
Tempered Adversarial Networks

Mehdi S. M. Sajjadi 1 2 Giambattista Parascandolo 1 2 Arash Mehrjou 1 Bernhard Schölkopf 1

Abstract
Generative adversarial networks (GANs) have
been shown to produce realistic samples from
high-dimensional distributions, but training them
is considered hard. A possible explanation for
training instabilities is the inherent imbalance be-
tween the networks: While the discriminator is
trained directly on both real and fake samples,
the generator only has control over the fake sam-
ples it produces since the real data distribution is
fixed by the choice of a given dataset. We pro-
pose a simple modification that gives the genera-
tor control over the real samples which leads to a
tempered learning process for both generator and
discriminator. The real data distribution passes
through a lens before being revealed to the dis-
criminator, balancing the generator and discrim-
inator by gradually revealing more detailed fea-
tures necessary to produce high-quality results.
The proposed module automatically adjusts the
learning process to the current strength of the net-
works, yet is generic and easy to add to any GAN
variant. In a number of experiments, we show that
this can improve quality, stability and/or conver-
gence speed across a range of different GAN ar-
chitectures (DCGAN, LSGAN, WGAN-GP).

1. Introduction
Generative Adversarial Networks (GANs) have been intro-
duced as the state of the art in generative models (Good-
fellow et al., 2014). They have been shown to produce
sharp and realistic images with fine details (Chen et al.,
2016; Denton et al., 2015; Radford et al., 2016; Zhang et al.,
2017). The basic setup of GANs is to train a parametric non-
linear function, the generator G, which maps samples from
random noise drawn from a distribution Z into samples of

1Max Planck Institute for Intelligent Systems, Tübingen,
Germany 2Max Planck ETH Center for Learning Systems,
Zürich, Switzerland. Correspondence to: Mehdi S. M. Sajjadi
<msajjadi.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

a fake distribution G(Z) which are close in terms of some
measure to a real world empirical data distribution X . To
achieve this goal, a discriminator D is trained to provide
feedback in the form of gradients for the generator. This
feedback can be the confidence of a classifier discriminat-
ing between real and fake examples (Arjovsky et al., 2017;
Goodfellow et al., 2014; Gulrajani et al., 2017; Mao et al.,
2017) or an energy defined in terms of a reconstruction loss
of an autoencoder (Berthelot et al., 2017; Zhao et al., 2017).

GANs are infamous for being difficult to train and sensitive
to small changes in hyper-parameters (Goodfellow et al.,
2016). A typical source of instability is the discriminator
rapidly overpowering the generator which leads to prob-
lems such as vanishing gradients or mode collapse. In this
case, G(X) and X are too distant from each other and the
discriminator learns to fully distinguish them (Arjovsky &
Bottou, 2017). While several GAN variants have been in-
troduced to address the problems encountered during train-
ing (Arjovsky et al., 2017; Berthelot et al., 2017; Gulrajani
et al., 2017; Zhao et al., 2017), finding stable and more reli-
able training procedures for GANs is still an open research
question (Lucic et al., 2017).

1.1. Our Contributions

In this work we propose a general and dynamic, yet sim-
ple to implement extension to GANs that encourages a
smoother training procedure. We introduce a lens moduleL
which gives the generator control over the real data distribu-
tionX before it enters the discriminator. By adding the lens
between the real data samples and the discriminator, we
allow training to self-stabilize by automatically balancing
a reconstruction loss with the current performance of the
generator and discriminator. For instance, a lens could im-
plement an image blurring operation which gradually gets
reduced during training, thus only requiring the generation
of good blurry images at the beginning, which gradually
become sharper during training. While this analogy from
optics motivates the term lens, in practice we learn the lens
from data as explained below.

While the generator in a regular GAN chases a fixed distri-
bution X , the proposed lens moves the target distribution
closer to the generated samples G(Z) which leads to a bet-
ter optimization behavior.

http://msajjadi.com

Tempered Adversarial Networks

Figure 1. Schematic of the proposed module. We add a lens L in
between the real data X and the discriminatorD. The lens is com-
patible with any type of GAN and dataset type. It finds a balance
between fooling the discriminator and a reconstruction loss, lead-
ing to a tempered training procedure that self-adjusts to the capa-
bilities of the current generator w.r.t. the current discriminator.

2. Tempered Adversarial Networks
The original formulation for GANs poses the training pro-
cess as a minimax game between the generator G and dis-
criminator D over the value function V:

min
G

max
D
V(D,G) = Ex∼X [log(D(x))]

+ Ez∼Z [1− log(D(G(z)))] (1)

In practice, both generator and discriminator are imple-
mented as neural networks. The generator maps a random
distribution Z to G(Z) which is in the same space as the
real data distribution X . While the discriminator sees both
real samples from X and fake samples from G(Z), the gen-
erator only has control over the samples it produces itself,
i.e., it has no control over the real data distributionX which
is fixed throughout training. To resolve this asymmetry, we
add a lens module L which modifies the real data distribu-
tion X before it is passed to the discriminator.

In practice, we use a neural network for L. The only
change in the GAN architecture is consequently the input
to the discriminator, which changes from {X , G(X)} to
{L(X), G(X)}.
We train the lens with two loss terms: an adversarial loss
LAL and a reconstruction loss LRL . The adversarial loss is
supposed to maximize the loss of the discriminator of the
respective GAN architecture, i.e., LAL ≈ −LD. For the spe-
cific loss functions we used with the different GAN vari-
ants, see Sec. 2.1–2.3.

Additionally, we add a reconstruction loss to prevent the
lens from converging to trivial solutions (e.g., mapping all
samples to zero):

LRL = ||X − L(X)||22 (2)

Figure 2. Schedule for the weight λ for the adversarial loss term
LA

L of the lens during training. As training progresses, the value is
lowered in a smooth way from 1 to 0 inK steps, increasing the rel-
ative weight of the reconstruction loss for the lens. We setK=10k
in all experiments. While lower values showed faster convergence
rates in our experiments, we opted for a single value in all experi-
ments for simplicity and to avoid adding yet another hyperparame-
ter that needs to be tuned. We found that the performance is robust
against changed for the specific value for K and a single value to
yield good results across datasets and GAN architectures.

The overall loss for the lens is

LL = λLAL + LRL (3)

The lens can automatically balance a good reconstruction
of the original samples with the objective of mapping the
real data distribution X close to the generated data distribu-
tion G(Z) w.r.t. the probabilities given by the discrimina-
tor. As training progresses, the generated samples get closer
to the real samples, i.e., the lens can afford to reconstruct
the real data samples better. Once the discriminator starts
to see differences, the loss term LAL increases which makes
L shift the real data distribution X towards the generated
samples, helping to keep G(Z) and L(X) closer together
which yields better gradients during training.

To accelerate this procedure, we set λ = 1 at the beginning
of the training procedure and then gradually decrease it to
λ = 0, at which point L is only trained with LRL , forcing it
to converge to the identity mapping L(X) = X . To have
a smooth transition from adversarial samples L(X) to the
real data distribution X in K steps, we adapt the value for
λ as

λ =

{
1− sin(tπ/2K), t ≤ K
0, t > K

(4)

for the t-th time step during training. The value of λ over
time can be seen in Fig. 2. Once the lens converges to the
identity mapping, training reduces to the original GAN ar-
chitecture without a lens. In all experiments, we set K =
105 unless specified otherwise. Lower values for K lead

Tempered Adversarial Networks

De
ns
e,
	4
C

Re
sh
ap
e,
	4
x4

Ta
nh

Co
nv
,	3

,	1
/2

Z
Ba

tc
h	N

or
m

Re
lu

Co
nv
,	2

C,
	1
/2

Ba
tc
h	N

or
m

Re
lu

Co
nv
,	C

,	1
/2

Ba
tc
h	N

or
m

Re
lu

Co
nv
,	C

,	2

Sig
m
oi
d

De
ns
e,
	1
6C

Ba
tc
h	N

or
m

Le
ak
y	
Re

lu

Co
nv
,	2

C,
	2

Ba
tc
h	N

or
m

Le
ak
y	
Re

lu

Co
nv
,	4

C,
	2

Ba
tc
h	N

or
m

Le
ak
y	
Re

lu

L
G

Fla
tt
en

Le
ak
y	
Re

lu

De
ns
e,
	1

Figure 3. Network architecture of the generator G (top) and dis-
criminator D (bottom). The design follows Radford et al. (2016).
The strides of the convolutions are 1/2 for upsampling in G and 2
for downsampling in D. The kernel size is 4×4 in both networks.
The number of parameters can be varied by adjusting C.

to faster convergence, but to avoid introducing a new hy-
perparameter that needs to be tuned, and for simplicity, we
choose the same value for all experiments. Note that this
choice is clearly not optimal for all tasks and tuning the
value can easily lead to even faster convergence and higher
quality samples.

2.1. Objectives for classical GAN formulation

In the original work, Goodfellow et al. (2014) use the loss

LG = − log(D(G(Z))) (5)

for the generator, and

Loriginal
D = − log(D(X))− log(1−D(G(Z))) (6)

for the discriminator. The objectives of generator and dis-
criminator remain unchanged, though the input of the real
data to D is changed from X to L(X):
LD = − log(D(L(X)))− log(1−D(G(Z))). (7)

The lens is trained against the discriminator with the adver-
sarial loss term

LAL = − log(1−D(L(X))) (8)

which minimizes the output of the discriminator for the
lensed data points using the nonsaturating loss.

2.2. Objectives for LSGAN

In LSGAN (Mao et al., 2017), the log-loss is replaced by
the squared distance. This leads to the adversarial loss

LG = ||D(G(Z))− 1||22 (9)

for the generator, and

LD = ||D(G(Z))||22 + ||D(L(X))− 1||22 (10)

Le
ak
y	
Re

lu

X

Co
nv
,	3
2

Le
ak
y	
Re

lu

Co
nv
,	3

Le
ak
y	
Re

lu

Co
nv
,	3
2

Co
nv
,	3
2

…

8x

+

Le
ak
y	
Re

lu

Co
nv
,	3
2

Co
nv
,	3
2

+ +

Figure 4. Network architecture of the proposed lens that is simi-
lar to Sajjadi et al. (2017). The core of the network is composed
of 8 residual blocks. To help convergence to identity, we add an
additional residual connection from the input to the output. All
convolutions have 3×3 kernels and stride 1.

for the discriminator. The lens works against the discrimi-
nator with the adversarial loss

LAL = ||D(L(X))||22 (11)

2.3. Objectives for WGAN-GP

The discriminator or critic in the WGAN-GP variant (Gul-
rajani et al., 2017) outputs values that are unbounded, i.e.,
there is no sigmoid activation at the after the last dense layer
in Fig. 3. The objectives are

LG = −D(G(Z)) (12)

for the generator, and

LD = D(G(Z))−D(L(X)) (13)

for the critic. Again, the lens works against the critic, so we
use the adversarial objective

LAL = D(L(X)) (14)

for the lens for this GAN variant.

2.4. Architecture, Training and Evaluation metrics

The lens can be any function which maps from the usu-
ally high-dimensional space of the real data distribution X
to itself. Note that the lens does not need to be injective –
in fact, early on during training, mapping several different
points to the same data point can be a simple way to de-
crease the complexity of the data distribution which will
likely decrease the loss term LAL . Since it is desirable for
the lens to turn into the identity mapping at some point dur-
ing training, we have chosen a residual fully convolutional
neural network architecture for the lens, see Fig. 4.

The network architecture and training procedure for the
generator and discriminator depend on the chosen GAN
framework. For the experiments with the original GAN
loss, we use the DCGAN architecture along with its com-
mon tweaks (Radford et al., 2016), namely, strided convo-
lutions instead of pooling layers, applying batch normal-
ization in both networks, using ReLU in the generator and

Tempered Adversarial Networks

leaky ReLU in the discriminator, and Adam (Kingma & Ba,
2015) as the optimizer. See Fig. 3 for an overview of the
networks. LSGAN is trained in the same setting but with-
out batchnorm. For the WGAN-GP experiments, we used
the implementation from Gulrajani (2017) which uses very
similar models but the RMSProp optimizer (Hinton et al.,
2012). We train the lens alongside the generator and dis-
criminator and update it once per iteration regardless of the
GAN variant. Note that the networks for the DCGAN and
LSGAN experiments have intentionally been chosen not to
have a very large number of feature channels to avoid mem-
orization on small datasets which is why the results on an
absolute scale are certainly not state of the art. We train us-
ing batch sizes of 32 and 64, a learning rate of 10−4 and we
initialize the networks with the Xavier initialization (Glorot
& Bengio, 2010).

For quantitative evaluation, previous works have been re-
porting the Inception score (Salimans et al., 2016), though
its accuracy has been questioned (Barratt & Sharma, 2018).
Recently, the Fréchet Inception Distance (FID) has been
shown to correlate well with the perceived quality of sam-
ples, so we follow Heusel et al. (2017) and report FID
scores. Note that a lower FID is better. For computational
reasons, the FID scores are computed on sets of 4096 sam-
ples for the DCGAN and LSGAN experiments. While this
is lower than the recommended 10k and should therefore
not be compared directly with other publications, we found
the sample size to be sufficient to capture relative improve-
ments as long as sample sizes are identical. For the WGAN-
GP experiments, we used sample sizes of 10k data points.
The image size in all experiments is 32×32 pixels with 1
color channel for MNIST and 3 color channels for all other
experiments.

3. Related works
After its introduction (Goodfellow et al., 2014), GANs have
received a lot of attention from the community. There are
several lines of work to improve the training procedure of
GANs. Radford et al. (2016) proposed heuristic guidelines
for the design of GAN architectures, e.g., recommending
the use of strided convolutions and batch normalization
(Ioffe & Szegedy, 2015) in both generator and discrimi-
nator. Several works follow this trend, e.g., Salimans et al.
(2016) propose the use of further methods to stabilize the
performance of GANs including feature matching, histor-
ical averaging, minibatch discrimination and one-sided la-
bel smoothing (Szegedy et al., 2016). More closely related
to our work, Arjovsky & Bottou (2017) and Mehrjou et al.
(2017) propose adding noise to either both real and fake or
only to the real samples during training with the motivation
of increasing the support of the generated and real data dis-
tributions which leads to more meaningful gradients. The

amount of noise is reduced manually during training. In our
work, the lens is not constrained in the mapping that it can
apply to balance the training procedure. Furthermore, the
effect of the lens is automatically balanced with a recon-
struction term that adjusts the intervention of the lens dy-
namically during training depending on the current balance
between generator and discriminator.

There are several works which approach the problem by us-
ing multiple networks instead of one. Denton et al. (2015)
propose a Laplacian pyramid of generator-discriminator
pairs for generating images. Zhang et al. (2017) use a
similar approach by using one GAN to produce a low-
resolution image and another GAN which produces higher-
resolution images conditioned on the output of the low-
resolution GAN. Such methods have the drawback that sev-
eral GANs need to be trained which increases the num-
ber of parameters and introduces a computational bottle-
neck. Most recently, Karras et al. (2018) produced convinc-
ing high-resolution images of faces by first learning the
low frequencies in images and then progressively growing
both networks to produce higher-resolution images. While
promising, all of the methods above are constrained to gen-
erating images since the concept of resolution is not easily
generalizable to other domains.

Another line of research attacks the problem of training
GANs by changing the loss functions, e.g., Mao et al.
(2017) use the least-squares distance loss whereas Arjovsky
et al. (2017) approximate the Wasserstein distance which
provides more stable gradients for the generator. Gulrajani
et al. (2017) improve upon the latter by replacing weight
clipping in the discriminator with a gradient penalty which
accelerates the training procedure considerably.

In the context of training neural networks, Gulcehre et al.
(2017) smoothen the objective function by adding noise to
activation functions and then gradually decrease the level of
noise as training progresses. Bengio et al. (2009) coin the
term curriculum learning where the idea is to present the
samples during training in a specific order that improves the
learning process. Our approach may have a similar effect,
but differs in that we present all samples of the original
dataset to the networks, modifying them dynamically in a
way that stabilizes the learning process.

4. Experiments
Showing that modifications or additions to GANs lead to
better results in any way is a delicate topic that has raised
much controversy in the community. Most recently, the
findings of Lucic et al. (2017) suggest that with a suffi-
cient computational budget, any GAN architecture can be
shown to perform at least as well or better than another,
if a smaller computational budget is spent on the hyperpa-

Tempered Adversarial Networks

rameter search for the latter. To avoid this fallacy and to
prevent choices such as the network architecture or cho-
sen hyperparameters to favor one or another method, we
follow common guidelines that are currently in use for
training GANs and we conduct experiments with three dif-
ferent GAN frameworks: the original GAN formulation
by Goodfellow et al. (2014); LSGAN, where Mao et al.
(2017) replace the log-loss with the least-squares loss; and
WGAN-GP, where Gulrajani et al. (2017) minimize the ap-
proximated Wasserstein distance between real and gener-
ated data distributions and where the training procedure in-
cludes a gradient penalty for the discriminator. For the net-
work architecture, we follow standard design patterns (see
Sec. 2.4). In our experimental section, we do not strive for
state of the art in the end results, but rather we test how
much of an effect the lens can have on training. We show
that the simple addition of a lens can help improve results
across various GAN frameworks. We hope that this insight
will help ongoing efforts to understand and improve the
training of GANs and other neural network architectures.

In all experiments, the random weights for the initialization
of the networks were identical for the GANs with and with-
out a lens. All experiments have further been run with at
least 3 different random seeds for the weight initialization
to prevent chance from affecting the results.

4.1. Original GAN objective
4.1.1. MNIST

We begin with the original GAN variant on the classical
MNIST dataset. To analyze the behavior of the lens, we
first consider the case of a fixed λ = 1, i.e., the lens has
no direct incentive to become perfect identity. Fig. 5 (top)
shows generated and lensed samples at different training
stages for this architecture. At the beginning of training,
the lens scrambles the MNIST digits to look more similar
to the generated images. As the generator catches up and
produces digit-like samples, the lens can afford to improve
reconstruction. Since the lens acts as a balancing factor be-
tween the G and D, this leads to a very stable training pro-
cedure. However, even after 10M steps, the reconstruction
of the lens still improves, as does the FID score of the gen-
erated samples (see FID plot in Fig. 5, bottom left). In com-
parison, the GAN without a lens converges much faster to
better FID scores (Fig. 5, bottom right, green curve).

To accelerate the training procedure, we adapt the weight
of λ as explained in Sec. 2. As this forces the lens to turn
into a perfect identity mapping at some point during train-
ing, the process converges much more quickly and easily
surpasses the quality of the GAN without a lens, yielding
FID scores of 22 (with lens) vs. 42 (without lens). Addi-
tional experiments with much larger, heavily fine-tuned ar-
chitectures that already show stable training for GANs did

not show better FID after the addition of the lens, indicating
that the proposed method can stabilize weaker architectures
and lead to more robust GAN training with respect to hy-
perparameters.

4.1.2. COLOR MNIST

Since MNIST only has 10 main modes, it is not an adequate
test for the mode collapse problem in GANs. To alleviate
this, a color MNIST variant has been proposed (Srivastava
et al., 2017). Each sample is created by stacking three ran-
domly drawn MNIST digits into the red, green and blue
channels of an RGB image which leads to a dataset with
1000 modes (assuming 10 modes for MNIST) while still
being easy to analyze visually.

As can be seen in Fig. 9, the GAN without a lens first
produces decent results in all color channels before it col-
lapses partially. At this point, only the green color chan-
nel looks like MNIST digits while the other two channels
are clearly not from the correct distribution. The FID re-
flects this, sometimes even increasing as training proceeds,
with values throughout training never getting lower than 50.
Adding the lens to the GAN stabilizes training and leads to
much higher quality samples with an FID of 9 for the best
samples compared to 53 for the GAN without a lens.

4.2. LSGAN objective
4.2.1. MNIST

We found the LSGAN variant to be sensitive to the random
seed for the weight initialization of the networks. LSGAN
without a lens did not train in most cases, with the best run
yielding FID scores of 19. With the lens, the networks al-
ways trained well, with the worst run producing FID scores
of 16 and the best run giving FID scores of 14.

4.2.2. COLOR MNIST

On the Color MNIST dataset, we found LSGAN to perform
similarly. The best run without a lens yielded FID scores
of 90 and training stalled there due to starved gradients.
Adding the lens made the networks produce meaningful
results in all runs, producing FID scores between 14 and 22
from different random initializations.

4.2.3. CELEBA

On the CelebA dataset (Liu et al., 2015), LSGAN was un-
stable, with a starving generator early on during training
due to a perfect discriminator that did not provide gradi-
ents. The best run without a lens yielded an FID score of
52. Adding the lens helped the system stabilize and pro-
duce meaningful results in all runs, with the best run yield-
ing FID scores of 32 and the worst run yielding an FID
of 37. Note that these numbers are comparably high due
to the small model size of the generator and discriminator.
The effects of the lens during training are shown in Fig. 10.

Tempered Adversarial Networks

Training
tim

e
Generated samples G(Z) Lensed samples L(X)

Without lens (FID 42)

Dynamic lens (FID 22)

Real samples X

Figure 5. MNIST digits produced by DCGAN with a lens with fixed λ = 1 (top). The columns show generated and lensed samples.
The lens L adds pertubations that make the real data samples look more similar to fake samples. As training progresses, the quality
increases and the reconstruction of L improves steadily. Ideally, the system would converge to a point where G produces samples that
are indistinguishable from X for a fully trained discriminator – at this point, L would turn into the identity mapping. While training with
the lens is very stable and while the FID was still decreasing when we stopped training, the reconstructions are not perfect even after
10M training steps and the FID is still only 60, i.e., it has not yet even reached the performance of DCGAN without a lens after only
1M steps (bottom right, green curve). When the value for λ is adapted (see Sec. 2), training is greatly sped up and, the quality of the
samples is substantially higher (FID 22) than for the GAN without a lens (FID 42). The difference is also visible in the results, where the
GAN with a lens produces better looking MNIST digits. Note that the FID is initially higher for the GAN with a lens in the bottom right.
This is because the FID is always measured against the real samples X , while G is initially trained for the lensed distribution L(X) that
differs from X in the early training stages.

4.3. WGAN-GP

4.3.1. CIFAR10

To test the lens on an entirely different GAN architecture,
we also add it to the WGAN-GP framework (Gulrajani
et al., 2017). Wasserstein GANs are generally believed to
be more stable than other GAN variants, making it harder
for tweaks to significantly improve sample quality. Never-

theless, our experiment on the Cifar-10 dataset shows that
the same lens with the same hyperparameters also works
well with WGAN-GP, yielding higher-quality results as
measured by the FID score at an earlier training stage. As
seen in Fig. 7, the model with a lens quickly surpasses the
quality of the model without a lens and it takes some more
training time for the GAN without a lens to catch up. When
trained long enough, both models yield an FID of 39.

Tempered Adversarial Networks

Figure 6. FID for DCGAN trained on the Color MNIST dataset.
For each method, 3 independent runs with different random seeds
for the weight initialization are shown. Since the value of λ is high
early on during training, the GAN with a lens initially performs
worse, but the quality soon catches up and surpasses that of the
GAN without a lens as λ is lowered to a value of 0. The GANs
with a lens are much more stable and more robust against different
random seeds for the weight initialization.

It is noteworthy that adding the lens can lead to faster train-
ing although the generator and discriminator are initially
trained on a data distribution L(X) that is quite different
from the real data distribution X (see Fig. 8). This result
suggests that a scheduled learning procedure can indeed
accelerate optimization of neural networks. The proposed
lens is a natural way to dynamically adjust the rate at which
learning proceeds.

5. Conclusion
We propose a generic module that leads to a dynamically
self-adjusting progressive learning procedure of the target
data distribution in GANs. A number of experiments on sev-
eral GAN variants highlight the potential of this approach.
Whilst the method is conceptually simple, it may have sig-
nificant potential, not only in the image domain, but also in
other domains such as audio or video generation. We hy-
pothesize that similar modifications can be applied to im-
prove optimization of other neural network architectures.
For instance, autoencoders can be tempered by initially
training to reconstruct lensed inputs, and recognition net-
works can be tempered by grouping or smoothing classes.
Finally, it may be possible to incorporate prior knowledge
about the task at hand by suitably biasing or initializing
lenses, for instance using blurring lenses to generate images
starting from low-frequency approximations.

Figure 7. FID for WGAN-GP on Cifar-10 with and without a lens.
The value forλ is smoothly lowered from 1 to 0 in the firstK=10K
steps. The final results have similar FIDs, but WGAN-GP with a
lens converges faster to higher-quality samples. Tuning the rate at
which λ is adapted could further improve convergence speeds.

Training
tim

e

Generated samples G(Z) Lensed samples L(X)

Figure 8. WGAN-GP with a lens L. In early training stages, the
images are blurry lack contrast, but L gradually reconstructs finer
details as G catches up. Note that by design, L could easily con-
verge to the perfect identity mapping very quickly, so the gradual
improvements seen here are a result of the adversarial loss term
LA

L rather than slow convergence.

Tempered Adversarial Networks

Training
tim

e

Generated samples G(Z) Lensed samples L(X)

Without lens (t=50k) (FID 47)

Without lens (t=1M) (FID 63)

With lens (FID 8)

Real samples X

Figure 9. Results of DCGAN with a lens L on the Color MNIST dataset (top). The lens gradually improves reconstruction asG produces
better samples. Once L is a perfect identity function, G adds remaining details and finally produces realistic results (bottom, third row).
In comparison, the GAN without a lens only manages to produce good-looking digits in the green color channel and produces noise in
the red and blue channels (bottom, first row, t=50k). As G improves quality in the green channel, the quality in the other two channels
decreases (bottom, second row, t=1M) which is a commonly encountered instability during GAN training. Several runs with different
random seeds for the weight initialization yielded similar results for both architectures, see Fig. 6. Images best viewed in color.

Training
tim

e

Generated samples G(Z) lensed samples L(X)

← Final samples at the end of training

Figure 10. Generated and lensed samples at various steps during the training process of LSGAN on the CelebA dataset with a lens. The
generator produces a large variety of faces since it is not forced to reproduce fine details early during training, making it less prone to
the mode collapse problem.

Tempered Adversarial Networks

References
Arjovsky, M. and Bottou, L. Towards principled methods

for training generative adversarial networks. In ICML,
2017.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In ICML, 2017.

Barratt, S. and Sharma, R. A note on the inception score.
arXiv:1801.01973, 2018.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. Cur-
riculum learning. In ICML, 2009.

Berthelot, D., Schumm, T., and Metz, L. BEGAN:
Boundary equilibrium generative adversarial networks.
arXiv:1703.10717, 2017.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. InfoGAN: Interpretable representation
learning by information maximizing generative adversar-
ial nets. In NIPS, 2016.

Denton, E. L., Chintala, S., and Fergus, R. Deep generative
image models using laplacian pyramid of adversarial net-
works. In NIPS, 2015.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In AISTATS,
2010.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In NIPS, 2014.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT Press, 2016.

Gulcehre, C., Moczulski, M., Visin, F., and Bengio, Y. Mol-
lifying networks. ICLR, 2017.

Gulrajani, I. Code for reproducing experiments
in improved training of wasserstein GANs.
https://github.com/igul222/improved_
wgan_training, 2017. (Latest commit from June 22,
2017).

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein GANs.
In NIPS, 2017.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs trained by a two time-scale update
rule converge to a local nash equilibrium. In NIPS, 2017.

Hinton, G., Srivastava, N., and Swersky, K. Neural net-
works for machine learning. overview of mini-batch gra-
dient descent, 2012.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In ICML, 2015.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of GANs for improved quality, stability, and
variation. ICLR, 2018.

Kingma, D. and Ba, J. Adam: A method for stochastic op-
timization. 2015.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In ICCV, 2015.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bous-
quet, O. Are GANs created equal? A large-scale study.
arXiv:1711.10337, 2017.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and Smolley,
S. P. Least squares generative adversarial networks. In
ICCV, 2017.

Mehrjou, A., Schölkopf, B., and Saremi, S. Annealed gen-
erative adversarial networks. arXiv:1705.07505, 2017.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. In ICLR, 2016.

Sajjadi, M. S. M., Schölkopf, B., and Hirsch, M. En-
hanceNet: Single image super-resolution through auto-
mated texture synthesis. In ICCV, 2017.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-
ford, A., and Chen, X. Improved techniques for training
GANs. NIPS, 2016.

Srivastava, A., Valkoz, L., Russell, C., Gutmann, M. U., and
Sutton, C. VEEGAN: Reducing mode collapse in GANs
using implicit variational learning. In NIPS, 2017.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In CVPR, 2016.

Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X.,
and Metaxas, D. StackGAN: Text to photo-realistic im-
age synthesis with stacked generative adversarial net-
works. In ICCV, 2017.

Zhao, J., Mathieu, M., and LeCun, Y. Energy-based gener-
ative adversarial network. ICLR, 2017.

https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training

