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Abstract
Understanding and interacting with everyday
physical scenes requires rich knowledge about
the structure of the world, represented either im-
plicitly in a value or policy function, or explic-
itly in a transition model. Here we introduce a
new class of learnable models—based on graph
networks—which implement an inductive bias
for object- and relation-centric representations of
complex, dynamical systems. Our results show
that as a forward model, our approach supports
accurate predictions from real and simulated data,
and surprisingly strong and efficient generaliza-
tion, across eight distinct physical systems which
we varied parametrically and structurally. We
also found that our inference model can perform
system identification. Our models are also differ-
entiable, and support online planning via gradient-
based trajectory optimization, as well as offline
policy optimization. Our framework offers new
opportunities for harnessing and exploiting rich
knowledge about the world, and takes a key step
toward building machines with more human-like
representations of the world.

1. Introduction
Many domains, such as mathematics, language, and physical
systems, are combinatorially complex. The possibilities
scale rapidly with the number of elements. For example, a
multi-link chain can assume shapes that are exponential in
the number of angles each link can take, and a box full of
bouncing balls yields trajectories which are exponential in
the number of bounces that occur. How can an intelligent
agent understand and control such complex systems?

A powerful approach is to represent these systems in terms
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Figure 1. (Top) Our experimental physical systems. (Bottom) Sam-
ples of parametrized versions of these systems (see videos: link).

of objects2 and their relations, applying the same object-
wise computations to all objects, and the same relation-wise
computations to all interactions. This allows for combina-
torial generalization to scenarios never before experienced,
whose underlying components and compositional rules are
well-understood. For example, particle-based physics en-
gines make the assumption that bodies follow the same dy-
namics, and interact with each other following similar rules,
e.g., via forces, which is how they can simulate limitless
scenarios given different initial conditions.

Here we introduce a new approach for learning and con-
trolling complex systems, by implementing a structural in-
ductive bias for object- and relation-centric representations.
Our approach uses “graph networks” (GNs), a class of neu-
ral networks that can learn functions on graphs (Scarselli
et al., 2009b; Li et al., 2015; Battaglia et al., 2016; Gilmer
et al., 2017). In a physical system, the GN lets us represent

2“Object” here refers to entities generally, rather than physical
objects exclusively.

https://drive.google.com/file/d/14eYTWoH15T53a7qejvCkDLItOOE9Ve7S/view?usp=sharing
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the bodies (objects) with the graph’s nodes and the joints
(relations) with its edges. During learning, knowledge about
body dynamics is encoded in the GN’s node update func-
tion, interaction dynamics are encoded in the edge update
function, and global system properties are encoded in the
global update function. Learned knowledge is shared across
the elements of the system, which supports generalization
to new systems composed of the same types of body and
joint building blocks.

Across seven complex, simulated physical systems, and one
real robotic system (see Figure 1), our experimental results
show that our GN-based forward models support accurate
and generalizable predictions, inference models3 support
system identification in which hidden properties are abduced
from observations, and control algorithms yield competitive
performance against strong baselines. This work repre-
sents the first general-purpose, learnable physics engine that
can handle complex, 3D physical systems. Unlike classic
physics engines, our model has no specific a priori knowl-
edge of physical laws, but instead leverages its object- and
relation-centric inductive bias to learn to approximate them
via supervised training on current-state/next-state pairs.

Our work makes three technical contributions: GN-based
forward models, inference models, and control algorithms.
The forward and inference models are based on treating
physical systems as graphs and learning about them using
GNs. Our control algorithm uses our forward and inference
models for planning and policy learning.

(For full algorithm, implementation, and methodological
details, as well as videos from all of our experiments, please
see the Supplementary Material.)

2. Related Work
Our work draws on several lines of previous research. Cog-
nitive scientists have long pointed to rich generative models
as central to perception, reasoning, and decision-making
(Craik, 1967; Johnson-Laird, 1980; Miall & Wolpert, 1996;
Spelke & Kinzler, 2007; Battaglia et al., 2013). Our core
model implementation is based on the broader class of graph
neural networks (GNNs) (Scarselli et al., 2005; 2009a;b;
Bruna et al., 2013; Li et al., 2015; Henaff et al., 2015; Du-
venaud et al., 2015; Dai et al., 2016; Defferrard et al., 2016;
Niepert et al., 2016; Kipf & Welling, 2016; Battaglia et al.,
2016; Watters et al., 2017; Raposo et al., 2017; Santoro
et al., 2017; Bronstein et al., 2017; Gilmer et al., 2017). One
of our key contributions is an approach for learning physi-
cal dynamics models (Grzeszczuk et al., 1998; Fragkiadaki
et al., 2015; Battaglia et al., 2016; Chang et al., 2016; Wat-

3We use the term “inference” in the sense of “abductive
inference”—roughly, constructing explanations for (possibly par-
tial) observations—and not probabilistic inference, per se.

ters et al., 2017; Ehrhardt et al., 2017; Amos et al., 2018).
Our inference model shares similar aims as approaches for
learning system identification explicitly (Yu et al., 2017;
Peng et al., 2017), learning policies that are robust to hidden
property variations (Rajeswaran et al., 2016), and learning
exploration strategies in uncertain settings (Schmidhuber,
1991; Sun et al., 2011; Houthooft et al., 2016). We use
our learned models for model-based planning in a similar
spirit to classic approaches which use pre-defined models
(Li & Todorov, 2004; Tassa et al., 2008; 2014), and our work
also relates to learning-based approaches for model-based
control (Atkeson & Santamaria, 1997; Deisenroth & Ras-
mussen, 2011; Levine & Abbeel, 2014). We also explore
jointly learning a model and policy (Heess et al., 2015; Gu
et al., 2016; Nagabandi et al., 2017). Notable recent, concur-
rent work (Wang et al., 2018) used a GNN to approximate a
policy, which complements our use of a related architecture
to approximate forward and inference models.

3. Model
Graph representation of a physical system. Our ap-
proach is founded on the idea of representing phys-
ical systems as graphs: the bodies and joints corre-
spond to the nodes and edges, respectively, as de-
picted in Figure 2a. Here a (directed) graph is de-
fined as G = (g, {ni}i=1···Nn , {ej , sj , rj}j=1···Ne), where
g is a vector of global features, {ni}i=1···Nn is a set of
nodes where each ni is a vector of node features, and
{ej , sj , rj}j=1···Ne is a set of directed edges where ej is a
vector of edge features, and sj and rj are the indices of the
sender and receiver nodes, respectively.

We distinguish between static and dynamic properties in a
physical scene, which we represent in separate graphs. A
static graph Gs contains static information about the param-
eters of the system, including global parameters (such as the
time step, viscosity, gravity, etc.), per body/node parameters
(such as mass, inertia tensor, etc.), and per joint/edge pa-
rameters (such as joint type and properties, motor type and
properties, etc.). A dynamic graph Gd contains information
about the instantaneous state of the system. This includes
each body/node’s 3D Cartesian position, 4D quaternion ori-
entation, 3D linear velocity, and 3D angular velocity.4 Ad-
ditionally, it contains the magnitude of the actions applied
to the different joints in the corresponding edges.

4Some physics engines, such as Mujoco (Todorov et al., 2012),
represent systems using “generalized coordinates”, which sparsely
encode degrees of freedom rather than full body states. Gen-
eralized coordinates offer advantages such as preventing bodies
connected by joints from dislocating (because there is no degree of
freedom for such displacement). In our approach, however, such
representations do not admit sharing as naturally because there are
different input and output representations for a body depending on
the system’s constraints.
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Figure 2. Graph representations and GN-based models. (a) A physical system’s bodies and joints can be represented by a graph’s nodes
and edges, respectively. (b) A GN block takes a graph as input and returns a graph with the same structure but different edge, node,
and global features as output (see Algorithm 1). (c) A feed-forward GN-based forward model for learning one-step predictions. (d) A
recurrent GN-based forward model. (e) A recurrent GN-based inference model for system identification.

Algorithm 1 Graph network, GN
Input: Graph, G = (g, {ni}, {ej , sj , rj})
for each edge {ej , sj , rj} do

Gather sender and receiver nodes nsj ,nrj
Compute output edges, e∗j = fe(g,nsj ,nrj , ej)

end for
for each node {ni} do

Aggregate e∗j per receiver, êi =
∑
j/rj=i

e∗j
Compute node-wise features, n∗i = fn(g,ni, êi)

end for
Aggregate all edges and nodes ê =

∑
j e∗j , n̂ =

∑
i n∗i

Compute global features, g∗ = fg(g, n̂, ê)
Output: Graph, G∗ = (g∗, {n∗i }, {e∗j , sj , rj})

Graph networks. The GN architectures introduced here
generalize interaction networks (IN) (Battaglia et al., 2016)
in several ways. They include global representations and
outputs for the state of a system, as well as per-edge outputs.
They are defined as “graph2graph” modules (i.e., they map
input graphs to output graphs with different edge, node, and
global features), which can be composed in deep and recur-
rent neural network (RNN) configurations. A core GN block
(Figure 2b) contains three sub-functions—edge-wise, fe,
node-wise, fn, and global, fg—which can be implemented
using standard neural networks. Here we use multi-layer
perceptrons (MLP). A single feedforward GN pass can be
viewed as one step of message-passing on a graph (Gilmer
et al., 2017), where fe is first applied to update all edges, fn
is then applied to update all nodes, and fg is finally applied
to update the global feature. See Algorithm 1 for details.

Forward models. For prediction, we introduce a GN-
based forward model for learning to predict future states
from current ones. It operates on one time-step, and contains
two GNs composed sequentially in a “deep” arrangement
(unshared parameters; see Figure 2c). The first GN takes an
input graph, G, and produces a latent graph, G′. This G′ is

concatenated5 with G (e.g., a graph skip connection), and
provided as input to the second GN, which returns an output
graph, G∗. Our forward model training optimizes the GN so
thatG∗’s {ni} features reflect predictions about the states of
each body across a time-step. The reason we used two GNs
was to allow all nodes and edges to communicate with each
other through the g′ output from the first GN. Preliminary
tests suggested this provided large performance advantages
over a single IN/GN (see ablation study in SM Figure H.2).

We also introduce a second, recurrent GN-based forward
model, which contains three RNN sub-modules (GRUs,
(Cho et al., 2014)) applied across all edges, nodes, and
global features, respectively, before being composed with a
GN block (see Figure 2d).

Our forward models were all trained to predict state dif-
ferences, so to compute absolute state predictions we up-
dated the input state with the predicted state difference. To
generate a long-range rollout trajectory, we repeatedly fed
absolute state predictions and externally specified control
inputs back into the model as input, iteratively. As data pre-
and post-processing steps, we normalized the inputs and
outputs to the GN model.

Inference models. System identification refers to infer-
ences about unobserved properties of a dynamic system
based on its observed behavior. It is important for con-
trolling systems whose unobserved properties influence the
control dynamics. Here we consider “implicit” system iden-
tification, in which inferences about unobserved properties
are not estimated explicitly, but are expressed in latent rep-
resentations which are made available to other mechanisms.

We introduce a recurrent GN-based inference model, which
observes only the dynamic states of a trajectory and con-

5We define the term “graph-concatenation” as combining two
graphs by concatenating their respective edge, node, and global
features. We define “graph-splitting” as splitting the edge, node,
and global features of one graph to form two new graphs with the
same structure.
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Figure 3. Evaluation rollout in a Swimmer6. Trajectory videos are here: link-P.F.S6. (a) Frames of ground truth and predicted states
over a 100 step trajectory. (b-e) State sequence predictions for link #3 of the Swimmer. The subplots are (b) x, y, z-position, (c)
q0, q1, q2, q3-quaternion orientation, (d) x, y, z-linear velocity, and (e) x, y, z-angular velocity. [au] indicates arbitrary units.

structs a latent representation of the unobserved, static prop-
erties (i.e., performs implicit system identification). It takes
as input a sequence of dynamic state graphs, Gd, under
some control inputs, and returns an output, G∗(T ), after T
time steps. This G∗(T ) is then passed to a one-step forward
model by graph-concatenating it with an input dynamic
graph, Gd. The recurrent core takes as input, Gd, and hid-
den graph, Gh, which are graph-concatenated5 and passed
to a GN block (see Figure 2e). The graph returned by the
GN block is graph-split5 to form an output, G∗, and up-
dated hidden graph, G∗h. The full architecture can be trained
jointly, and learns to infer unobserved properties of the sys-
tem from how the system’s observed features behave, and
use them to make more accurate predictions.

Control algorithms. For control, we exploit the fact that
the GN is differentiable to use our learned forward and
inference models for model-based planning within a clas-
sic, gradient-based trajectory optimization regime, also
known as model-predictive control (MPC). We also develop
an agent which simultaneously learns a GN-based model
and policy function via Stochastic Value Gradients (SVG)
(Heess et al., 2015). 6

4. Methods
Environments. Our experiments involved seven actu-
ated Mujoco simulation environments (Figure 1). Six
were from the “DeepMind Control Suite” (Tassa et al.,
2018)—Pendulum, Cartpole, Acrobot, Swimmer, Cheetah,
Walker2d—and one was a model of a JACO commercial
robotic arm. We generated training data for our forward
models by applying simulated random controls to the sys-

6MPC and SVG are deeply connected: in MPC the control
inputs are optimized given the initial conditions in a single episode,
while in SVG a policy function that maps states to controls is
optimized over states experienced during training.

tems, and recording the state transitions. We also trained
models from recorded trajectories of a real JACO robotic
under human control during a stacking task.

In experiments that examined generalization and system
identification, we created a dataset of versions of several of
our systems—Pendulum, Cartpole, Swimmer, Cheetah and
JACO— with procedurally varied parameters and structure.
We varied continuous properties such as link lengths, body
masses, and motor gears. In addition, we also varied the
number of links in the Swimmer’s structure, from 3-15 (we
refer to a swimmer with N links as SwimmerN ).

MPC planning. We used our GN-based forward model to
implement MPC planning by maximizing a dynamic-state-
dependent reward along a trajectory from a given initial
state. We used our GN forward model to predict the N -step
trajectories (N is the planning horizon) induced by proposed
action sequences, as well as the total reward associated
with the trajectory. We optimized these action sequences by
backpropagating gradients of the total reward with respect to
the actions, and minimizing the negative reward by gradient
descent, iteratively.

Model-based reinforcement learning. To investigate
whether our GN-based model can benefit reinforcement
learning (RL) algorithms, we used our model within an
SVG regime (Heess et al., 2015). The GN forward model
was used as a differentiable environment simulator to obtain
a gradient of the expected return (predicted based on the
next state generated by a GN) with respect to a parame-
terized, stochastic policy, which was trained jointly with
the GN. For our experiments we used a single step predic-
tion (SVG(1)) and compared to sample-efficient model-free
RL baselines using either stochastic policies (SVG(0)) or
deterministic policies via the Deep Deterministic Policy
Gradients (DDPG) algorithm (Lillicrap et al., 2016) (which
is also used as a baseline in the MPC experiments).

https://drive.google.com/file/d/1ez6sqCTZmHdSnf86lK6NEsnzyi-O25-B/view?usp=sharing
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Figure 4. (a) One-step and (b) 100-step rollout errors for different
models and training (different bars) on different test data (x-axis
labels), relative to the constant prediction baseline (black dashed
line). Blue bars are GN models trained on single systems. Red
and yellow bars are GN models trained on multiple systems, with
(yellow) and without (red) parametric variation. Note that includ-
ing Cheetah in multiple system training caused performance to
diminish (light red vs dark red bars), which suggests sharing might
not always be beneficial.

Baseline comparisons. As a simple baseline, we com-
pared our forward models’ predictions to a constant pre-
diction baseline, which copied the input state as the output
state. We also compared our GN-based forward model with
a learned, MLP baseline, which we trained to make for-
ward predictions using the same data as the GN model. We
replaced the core GN with an MLP, and flattened and con-
catenated the graph-structured GN input and target data into
a vector suitable for input to the MLP. We swept over 20
unique hyperparameter combinations for the MLP architec-
ture, with up to 9 hidden layers and 512 hidden nodes per
layer.

As an MPC baseline, with a pre-specified physical model,
we used a Differential Dynamic Programming algorithm
(Tassa et al., 2008; 2014) that had access to the ground-
truth Mujoco model. We also used the two model-free RL
agents mentioned above, SVG(0) and DDPG, as baselines
in some tests. Some of the trajectories from a DDPG agent
in Swimmer6 were also used to evaluate generalization of
the forward models.

Prediction performance evaluation. Unless otherwise
specified, we evaluated our models on squared one-step
dynamic state differences (one-step error) and squared tra-
jectory differences (rollout error) between the prediction
and the ground truth. We calculated independent errors
for position, orientation, linear velocity angular velocity,
and normalized them individually to the constant prediction
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Figure 5. Prediction errors, on (a) one-step and (b) 20-step evalua-
tions, between the best MLP baseline and the best GN model after
72 hours of training. Swimmer6 prediction errors, on (c) one-step
and (d) 20-step evaluations, between the best MLP baseline and
the best GN model for data in the training set (dark), data in the
validation set (medium), and data from DDPG agent trajectories
(light). The numbers above the bars indicate the ratio between the
corresponding generalization test error (medium or light) and the
training error (dark).

baseline. After normalization, the errors were averaged to-
gether. All errors reported are calculated for 1000 100-step
sequences from the test set.

5. Results: Prediction
Learning a forward model for a single system. Our re-
sults show that the GN-based model can be trained to make
very accurate forward predictions under random control. For
example, the ground truth and model-predicted trajectories
for Swimmer6 were both visually and quantitatively indistin-
guishable (see Figure 3). Figure 4’s black bars show that the
predictions across most other systems were far better than
the constant prediction baseline. As a stronger baseline com-
parison, Figures 5a-b show that our GN model had lower
error than the MLP-based model in 6 of the 7 simulated
control systems we tested. This was especially pronounced
for systems with much repeated structure, such as the Swim-
mer, while for systems with little repeated structure, such
as Pendulum, there was negligible difference between the
GN and MLP baseline. These results suggest that a GN-
based forward model is very effective at learning predictive
dynamics in a diverse range of complex physical systems.

We also found that the GN generalized better than the MLP
baseline from training to test data, as well as across different
action distributions. Figures 5c-d show that for Swimmer6,
the relative increase in error from training to test data, and
to data recorded from a learned DDPG agent, was smaller
for the GN model than for the MLP baseline. We speculate
that the GN’s superior generalization is a result of implicit
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regularization due to its inductive bias for sharing parame-
ters across all bodies and joints; the MLP, in principle, could
devote disjoint subsets of its computations to each body and
joint, which might impair generalization.

Learning a forward model for multiple systems. An-
other important feature of our GN model is that it is very
flexible, able to handle wide variation across a system’s
properties, and across systems with different structure. We
tested how it learned forward dynamics of systems with
continuously varying static parameters, using a new dataset
where the underlying systems’ bodies and joints had differ-
ent masses, body lengths, joint angles, etc. These static
state features were provided to the model via the input
graphs’ node and edge attributes. Figure 4 shows that the
GN model’s forward predictions were again accurate, which
suggests it can learn well even when the underlying system
properties vary.

We next explored the GN’s inductive bias for body- and
joint-centric learning by testing whether a single model
can make predictions across multiple systems that vary in
their number of bodies and the joint structure. Figure 6
shows that when trained on a mixed dataset of Swimmers
with 3-6, 8-9 links, the GN model again learned to make
accurate forward predictions. We pushed this even further
by training a single GN model on multiple systems, with
completely different structures, and found similarly positive
results (see Figure 4, red and yellow bars). This highlights
a key difference, in terms of general applicability, between
GN and MLP models: the GN can naturally operate on
variably structured inputs, while the MLP requires fixed-
size inputs.

The GN model can even generalize, zero-shot, to systems
whose structure was held out during training, as long as they
are composed of bodies and joints similar to those seen dur-
ing training. For the GN model trained on Swimmers with
3-6, 8-9 links, we tested on held-out Swimmers with 7 and
10-15 links. Figure 6 shows that zero-shot generalization
performance is very accurate for 7 and 10 link Swimmers,
and degrades gradually from 11-15 links. Still, their tra-
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The recurrent model tracks the ground truth (a) orientations and
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model was still well below the constant prediction baseline. A
video of a Mujoco rendering of the true and predicted trajectories:
link-P.F.JR.

jectories are visually very close to the ground truth (video:
link-P.F.SN(Z)).

Real robot data. To evaluate our approach’s applicability
to the real world, we trained GN-based forward models on
real JACO proprioceptive data; under manual control by
a human performing a stacking task. We found the feed-
forward GN performance was not as accurate as the recur-
rent GN forward model7: Figure 7 shows a representative
predicted trajectory from the test set, as well as overall per-
formance. These results suggest that our GN-based forward
model is a promising approach for learning models in real
systems.

6. Results: Inference
In many real-world settings the system’s state is partially
observable. Robot arms often use joint angle and velocity
sensors, but other properties such as mass, joint stiffness, etc.
are often not directly measurable. We applied our system
identification inference model (see Model Section 3) to a
setting where only the dynamic state variables (i.e., position,
orientation, and linear and angular velocities) were observed,
and found it could support accurate forward predictions
(during its “prediction phase”) after observing randomly
controlled system dynamics during an initial 20-step “ID
phase” (see Figure 8).

To further explore the role of our GN-based system identi-
fication, we contrasted the model’s predictions after an ID
phase, which contained useful control inputs, against an ID
phase that did not apply control inputs, across three differ-
ent Pendulum systems with variable, unobserved lengths.
Figure 9 shows that the GN forward model with an identifi-
able ID phase makes very accurate predictions, but with an
unidentifiable ID phase its predictions are very poor.

7This might result from lag or hysteresis which induces long-
range temporal dependencies that the feed-forward model cannot
capture.

https://drive.google.com/file/d/1BFVbTMliHln4urxrSQJUk6uELqsWSPzx/view?usp=sharing
https://drive.google.com/file/d/15dEUgf5T4ddehMgZiVQ2FtXGqJi9JIDn/view?usp=sharing
https://drive.google.com/file/d/1o9rF-IHhhAldRYjJF6unBHslI9KbAFI7/view?usp=sharing
https://drive.google.com/file/d/15dEUgf5T4ddehMgZiVQ2FtXGqJi9JIDn/view?usp=sharing
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Figure 8. System identification performance. The y-axis repre-
sents 100-step rollout error, relative to the trivial constant predic-
tion baseline (black dashed line). The baseline GN-based model
(black bars) with no system identification module performs worst.
A model which was always provided the true static parameters
(medium blue bars) and thus did not require system identification
performed best. A model without explicit access to the true static
parameters, but with a system identification module (light blue
bars), performed generally well, sometimes very close to the model
which observed the true parameters. But when that same model
was presented with an ID phase whose hidden parameters were
different (but from the same distribution) from its prediction phase
(red bars), its performance was similar or worse than the model
(black) with no ID information available. (The N/A column is
because our Swimmer experiments always varied the number of
links as well as parameters, which meant the inferred static graph
could not be concatenated with the initial dynamic graph.)
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Figure 9. System identification analysis in Pendulum. (a) Control
inputs are applied to three Pendulums with different, unobservable
lengths during the 20-step ID phase, which makes the system
identifiable. (b) The model’s predicted trajectories (dashed curves)
track the ground truth (solid curves) closely in the subsequent
80-step prediction phase. (c) No control inputs are applied to
the same systems during the ID phase, which makes the system
identifiable. (d) The model’s predicted trajectories across systems
are very different from the ground truth.

A key advantage of our system ID approach is that once the
ID phase has been performed for some system, the inferred
representation can be stored and reused to make trajectory
predictions from different initial states of the system. This
contrasts with an approach that would use an RNN to both
infer the system properties and use them throughout the
trajectory, which thus would require identifying the same
system from data each time a new trajectory needs to be
predicted given different initial conditions.

7. Results: Control
Differentiable models can be valuable for model-based se-
quential decision-making, and here we explored two ap-

Target

(a)

Target

(b)

Figure 10. Frames from a 40-step GN-based MPC trajectory of the
simulated JACO arm. (a) Imitation of the pose of each individual
body of the arm (13 variables x 9 bodies). (b) Imitation of only the
palm’s pose (13 variables). The full videos are here: link-C.F.JA(o)
and link-C.F.JA(a).

proaches for exploiting our GN model in continuous control.

Model-predictive control for single systems. We
trained a GN forward model and used it for MPC by opti-
mizing the control inputs via gradient descent to maximize
predicted reward under a known reward function. We found
our GN-based MPC could support planning in all of our
control systems, across a range of reward functions. For
example, Figure 10 shows frames of simulated JACO tra-
jectories matching a target pose and target palm location,
respectively, under MPC with a 20-step planning horizon.

In the Swimmer6 system with a reward function that max-
imized the head’s movement toward a randomly chosen
target, GN-based MPC with a 100-step planning horizon se-
lected control inputs that resulted in coordinated, swimming-
like movements. Despite the fact that the Swimmer6 GN
model used for MPC was trained to make one-step predic-
tions under random actions, its swimming performance was
close to both that of a more sophisticated planning algo-
rithm which used the true Mujoco physics as its model, as
well as that of a learned DDPG agent trained on the sys-
tem (see Figure 11a). And when we trained the GN model
using a mixture of both random actions and DDPG agent
trajectories, there was effectively no difference in perfor-
mance between our approach, versus the Mujoco planner
and learned DDPG agent baselines (see video: link-C.F.S6).

For Cheetah with reward functions for maximizing forward
movement, maximizing height, maximizing squared verti-
cal speed, and maximizing squared angular speed of the
torso, MPC with a 20-step horizon using a GN model re-
sulted in running, jumping, and other reasonable patterns of
movements (see video: link-C.F.Ch(k)).

Model-predictive control for multiple systems. Similar
to how our forward models learned accurate predictions

https://drive.google.com/file/d/1-R4qC7NHacsDlkjhnwr3w4Gf_89AfCQw/view?usp=sharing
https://drive.google.com/file/d/1nbb-yobuX2sFyAWJM_TvOI3usc6DbVVo/view?usp=sharing
https://drive.google.com/file/d/1ML7Wv0WiUtVwWFKNrUhTKa2rgKQxDwq2/view?usp=sharing
https://drive.google.com/file/d/1oXJFJjMxjf0HQtcosloa_09FXczv4cTj/view?usp=sharing
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Figure 11. GN-based MPC performance (% distance to target after
700 steps) for (a) model trained on Swimmer6 and (b) model
trained on Swimmers with 3-15 links (see Figure 6). In (a), GN-
based MPC (blue point) is almost as good as the Mujoco-based
planner (black line) and trained DDPG (grey line) baselines. When
the GN-based MPC’s model is trained on a mixture of random and
DDPG agent Swimmer6 trajectories (red point), its performance is
as good as the strong baselines. In (b) the GN-based MPC (blue
point) (video: link-C.F.SN) is competitive with a Mujoco-based
planner baseline (black) (video: link-C.F.SN(b)) for 6-10 links,
but is worse for 3-5 and 11-15 links. Note, the model was not
trained on the open points, 7 and 10-15 links, which correspond
to zero-shot model generalization for control. Error bars indicate
mean and standard deviation across 5 experimental runs.

across multiple systems, we also found they could support
MPC across multiple systems (in this video, a single model
is used for MPC in Pendulum, Cartpole, Acrobot, Swim-
mer6 and Cheetah: link-C.F.MS). We also found GN-based
MPC could support zero-shot generalization in the control
setting, for a single GN model trained on Swimmers with
3-6, 8-9 links, and tested on MPC on Swimmers with 7,
10-15 links. Figure 11b shows that it performed almost as
well as the Mujoco baseline for many of the Swimmers.

Model-predictive control with partial observations.
Because real-world control settings are often partially ob-
servable, we used the system identification GN model (see
Sections 3 and 5) for MPC under partial observations in
Pendulum, Cartpole, SwimmerN, Cheetah, and JACO. The
model was trained as in the forward prediction experiments,
with an ID phase that applied 20 random control inputs to
implicitly infer the hidden properties. Our results show that
our GN-based forward model with a system identification
module is able to control these systems (Cheetah video:
link-C.I.Ch. All videos are in SM Table A.2).

Model-based reinforcement learning. In our second ap-
proach to model-based control, we jointly trained a GN
model and a policy function using SVG (Heess et al., 2015),
where the model was used to backpropagate error gradients
to the policy in order to optimize its parameters. Crucially,
our SVG agent does not use a pre-trained model, but rather
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Figure 12. Learning curves for Swimmer6 SVG agents. The GN-
based agent (blue) asymptotes earlier, and at a higher performance,
than the model-free agent (red). The lines represent median perfor-
mance for 6 random seeds, with 25 and 75% confidence intervals.

the model and policy were trained simultaneously.8 Com-
pared to a model-free agent (SVG(0)), our GN-based SVG
agent (SVG(1)) achieved a higher level performance af-
ter fewer episodes (Figure 12). For GN-based agents with
more than one forward step (SVG(2-4)), however, the per-
formance was not significantly better, and in some cases
was worse (SVG(5+)).

8. Discussion
This work introduced a new class of learnable forward and
inference models, based on “graph networks” (GN), which
implement an object- and relation-centric inductive bias.
Across a range of experiments we found that these models
are surprisingly accurate, robust, and generalizable when
used for prediction, system identification, and planning in
challenging, physical systems.

While our GN-based models were most effective in systems
with common structure among bodies and joints (e.g., Swim-
mers), they were less successful when there was not much
opportunity for sharing (e.g., Cheetah). Our approach also
does not address a common problem for model-based plan-
ners that errors compound over long trajectory predictions.

Some key future directions include using our approach for
control in real-world settings, supporting simulation-to-real
transfer via pre-training models in simulation, extending our
models to handle stochastic environments, and performing
system identification over the structure of the system as
well as the parameters. Our approach may also be useful
within imagination-based planning frameworks (Hamrick
et al., 2017; Pascanu et al., 2017), as well as integrated
architectures with GN-like policies (Wang et al., 2018).

This work takes a key step towards realizing the promise of
model-based methods by exploiting compositional represen-
tations within a powerful statistical learning framework, and
opens new paths for robust, efficient, and general-purpose
patterns of reasoning and decision-making.

8In preliminary experiments, we found little benefit of pre-
training the model, though further exploration is warranted.

https://drive.google.com/file/d/11VyrLzhp1Rg_CES4LcnJ2gr8CozKYyPw/view?usp=sharing
https://drive.google.com/file/d/13jcIjdju63Gv4ZVTAHQS9KMS9PjDWiaE/view?usp=sharing
https://drive.google.com/file/d/1xZme1bxvUWQeb9fWFelECR7YKUXur4XU/view?usp=sharing
https://drive.google.com/file/d/1oMxkGoEfsBKza8--q4tiVz9MQAETw-8O/view?usp=sharing
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