
Multi-Fidelity Black-Box Optimization

A. Guarantees with known (⌫⇤, ⇢⇤)

In this section we prove that if Algorithm 1 is run with the
parameters (⌫⇤, ⇢⇤), then it terminates with an x⇤ that is
close to optimal.

Recall that ⌫ > ⌫⇤ and ⇢ > ⇢⇤. Consider a cell Ph,i⇤h
at

height h such that x⇤
2 Ph,i⇤h

. From Assumption 1 we have
that:

bh,i⇤h
= fzh(xh,i⇤h

) + ⇣(zh) + ⌫⇢
h

� f(xh,i⇤h
) + ⌫⇢

h
� f

⇤ (5)

Therefore, any node (h, i) such that bh,i < f
⇤ will never

be expanded. Therefore, the nodes at height h that are
expanded form a subset of Gh defined below:

Gh , {nodes (h, i) such that fzh(xh,i) + ⌫⇢
h + ⇣zh(xh,i) � f

⇤
}.

By definition of zh we have that,

Gh ✓
�

nodes (h, i) such that fzh(xh,i) + 2⌫⇢h � f
⇤

.

Therefore, by Assumption 1 and Definition 1 we have the
following lemma.
Lemma 1. We have |Gh| C(⌫, ⇢)⇢�d(⌫,⇢)h.

We now argue that the tree has to grow to a certain minimum
depth given a cost budget ⇤ in Algorithm 1.
Lemma 2. Let h

0 be the biggest number h suchPh
l=0 C(⌫, ⇢)K�(zl)⇢�d(⌫,⇢)l

 ⇤. The tree in Algo-
rithm 1 grows to a height of at least h(⇤) = h

0 + 1, and
uses a cost budget of at most ⇤+K�(1) when it terminates.

Proof. We have shown that only the nodes in G = [hGh

are expanded. Let us consider the strategy that only expands
nodes in G, but expands the leaf among the current leaves
with the least height. This strategy yields the tree with
minimum height among strategies that only expand nodes
in G. The cost incurred by this strategy till step h

0 is given
by,

h0X

l=0

C(⌫, ⇢)K�(zl)⇢
�d(⌫,⇢)l

 ⇤.

Since the above cost is less than or equal to ⇤ another
set of children at height h0 + 1 is expanded and then the
algorithm terminates because of the check in the while loop
in step 4 of Algorithm 1. Therefore, the resultant tree has a
height of at least h0 + 1 and incurs a cost budget of at most
⇤+K�(1).

Proof of Theorem 1. The proof of Theorem 1 follows natu-
rally from Lemma 2 and the definition of Gh. Since, a node
point xh0+1,j at height h(⇤) = h

0 + 1 has been evaluated,
it means that xh0+1,j 2 Gh0+1. Therefore, we have that

f(xh(⇤),j) � f
⇤
� 2⌫⇢h(⇤)

. (6)

Now we prove Corollary 1 under Assumptions 2 and 3
separately.

Proof of Corollary 1. Consider Algorithm 1 with parame-
ters (⌫, ⇢).

(i) Under Assumption 2: Note that �(zh) �h. Therefore,
we have the following chain,

hX

l=0

�(zl)⇢
�d(⌫,⇢)l

hX

l=0

�l⇢
�d(⌫,⇢)l

 �
h⇢

�d(⌫,⇢)(h+1)

⇢�d(⌫,⇢) � 1

Therefore, from Theorem 1 we have the following,

⇤ C(⌫, ⇢)K�
h(⇤)⇢�d(⌫,⇢)(h(⇤)+1)

⇢�d(⌫,⇢) � 1
.

Suppose ⇤ is large enough such that h(⇤) ⇢
�✏h(⇤) where

✏ is a small constant. Then we have the following:

R⇤ 2⌫⇢h(⇤)

 2⌫

✓
C(⌫, ⇢)K�

⇤(1� ⇢d(⌫,⇢))

◆ 1
d(⌫,⇢)+✏

(i) Under Assumption 3: Note that �(zh) �
�h. There-

fore, we have the following,

hX

l=0

�(zl)⇢
�d(⌫,⇢)l

�
�(h+1)

⇢
�d(⌫,⇢)(h+1)

� 1

��1⇢�d(⌫,⇢) � 1

⇢
�(d(⌫,⇢)+1)(h+1)

��1⇢�d(⌫,⇢) � 1

Therefore, we have that,

R⇤ 2⌫⇢h(⇤)

 2
⌫

⇢

✓
2C(⌫, ⇢)K

⇤(��1⇢�d(⌫,⇢) � 1)

◆ 1
d(⌫,⇢)+1

Multi-Fidelity Black-Box Optimization

B. Recovering optimal scaling with unknown
smoothness

In this section, we relate the optimality dimension d(⌫, ⇢)
to d(⌫⇤, ⇢⇤) for ⌫ > ⌫⇤ and ⇢ > ⇢⇤. These relations are
implied by the analysis of Theorem 1 in (Grill et al., 2015).

Lemma 3. Consider the parameters ⌫ > ⌫⇤ and ⇢ > ⇢⇤.
Let hmin , log(⌫/⌫⇤) log(1/⇢). Then we have the follow-
ing,

Nh(2⌫⇢
h)

 max
⇣
C(⌫⇤, ⇢⇤)K

(log ⇢⇤+log ⌫⇤�log ⌫)/ log ⇢
,K

hmin

⌘
⇥

⇢
�h[d(⌫⇤,⇢⇤)+logK(1/ log(1/⇢)�1/ log(1/⇢⇤))]

Proof. It follows directly from the analysis of Theorem 1 in
appendix B.1 of (Grill et al., 2015).

Lemma 3 implies the following,

C(⌫, ⇢) max
⇣
C(⌫⇤, ⇢⇤)K

(log ⇢⇤+log(⌫⇤/⌫))/ log ⇢
,K

hmin

⌘

d(⌫, ⇢) d(⌫⇤, ⇢⇤) + logK(1/ log(1/⇢)� 1/ log(1/⇢⇤))
(7)

C. Putting it together: Simple Regret Bound
Let R⌫,⇢

⇤0
be the simple regret of Algorithm 1 with param-

eters ⌫, ⇢. Note that Algorithm 2 is designed such that its
simple regret is equal to at most the simple regret of one
of the MFDOO instances spawned. We will analyze Algo-
rithm 2 under Assumptions 2 and 3 separately.

Proof of Theorem 2. The proof is divided into two sections
corresponding to Assumptions 2 and 3 respectively. Con-
sider ⇢ � ⇢⇤ and ⌫ � ⌫⇤. In this analysis we assume
d(⌫⇤, ⇢⇤) > 0.

Under Assumption 2: We have the following chain,

logR⌫,⇢
⇤0

 log(2⌫) +
logC(⌫, ⇢)

d(⌫, ⇢) + ✏
+

log(K�)

d(⌫, ⇢) + ✏

+
log(1/(1� ⇢

d(⌫,⇢)))

d(⌫, ⇢) + ✏
�

log⇤0

d(⌫, ⇢) + ✏

 log(2⌫max) +
logC(⌫, ⇢)

d(⌫, ⇢) + ✏
+

log(K�)

d(⌫⇤, ⇢⇤) + ✏

+
log(1/(1� ⇢

d(⌫⇤,⇢⇤)))

d(⌫⇤, ⇢⇤) + ✏

�
log⇤0

d(⌫⇤, ⇢⇤) + ✏

✓
1�

d(⌫, ⇢)� d(⌫⇤, ⇢⇤)

2 + d(⌫⇤, ⇢⇤)

◆

Let ⇢i = ⇢
N/i
max for i 2 {1, 2, ..., N}. We define,

⇢̄ , argmin
i:⇢i�⇢⇤

[d(⌫max, ⇢i)� d(⌫⇤, ⇢⇤)]

Note that ⇢̄ is the best ⇢i � ⇢⇤ that is spawned as a MF-
DOO instance in Algorithm 2. Thus bounding the regret of
R

⌫max,⇢̄
⇤0

for ⇤0 = ⇤/N��(1) immediately yields a simple
regret bound for Algorithm 2. Now we observe that,

d(⌫max, ⇢̄)� d(⌫⇤, ⇢⇤)
Dmax

N
.

Therefore, we have the following,

logR⌫max,⇢̄
⇤0

 log(2⌫max) +
logC(⌫max, ⇢̄)

d(⌫max, ⇢̄) + ✏
+

log(K�)

d(⌫⇤, ⇢⇤) + ✏

+
log(1/(1� ⇢̄

d(⌫⇤,⇢⇤)))

d(⌫⇤, ⇢⇤) + ✏

� log⇤0

✓
1

d(⌫⇤, ⇢⇤) + ✏
�

Dmax/N

(✏+ d(⌫⇤, ⇢⇤))2

◆

We can bound the second term as follows,

logC(⌫max, ⇢̄)

d(⌫max, ⇢̄) + ✏

logC(⌫max, ⇢̄)

d(⌫⇤, ⇢⇤) + ✏

1

d(⌫⇤, ⇢⇤) + ✏
logmax

⇣
C(⌫⇤, ⇢⇤)K

(log ⇢⇤+log(⌫⇤/⌫))/ log ⇢
,K

hmin

⌘

 a+
Dmax

d(⌫⇤, ⇢⇤) + ✏
log(⌫max/⌫⇤),

where a is a constant independent of all the parameters.
Finally we can bound the last term as follows,

log⇤0

✓
�

1

d(⌫⇤, ⇢⇤) + ✏
+

Dmax/N

(✏+ d(⌫⇤, ⇢⇤))2

◆

 �
log⇤0

d(⌫⇤, ⇢⇤) + ✏
+ log⇤0

2

log(⇤/ log⇤)

1

(✏+ d(⌫⇤, ⇢⇤))2

 �
log⇤0

d(⌫⇤, ⇢⇤) + ✏
+

2

(✏+ d(⌫⇤, ⇢⇤))2

where the second inequality follows from the definition of
N . Now, we can finally bound the regret of Algorithm 2 as
follows:

R
⌫max,⇢̄
⇤0

 2⌫max exp

✓
a+

2

(✏+ d(⌫⇤, ⇢⇤))2

◆
(⌫max/⌫⇤)

Dmax
✏+d(⌫⇤,⇢⇤)⇥

(K�/(1� ⇢̄
d(⌫⇤,⇢⇤)))1/(✏+d(⌫⇤,⇢⇤))⇤

� 1
✏+d(⌫⇤,⇢⇤)

0

= O

⇣
(⌫max/⌫⇤)

Dmax
✏+d(⌫⇤,⇢⇤)⇥

✓
2⇤

K�Dmax log(⇤/ log⇤)
�

�(1)

K�

◆� 1
✏+d(⌫⇤,⇢⇤)

!

Multi-Fidelity Black-Box Optimization

Under Assumption 3: Now we prove similar results under
the second assumption on the cost and bias function. The
analysis is very similar to the first part of the theorem. Note
that � > ⇢max. We follow the same notational convention
as the first part of the theorem. Proceeding exactly as above,
we have the following chain,

logR⌫max,⇢̄
⇤0

 log(2⌫max/⇢⇤)

+
log 2C(⌫max, ⇢̄)

d(⌫max, ⇢̄) + 1
+

logK

d(⌫⇤, ⇢⇤) + 1
�

log(��1
⇢̄
d(⌫⇤,⇢⇤) � 1)

d(⌫⇤, ⇢⇤) + 1

� log⇤0

✓
1

d(⌫⇤, ⇢⇤) + 1
�

Dmax/N

(1 + d(⌫⇤, ⇢⇤))2

◆

 log(2⌫max/⇢⇤) + 2a+
2Dmax

d(⌫⇤, ⇢⇤) + 1
log(⌫max/⌫⇤)

+
logK

d(⌫⇤, ⇢⇤) + 1
�

log(��1
⇢̄
d(⌫⇤,⇢⇤) � 1)

d(⌫⇤, ⇢⇤) + 1

�
log⇤0

d(⌫⇤, ⇢⇤) + 1
+ 4

Thus we get the following regret bound:

R
⌫max,⇢̄
⇤0

 2(⌫max/⇢⇤) exp (2a+ 4) (⌫max/⌫⇤)
2Dmax

1+d(⌫⇤,⇢⇤)

⇥

✓
1

��1⇢̄d(⌫⇤,⇢⇤)�1

◆1/(1+d(⌫⇤,⇢⇤))

⇤
� 1

1+d(⌫⇤,⇢⇤)

0

= O

⇣
(⌫max/⌫⇤)

2Dmax
1+d(⌫⇤,⇢⇤)⇥

✓
2⇤

KDmax log(⇤/ log⇤)
�

�(1)

K

◆� 1
1+d(⌫⇤,⇢⇤)

!

D. Description of Synthetic Functions
The following are the synthetic functions used in the paper
(Currin, 1988; Dixon & Szego, 1978).

Currin exponential function (Currin, 1988): The domain
is the two dimensional unit cube X = [0, 1]2 and the fidelity
is Z = [0, 1]. We used �(z) = 0.1 + z

2, �2 = 0.5 and,

fz(x) =

✓
1� 0.1(1� z) exp

✓
�1

2x2

◆◆

✓
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

◆
.

Hartmann functions (Dixon & Szego, 1978): We used
fz(x) =

P4
i=1(↵i�↵

0(z)) exp
�
�
P3

j=1 Aij(xj�Pij)2
�
.

Here A,P are given below for the 3 and 6 dimensional
cases and ↵ = [1.0, 1.2, 3.0, 3.2]. Then ↵

0 was set as
↵
0(z) = 0.1(1 � z). We constructed the p = 4 and

p = 2 Hartmann functions for the 3 and 6 dimensional
cases respectively this way. When z = 1, this reduces to the

usual Hartmann function commonly used as a benchmark
in global optimisation.

For the 3 dimensional case we used �(z) = 0.05 + (1 �

0.05)z3, �2 = 0.01 and,

A =

2

664

3 10 30
0.1 10 35
3 10 30
0.1 10 35

3

775 , P = 10�4
⇥

2

664

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

3

775 .

For the 6 dimensional case we used �(z) = 0.05 + (1 �

0.05)z3, �2 = 0.05 and,

A =

2

664

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

3

775 ,

P = 10�4
⇥

2

664

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

3

775 .

Branin function (Dixon & Szego, 1978): We use the
following function where X = [[�5, 10], [0, 15]]2 and
Z = [0, 1].

fz(x) = a(x2�b(z)x2
1+c(z)x1�r)2+s(1�t(z)) cos(x1)+s,

where a = 1, b(z) = 5.1/(4⇡2) � 0.01(1 � z) c(z) =
5/⇡ � 0.1(1 � z), r = 6, s = 10 and t(z) = 1/(8⇡) +
0.05(1 � z). At z = 1, this becomes the standard Branin
function used as a benchmark in global optimization. We
used �(z) = 0.05 + z

3 for the cost function and �
2 = 0.05

for the noise variance.

