v||
||w||

sin (θw,v) I +
||v|| cos (2θw,v)

||w||3 sin (θw,v)
ww> (16)

− cos (θw,v)

||w||2 sin (θw,v)

(
wv> + vw>

)
+

1

||w|| ||v|| sin (θw,v)
vv>

)

=
||v||

2π ||w||

(
sin (θw,v) I +

cos (2θw,v)

sin (θw,v)
w̄w̄> − cos (θw,v)

sin (θw,v)

(
w̄v̄> + v̄w̄>

)
+

1

sin (θw,v)
v̄v̄>

)
=

||v||
2π sin (θw,v) ||w||

(
sin2 (θw,v)

(
I− w̄w̄>

)
+ (v̄ − cos (θw,v) w̄) (v̄ − cos (θw,v) w̄)

>
)
. (17)

Recall the definition of n in Eq. (9), we have that

||n||2 = (v̄ − cos (θw,v) w̄)
>

(v̄ − cos (θw,v) w̄)

= v̄>v̄ − 2 cos (θw,v) v̄>w̄ + cos2 (θw,v) w̄>w̄

= 1− cos2 (θw,v)

= sin2 (θw,v) .

Therefore Eq. (16) can be written as

∂2f (w,v)

∂w2
=

sin (θw,v) ||v||
2π ||w||

(
I− w̄w̄> + n̄v,wn̄>v,w

)
.
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Differentiating with respect to different individual parameter vectors, we have

∂2f (w,v)

∂wi∂vi
=

1

2π

 wi
||w||

 vi
||v||

sin (θw,v)− ||v||
w>v
||w||||v||√

1−
(

w>v
||w||||v||

)2
(

wi
||w|| ||v||

− vi

||v||2
w>v

||w|| ||v||

)

+ (π − θw,v) +
vi√

1−
(

w>v
||w||||v||

)2
(

wi
||w|| ||v||

− vi

||v||2
w>v

||w|| ||v||

)
=

1

2π

(
−w2

i

cos (θw,v)

||w2|| sin (θw,v)
+ wivi

1

||w|| ||v||

(
sin (θw,v) +

1

sin (θw,v)
+

cos2 (θw,v)

sin (θw,v)

)
−v2i

cos (θw,v)

||v||2 sin (θw,v)
+ (π − θw,v)

)

=
1

2π

(
−w2

i

cos (θw,v)

||w2|| sin (θw,v)
+ wivi

2

||w|| ||v|| sin (θw,v)
− v2i

cos (θw,v)

||v||2 sin (θw,v)
+ (π − θw,v)

)

∂2f (w,v)

∂wi∂vj
=

1

2π

 wi
||w||

 vj
||v||

sin (θw,v)− ||v||
w>v
||w||||v||√

1−
(

w>v
||w||||v||

)2
(

wj
||w|| ||v||

− vj

||v||2
w>v

||w|| ||v||

)

+
vi√

1−
(

w>v
||w||||v||

)2
(

wj
||w|| ||v||

− vj

||v||2
w>v

||w|| ||v||

)
=

1

2π

(
−wiwj

cos (θw,v)

||w2|| sin (θw,v)
+ wivj

1

||w|| ||v||

(
sin (θw,v) +

cos2 (θw,v)

sin (θw,v)

)
+ wjvi

1

||w|| ||v|| sin (θw,v)
− vivj

cos (θw,v)

||v||2 sin (θw,v)

)

= − 1

2π

(
wiwj

cos (θw,v)

||w2|| sin (θw,v)
− wivj

1

||w|| ||v|| sin (θw,v)

− wjvi
1

||w|| ||v|| sin (θw,v)
+ vivj

cos (θw,v)

||v||2 sin (θw,v)

)
.

Hence

∂2f (w,v)

∂w∂v
=

(
π − θw,v

2π

)
I +

1

2π sin (θw,v)

(
(w̄ + v̄) (w̄ + v̄)

> − (1 + cos (θw,v))
(
w̄w̄> + v̄v̄>

))
=

(
π − θw,v

2π

)
I +

1

2π sin (θw,v)

(
w̄v̄> + v̄w̄> − cos (θw,v) w̄w̄> − cos (θw,v) v̄v̄>

)
=

(
π − θw,v

2π

)
I +

1

2π sin (θw,v)

(
(w̄ − cos (θw,v) v̄) v̄> + (v̄ − cos (θw,v) w̄) w̄>

)
=

1

2π

(
(π − θw,v) I + n̄w,vv̄

> + n̄v,ww̄>
)
.

Recall the objective in Eq. (6), we have that its Hessian is comprised of n × n blocks of size d × d each. On the main
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diagonal we therefore have

∂2F

∂w2
i

=
∂2

∂w2
i

1

2
f (wi,wi) +

n∑
j=1
j 6=i

f (wi,wj) +

k∑
j=1

f (wi,vj)


=

1

2
I +

n∑
j=1
j 6=i

h1 (wi,wj)−
k∑
j=1

h1 (wi,vj) ,

and on the off diagonal we have
∂2F

∂wi∂wj
= h2 (wi,wj) .

A.4.2. THE SPECTRAL NORM OF h1 AND h2

Lemma 9. We have that

• ||h1 (w,v)||sp =
sin(θw,v)||v||

π||w|| .

• ||h2 (w,v)||sp = 1
2π (π − θw,v + sin (θw,v)) .

Proof. To find the spectral norm, we compute the spectra of h1, h2.

• Clearly, for any u ∈ Rd orthogonal to both w̄, n̄v,w we have

h1 (w,v)u =
sin (θw,v) ||v||

2π ||w||
(
I− w̄w̄> + n̄v,wn̄>v,w

)
u =

sin (θw,v) ||v||
2π ||w||

u.

Thus sin(θw,v)||v||
2π||w|| is an eigenvalue of h1 with multiplicity at least d − 2. Since w̄, n̄v,w are orthogonal, their corre-

sponding eigenvalues comprise the rest of the spectrum of h1. Compute

h1 (w,v) w̄ =
sin (θw,v) ||v||

2π ||w||
(
I− w̄w̄> + n̄v,wn̄>v,w

)
w̄

=
sin (θw,v) ||v||

2π ||w||

(
w̄ − w̄ ||w̄||2

)
= 0.

Hence 0 is the eigenvalue of w̄. Also,

h1 (w,v) n̄v,w =
sin (θw,v) ||v||

2π ||w||
(
I− w̄w̄> + n̄v,wn̄>v,w

)
n̄v,w

=
sin (θw,v) ||v||

2π ||w||

(
n̄v,w + n̄v,w ||n̄v,w||2

)
=

sin (θw,v) ||v||
π ||w||

n̄v,w.

Therefore sin(θw,v)||v||
π||w|| is the largest eigenvalue of h1.

• Once again, for any u ∈ Rd orthogonal to both v̄, w̄ we have

h2 (w,v)u =
1

2π

(
(π − θw,v) I + n̄w,vv̄

> + n̄v,ww̄>
)
u =

1

2π
(π − θw,v)u.
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Thus 1
2π (π − θw,v) is an eigenvalue of h2 with multiplicity at least d−2. We now show the remaining two eigenvalues

correspond to the eigenvectors n̄w,v + n̄v,w and n̄w,v − n̄v,w.

h2 (w,v) (n̄w,v − n̄v,w)

=
1

2π

(
(π − θw,v) I + n̄w,vv̄

> + n̄v,ww̄>
)

(n̄w,v − n̄v,w)

=
1

2π

(
(π − θw,v) (n̄w,v − n̄v,w) + n̄v,ww̄>n̄w,v − n̄w,vv̄

>n̄v,w

)
=

1

2π

(
(π − θw,v) (n̄w,v − n̄v,w) + n̄v,ww̄>

w̄ − cos (θw,v) v̄

sin (θw,v)
− n̄w,vv̄

> v̄ − cos (θw,v) w̄

sin (θw,v)

)
=

1

2π

(
(π − θw,v) (n̄w,v − n̄v,w) + n̄v,w

1− cos2 (θw,v)

sin (θw,v)
− n̄w,v

1− cos2 (θw,v)

sin (θw,v)

)
=

1

2π
((π − θw,v) (n̄w,v − n̄v,w)− sin (θw,v) (n̄w,v − n̄v,w))

=
1

2π
(π − θw,v − sin (θw,v)) (n̄w,v − n̄v,w) .

Hence 1
2π (π − θw,v − sin (θw,v)) is an eigenvalue of h2. Similarly, we have

h2 (w,v) (n̄w,v + n̄v,w)

=
1

2π

(
(π − θw,v) I + n̄w,vv̄

> + n̄v,ww̄>
)

(n̄w,v + n̄v,w)

=
1

2π

(
(π − θw,v) (n̄w,v + n̄v,w) + n̄v,ww̄>n̄w,v + n̄w,vv̄

>n̄v,w

)
=

1

2π

(
(π − θw,v) (n̄w,v + n̄v,w) + n̄v,ww̄>

w̄ − cos (θw,v) v̄

sin (θw,v)
+ n̄w,vv̄

> v̄ − cos (θw,v) w̄

sin (θw,v)

)
=

1

2π

(
(π − θw,v) (n̄w,v + n̄v,w) + n̄v,w

1− cos2 (θw,v)

sin (θw,v)
+ n̄w,v

1− cos2 (θw,v)

sin (θw,v)

)
=

1

2π
((π − θw,v) (n̄w,v + n̄v,w) + sin (θw,v) (n̄w,v + n̄v,w))

=
1

2π
(π − θw,v + sin (θw,v)) (n̄w,v + n̄v,w) .

Therefore 1
2π (π − θw,v + sin (θw,v)) is the largest eigenvalue of h2.


