## Supplementary Material for: "Not to Cry Wolf: Distantly Supervised Multitask Learning in Critical Care"

Patrick Schwab<sup>1</sup> Emanuela Keller<sup>2</sup> Carl Muroi<sup>2</sup> David J. Mack<sup>2</sup> Christian Strässle<sup>2</sup> Walter Karlen<sup>1</sup>

## 1. Source Code

The source code for this work is available online at https://github.com/d909b/DSMT-Nets.

## 2. Instructions for Annotators

We instructed our annotators to label a given alarm context window as caused by an artefact if:

- 1. The signal that caused the alarm is not being recorded, as verified by visibility on the monitor.
- 2. The alarm-generating signal curve has an atypical shape.
- 3. Numerical values derived from the alarm-generating signal are not physiologically plausible.

Figures S1 and S2 depict qualitative examples of context windows that have been labelled as caused by an artefact.

<sup>&</sup>lt;sup>1</sup>Institute of Robotics and Intelligent Systems, ETH Zurich, Switzerland <sup>2</sup>Neurocritical Care Unit, Department of Neurosurgery, University Hospital Zurich, Switzerland. Correspondence to: Patrick Schwab <patrick.schwab@hest.ethz.ch>.

Proceedings of the 35<sup>th</sup> International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

Table S1. Comparison of the standard deviation of AUROC values across the 35 distinct models (vertical) that we trained using different sets of hyperparameters and varying amounts of labels (horizontal). We report the AUROC of the best encountered model as calculated on the test set of 533 alarms. The worst result in each column is highlighted in bold. A higher variation in AUROC across hyperparameter choices and training runs may indicate higher sensitivity to hyperparameters in the evaluated range and/or lacking robustness of training in the presented setting. Most notably, we find that disentangling training of the auxiliary and the main task in DSMT-Nets improves training stability in most cases.

| AUROC with # of Labels  | 12    | 25    | 50    | 100   | 500   | 1244  |
|-------------------------|-------|-------|-------|-------|-------|-------|
| Feature RF              | -     | -     | -     | -     | -     | -     |
| Supervised baseline     | 0.055 | 0.046 | 0.045 | 0.026 | 0.008 | 0.007 |
| Naïve Multitask Network | 0.061 | 0.057 | 0.048 | 0.054 | 0.049 | 0.041 |
| Ladder Network          | 0.067 | 0.074 | 0.069 | 0.076 | 0.066 | 0.076 |
| Feature Matching GAN    | 0.050 | 0.051 | 0.051 | 0.037 | 0.020 | 0.027 |
| DSMT-Net-6              | 0.059 | 0.058 | 0.056 | 0.070 | 0.040 | 0.041 |
| DSMT-Net-12             | 0.058 | 0.064 | 0.072 | 0.074 | 0.040 | 0.037 |
| DSMT-Net-25             | 0.066 | 0.062 | 0.068 | 0.076 | 0.038 | 0.043 |
| DSMT-Net-50             | 0.059 | 0.071 | 0.066 | 0.060 | 0.042 | 0.044 |
| DSMT-Net-100            | 0.060 | 0.060 | 0.075 | 0.048 | 0.032 | 0.039 |
| - two step train        | 0.070 | 0.076 | 0.065 | 0.078 | 0.058 | 0.061 |
| DSMT-Net-6R             | 0.058 | 0.051 | 0.061 | 0.062 | 0.039 | 0.035 |
| DSMT-Net-100R           | 0.070 | 0.062 | 0.054 | 0.047 | 0.034 | 0.048 |
| DSMT-Net-100D           | 0.019 | 0.023 | 0.038 | 0.021 | 0.030 | 0.038 |

Table S2. Comparison of the minimum AUROC value across the 35 distinct models (vertical) that we trained using different sets of hyperparameters and varying amounts of labels (horizontal). We report the AUROC of the best encountered model as calculated on the test set of 533 alarms. The best results in each column are highlighted in bold. The difference between the maximum and minimum value indicates the range of values covered over the 35 hyperparameter settings.

| AUROC with # of Labels  | 12    | 25    | 50    | 100   | 500   | 1244  |
|-------------------------|-------|-------|-------|-------|-------|-------|
| Feature RF              | -     | -     | -     | -     | -     | -     |
| Supervised baseline     | 0.501 | 0.547 | 0.568 | 0.763 | 0.907 | 0.911 |
| Naïve Multitask Network | 0.516 | 0.577 | 0.613 | 0.648 | 0.693 | 0.732 |
| Ladder Network          | 0.506 | 0.516 | 0.538 | 0.512 | 0.594 | 0.560 |
| Feature Matching GAN    | 0.629 | 0.628 | 0.646 | 0.719 | 0.817 | 0.757 |
| DSMT-Net-6              | 0.514 | 0.557 | 0.588 | 0.604 | 0.760 | 0.752 |
| DSMT-Net-12             | 0.507 | 0.540 | 0.579 | 0.630 | 0.753 | 0.791 |
| DSMT-Net-25             | 0.501 | 0.603 | 0.535 | 0.570 | 0.774 | 0.779 |
| DSMT-Net-50             | 0.506 | 0.557 | 0.649 | 0.682 | 0.768 | 0.770 |
| DSMT-Net-100            | 0.507 | 0.552 | 0.600 | 0.691 | 0.797 | 0.774 |
| - two step train        | 0.502 | 0.500 | 0.539 | 0.525 | 0.645 | 0.685 |
| DSMT-Net-6R             | 0.515 | 0.624 | 0.630 | 0.635 | 0.760 | 0.805 |
| DSMT-Net-100R           | 0.506 | 0.601 | 0.660 | 0.686 | 0.771 | 0.771 |
| DSMT-Net-100D           | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 |



*Figure S1.* A qualitative example of an alarm caused by an artefact, as encountered in the ICU dataset. Depicted are the amplitudes (y-axis, standardised) over time (x-axis, in hundredths of a second) of the arterial blood pressure (ART), electrocardiography (ECG), intracranial pressure (ICP) and pulse oximetry (SpO<sub>2</sub>) signals immediately before the alarm was triggered. An empty box indicates a missing signal. In this case, the alarm was triggered by the arterial blood pressure monitor (red). Note that there also appears to be an artefact in the pulse oximetry signal that might have triggered another independent alarm concurrently.



*Figure S2.* A qualitative example of an alarm caused by an artefact, as encountered in the ICU dataset. Depicted are the amplitudes (y-axis, standardised) over time (x-axis, in hundredths of a second) of the arterial blood pressure (ART), electrocardiography (ECG), intracranial pressure (ICP) and pulse oximetry (SpO<sub>2</sub>) signals immediately before the alarm was triggered. An empty box indicates a missing signal. In this case, the alarm was triggered by the pulse oximetry monitor (red).

*Table S3.* The exact hyperparameter values used for each model for each of the 35 distinct training runs. We chose the values using a uniformly random selection within the ranges specified in the main paper. The number of hidden units per layer and the number of hidden layers were rounded to the nearest integer in our experiments.

| Run | Dropout | Number of hidden units / layer | Number of hidden layers |
|-----|---------|--------------------------------|-------------------------|
| 1   | 0.5256  | 18.3015                        | 1.4562                  |
| 2   | 0.2926  | 26.3799                        | 1.6650                  |
| 3   | 0.3888  | 29.7946                        | 1.4185                  |
| 4   | 0.4633  | 29.1221                        | 1.7195                  |
| 5   | 0.3619  | 27.6884                        | 1.7030                  |
| 6   | 0.5049  | 26.5369                        | 2.7647                  |
| 7   | 0.7134  | 26.2866                        | 1.4111                  |
| 8   | 0.4486  | 23.7360                        | 2.4363                  |
| 9   | 0.2939  | 24.0741                        | 1.1734                  |
| 10  | 0.5652  | 21.2195                        | 1.2685                  |
| 11  | 0.3688  | 18.8924                        | 2.5907                  |
| 12  | 0.7542  | 20.2902                        | 2.7300                  |
| 13  | 0.2614  | 27.6143                        | 1.5102                  |
| 14  | 0.3820  | 24.7860                        | 2.1281                  |
| 15  | 0.3452  | 25.3250                        | 2.9806                  |
| 16  | 0.7308  | 30.3649                        | 1.4315                  |
| 17  | 0.6195  | 22.6811                        | 1.7044                  |
| 18  | 0.6170  | 21.3986                        | 2.7229                  |
| 19  | 0.7451  | 27.8114                        | 2.2333                  |
| 20  | 0.3469  | 22.9611                        | 1.4900                  |
| 21  | 0.5168  | 16.2036                        | 2.9124                  |
| 22  | 0.4098  | 20.5713                        | 2.4480                  |
| 23  | 0.3012  | 24.5169                        | 1.3481                  |
| 24  | 0.4475  | 17.3175                        | 2.8138                  |
| 25  | 0.2660  | 27.0517                        | 1.2606                  |
| 26  | 0.4830  | 21.8282                        | 2.9766                  |
| 27  | 0.7799  | 18.0746                        | 2.1824                  |
| 28  | 0.3712  | 24.3822                        | 2.1989                  |
| 29  | 0.5958  | 25.3871                        | 2.8844                  |
| 30  | 0.2649  | 30.3633                        | 2.6249                  |
| 31  | 0.6065  | 20.6158                        | 1.9874                  |
| 32  | 0.4623  | 16.1852                        | 1.3220                  |
| 33  | 0.2592  | 24.9682                        | 1.8996                  |
| 34  | 0.6531  | 26.4506                        | 2.3409                  |
| 35  | 0.7825  | 28.5137                        | 2.9273                  |