Bounding and Counting Linear Regions of Deep Neural Networks

Appendices

Most of the proofs for theorems and lemmas associated with the upper and lower bounds on the linear regions are provided
below. We also discuss counting on unrestricted input and the mixed-integer formulation for maxout networks.

A. Analysis of the Bound from Theorem 1

In this section, we present properties of the upper bound for the number of regions of a rectifier network from Theorem 1.
Denote the bound by B(ng,n1,...,nz), where ng is the input dimension and ny, . .., ny, are the widths of layers 1 through
L of the network. That is,

B(ng,ni,...,nL) = Y ﬁ(?;;)

(J1s--dr)€J 1=1

Instead of expressing J as in Theorem 1, we rearrange it to a more convenient form for the proofs in this section:
T =A{Gs--odn) € ZF i+ jx <mpVk =1, 1—1¥1=2,...,L
Ji<noVl=1,...,L
0<j<mVi=1,.. L}

Note that whenever we assume ng > max{ni,...,n;}, then the bound inequality for ny becomes redundant and can be
removed.
Some of the results have implications in terms of the exact maximal number of regions. We denote it by R(ng, n1,...,n7),

following the same notation above.

Moreover, the following lemma is useful throughout the section.

a (m +... —l—nL> _ ¥ <n1) (n2> (nL)
— J . . J1/ \J2 i)’
Jj=0 Jit.+in<k

0<ji<n; Vi

Lemma 12.

Proof. The result comes from taking a generalization of Vandermonde’s identity and adding the summation of j from O to k
as above. O

We first examine some properties related to 2-layer networks. The proposition below characterizes the bound when L = 2
for large input dimensions.

Proposition 13. Consider a 2-layer network with widths n1,ns and input dimension ng > ni and ng > ns. Then
ni
ny + no
B(nomhﬂz):Z(.)
=N

If ng < ny orng < no, the above holds with inequality: B(ng,n1,ng) < Z;'io ("";”2).

Proof. If ng > ny and ng > no, the bound inequalities for ng in the index set J become redundant. By applying Lemma 12,

we obtain
nq Nno 1 ny + no
=¥ ()()-$5(71)

0<jita<ny /N2 T
025, i 1

If ng < my or ng < ng, then its index set .J is contained by the one above, and thus the first equal sign above becomes a
less-or-equal sign. O

Bounding and Counting Linear Regions of Deep Neural Networks

Recall that the expression on the right-hand side of Proposition 13 is equal to the maximal number of regions of a single-layer
network with 11 + no ReLUs and input dimension 71, as discussed in Section 2. Hence, the proposition implies that for
large input dimensions, a two-layer network has no more regions than a single-layer network with the same number of
neurons, as formalized below.

Corollary 14. Consider a 2-layer network with widths ny,ns > 1 and input dimension ng > ni and ng > no. Then
R(Tlo, ni, 712) < R(Tlo, ni + ’I”LQ).

Moreover, this inequality is strict when ng > nj.

Proof. This is a direct consequence of Proposition 13:

N (1 +n <\ ny+n
R(ng,n1,n2) SB(TIO,m,nz):Z(v 2) SZ(t 2> = R(no,n1 + n2).

=~ 7 =~ 7

Note that if ng > n1, then the second inequality can be turned into a strict inequality. O

The next proposition illustrates the bottleneck effect for two layers. It states that for large input dimensions, moving a neuron
from the second layer to the first strictly increases the bound. This proposition is stated more informally in the main text.

Proposition 2. Consider a 2-layer network with widths n1, no and input dimension ng > n1 + 1 and ny > no + 1. Then
B(ng,n1 + 1,n2) > B(ng, n1,ne + 1).

Proof. By Proposition 13,

B(ng,ny +1,n2) = Z ; ;

Jj=0 Jj=

ni+1 a2l
, 1 y 1 1 1
((,Ll +) + n2> o <n1 + (Y'LQ +)> = B(no,n1,n2 + 1).
0

O

The assumption that ng must be large is required for the above proposition; otherwise, the input itself may create a bottleneck
with respect to the second layer as we decrease its size. Note that the bottleneck affects all subsequent layers, not only the
layer immediately after it.

However, it is not true that moving neurons to earlier layers always increases the bound. For instance, with three layers,
B(4,3,2,1) =47 > 46 = B(4,4,1,1).

In the remainder of this section, we consider deep networks of equal widths n. The next proposition can be viewed as
an extension of Proposition 13 for multiple layers. It states that for a network with widths and input dimension n and at
least 4 layers, if we halve the number of layers and redistribute the neurons so that the widths become 2n, then the bound
increases. In other words, if we assume the bound to be close to the maximal number of regions, it suggests that making a
deep network shallower allows for more regions when the input dimension is equal to the width.

Proposition 15. Consider a 2L-layer network with equal widths n and input dimension ng = n. Then

B(n,n,...,n) < B(n,2n,...,2n).
——— —_———
2L times L times

This inequality is met with equality when L = 1 and strict inequality when L > 2.

Proof. When ng = n, the inequalities j; < min{ng,2n — ji,...,2n — j;_1, 2n} appearing in .J (in the form presented in
Theorem 1) can be simplified to j; < n. Therefore, using Lemma 12, the bound on the right-hand side becomes
L L

B(n,2 2n) Zn: Zn: Zn:ﬁ<2n) Z”:(zn> z":"i <n><n)
n,2n,...,2n) = 7 = / _ . .
L times J1=072=0 Jjr=01=1 J 3=0 J §1=0 j2=0 J1 J2

> Z ﬁ(;) = B(n,n,...,n).

) - —
(J1,-sd21) €T 1=1 2L times

Bounding and Counting Linear Regions of Deep Neural Networks

where J above is the index set from Theorem 1 applied to ng = n; = n forall{ =1,...,2L. Note that we can turn the
inequality into equality when L = 1 (also becoming a consequence of Proposition 13) and into strict inequality when
L>2. O

Next, we provide an upper bound that is independent of ny based on Theorem 1.

Corollary 16. Consider an L-layer network with equal widths n and any input dimension ng > 0.

1 1 L/2
SNy <obn(Z 4 ——
B(no,n,...,n) <2 (2 + 5 _7m> V2

Proof. Since we are deriving an upper bound, we can assume ny > n, as the bound is nondecreasing on ny. We first assume
that L is even. We relax some of the constraints of the index set J from Theorem 1 and apply Vandermonde’s identity on

each pair:
B(ng,n,...,n) < z": T/'Z_Jl (Z) (;;) z":: ni::; () <) Zn: ni | (]L 1> (JL>

Jj1=0 j2=0 J3=0 ju Jjr—1=0 jL=0
L/2 L2 an \ L/2
B zn: 2n B 22n 4 (2:) - 22n 4 \2ﬁ
IR j B 2 - 2
j=0

The bound on () is a direct application of Stirling’s approximation (Stirling, 1730). If L is odd, then we can write

(L-1)/2
" /2n " (n
B(ng,n,...,n) < Z() Z() i
—\J — \J 2n)
J J J (")
. L/2 L/2
2n 27 2n
\X()] wam- z(.) V2
= 2 1/2
=\ (22 /2)Y = \J
L/2
1 1
<ofn (- 2
- <2 * 2«/7m> V2
where the last inequality is analogous to the even case. Hence, the result follows. O

We now use Corollary 16 to show that a shallow network can attain more linear regions than a deeper one of the same size
when the input dimension ng exceeds the total number of neurons. This result is stated in the main text.

Corollary 3. Let L > 2, n > 1, and ng > Ln. Then

R(no,n,...,n) < R(ng, Ln)
N——

L times

R(nn,n,---,n) =0

Moreover, limy, _ o0 R{ng L)

Proof. Note first that if ng > Ln, then R(ng, Ln) = Z]L"O (LJ) =2k,

The inequality can be derived from Proposition 16, since (% +

L/2
2\/1ﬁ) V2 < 1when L > 3andn > 1, and thus
R(no,n,...,n) < B(ng,n,...,n) < 2L = R(ng, Ln). The same holds when L = 2: as noted in the proof of

L)2
Proposition 16, we may discard the factor of v/2 when L is even, and (% + <lforL=2andn > 1.

)

Bounding and Counting Linear Regions of Deep Neural Networks

Proposition 16 also implies that

R(no,m,...,n) _ B(no,n,...,n) 1 1 Lz
— < < | =4+ — 2.
R(ng,Ln) — 2Ln =zt 2\/7n V2

Since the base of the first term of the above expression is less than 1 for all n > 1 and \/2 is a constant, the ratio goes to 0 as
L goes to infinity. O

B. Exponential Maximal Number of Regions When Input Dimension is Large

Proposition 17. Consider an L-layer rectifier network with equal widths n and input dimension nyg > n/3. Then the
maximal number of regions is (23 L),

Proof. It suffices to show that a lower bound such as the one from Theorem 8 grows exponentially large. For simplicity, we
consider the lower bound (Hle(|n;/mo | + 1)), which is the bound obtained before the last tightening step in the proof
of Theorem 8 (see Appendix E).

Note that replacing ng in the above expression by a value n(, smaller than the input dimension still yields a valid lower
bound. This holds because increasing the input dimension of a network from ng, to ng cannot decrease its maximal number
of regions.

Choose ny = |[n/3], which satisfies n{, < ng and the condition n > 3n(, of Theorem 8. The lower bound can be expressed
as (|n/|n/3]] + 1)Fn/3] > 47In/3] This implies that the maximal number of regions is Q23 L), |

C. Proof of Lemma 4

Lemma 4. Consider m hyperplanes in R?® defined by the rows of Wz + b = 0. Then the number of regions induced by the

hyperplanes is at most Z;fé{ W) (")

Proof. Consider the row space R(W) of W, which is a subspace of R? of dimension rank(¥). We show that the number

of regions Ny in R? is equal to the number of regions Ng i) in R(W) induced by Wa + b = 0 restricted to R(W). This
suffices to prove the lemma since R(W) has at most Z;Zﬁ‘ W) (") regions according to Zaslavsky’s theorem.

Since R (W) is a subspace of R?, it directly follows that Nz w) < Npa. To show the converse, we apply the orthogonal
decomposition theorem from linear algebra: any point Z € R? can be expressed uniquely as Z = & + y, where & € R(W)
and y € R(W)=*. Here, R(W)* = Ker(W) := {y € R? : Wy = 0}, and thus Wz = W& + Wy = Wx. This means 7
and 2 lie on the same side of each hyperplane of Wz + b = 0 and thus belong to the same region. In other words, given any
Z € R4, its region is the same one that & € R (W) lies in. Therefore, Nga < NR(W). Hence, Nza = NR(W) and the result

follows. U

D. Proof of Theorem 7

Theorem 7. Consider a deep rectifier network with L layers, n; > 3 rectified linear units at each layer I, and an input of
dimension 1. The maximal number of regions of this neural network is exactly H1L=1 (n; + 1).

Proof. Section 3 provides us with a helpful insight to construct an example with a large number of regions. It tells us that
we want regions to have images with large dimension in general. In particular, regions with images of dimension zero cannot
be further partitioned. This suggests that the one-dimensional construction from Montifar et al. (2014) can be improved, as
it contains n regions with images of dimension one and 1 region with image of dimension zero. This is because all ReLUs
point to the same direction as depicted in Figure 8, leaving one region with an empty activation pattern.

Our construction essentially increases the dimension of the image of this region from zero to one. This is done by shifting
the neurons forward and flipping the direction of the third neuron, as illustrated in Figure 8. We assume n > 3.

Bounding and Counting Linear Regions of Deep Neural Networks

h(x) h(x),
it 1

0| =
ol w

70

Figure 8. (a) The 1D construction from Montifar et al. (2014). All units point to the right, leaving a region with image of dimension zero
before the origin. (b) The 1D construction described in this section. Within the interval [0, 1] there are five regions instead of the four in

(a).

We review the intuition behind the construction strategy from Montifar et al. (2014). They construct a linear func-
tion h : R — R with a zigzag pattern from [0,1] to [0, 1] that is composed of n ReLUs. More precisely, h(z) =
[1,—1,1,..., (=)™ (2), ha(x), ..., hy(x)] T, where h;(x) fori = 1,...,n are ReLUs. This linear function can be
absorbed in the preactivation function of the next layer.

The zigzag pattern allows it to replicate in each slope a scaled copy of the function in the domain [0, 1]. Figure 9 shows
an example of this effect. Essentially, when we compose h with itself, each linear piece in [t1, 2] such that h(tl) =0 and
R(ty) = 1 maps the entire function / to the interval [t1, 5], and each piece such that h(t;) = 1 and h(t2) = 0 does the
same in a backward manner.

h(x)4 H(H(x))lu h(h(x))¢
1

A J

O RS S—

Figure 9. A function with a zigzag pattern composed with itself. Note that the entire function is replicated within each linear region, up to
a scaling factor.

In our construction, we want to use n ReLUs to create n + 1 regions instead of n. In other words, we want the construct this
zigzag pattern with n + 1 slopes. In order to do that, we take two steps to give ourselves more freedom. First, observe that
we only need each linear piece to go from zero to one or one to zero; that is, the construction works independently of the
length of each piece. Therefore, we turn the breakpointsjnto parameters t1,t2, ..., tn, where 0 < t; <ty <...<t, <1
Second, we add sign and bias parameters to the function h. That s, h(x) = [s1, Sz, - . ., sn|[h1(2), ha(2), hn(2)]T +d,
where s; € {—1,+1} and d are parameters to be set. Here, h;(z) = max{0, w;x + b; } since it is a ReLU.

We define w; = s;w; and b; = sil;z-, which are the weights and biases we seek in each interval to form the zigzag pattern.
The parameters s; are needed because the signs of w; cannot be arbitrary: it must match the directions the ReLUs point
towards. In particular, we need a positive slope (w; > 0) if we want ¢ to point right, and a negative slope (w; < 0) if we
want ¢ to point left. Hence, without loss of generality, we do not need to consider the s;’s any further since they will be
directly defined from the signs of the w;’s and the directions. More precisely, s; = 1 if w; > 0 and s; = —1 otherwise for
1 =1,2,4,...,n,and s3 = —1 if wg > 0 and s3 = 1 otherwise.

To summarize, our parameters are the weights w; and biases b; for each ReLU, a global bias d, and the breakpoints

Bounding and Counting Linear Regions of Deep Neural Networks

0<t; <...<ty <1 Ourgoalis to find values for these parameters such that each piece in the function h with domain
in [0, 1] is linear from zero to one or one to zero.

More precisely, if the domain is [s,], we want each linear piece to be either =z — %= or — 2 + -, which define
linear functions from zero to one and from one to zero respectively. Since we want a zigzag pattern, the former should
happen for the interval [t;,¢;—1] when i is odd and the latter should happen when 7 is even.

There is one more set of parameters that we will fix. Each ReLU corresponds to a hyperplane, or a point in dimension one.
In fact, these points are the breakpoints 1, . . . , t,. They have directions that define for which inputs the neuron is activated.
For instance, if a neuron h; points to the right, then the neuron h;(z) outputs zero if < t; and the linear function w;z + b;
ifx >t;.

As previously discussed, in our construction all neurons point right except for the third neuron h3, which points left. This is
to ensure that the region before ¢; has one activated neuron instead of zero, which would happen if all neurons pointed left.
However, although ensuring every region has images of dimension one is necessary to reach the bound, not every set of
directions yields valid weights. These directions are chosen so that they admit valid weights.

The directions of the neurons tells us which neurons are activated in each region. From left to right, we start with hg
activated, then we activate h; and ho as we move forward, we deactivate hs, and finally we activate hy, . . ., h,, in sequence.
This yields the following system of equations, where ?,, is defined as 1 for simplicity:

1
wsz + (by +d) = e (R1)
1
1 to
(w1 +ws)z + (by + b3 +d) = — T+ (R2)
to — 11 to — 11
1 t
(w1 + wa +ws) @ + (by + by + by +d) = z—— (R3)
lg — 12 lg —t2
t
(w1 + wa) z + (by + by 4+ d) = — T4+ — (Ry)
ta—1t3 i1 —13
i—1 i—1 1 ti1 Lo
T — if ¢ is odd
wiHwy+ Y wy |zt (b bj+d]| = {’“““11 A (R:)
- : — — T+ - if 7 is even
j=4 Jj=4 ti—ti—1 ti—ti_1
foralli=5,...,n+1
It is left to show that there exists a solution to this system of linear equations such that 0 < t; < ... <t, < 1.
First, note that all of the biases by, .. ., by, d can be written in terms of ¢1, ..., ¢,. Note that if we subtract (R4) from (R3),

we can express bs in terms of the ¢; variables. The remaining equations become triangular, and therefore given any values
for t;’s we can back-substitute the remaining bias variables.

The same subtraction yields ws in terms of ¢;’s. However, both (R;) and (R3) — (R4) define ws in terms of the ¢; variables,
so they must be the same:

1 1 1

t1 ty—to tg—t3

If we find values for ¢;’s satisfying this equation and 0 < ¢; < ... < t, < 1, all other weights can be obtained by
back-substitution since eliminating w3 yields a triangular set of equations.

In particular, the following values are valid: t; = Wlﬂ and t; = 22;;11 for all+ = 2,...,n. The remaining weights and

biases can be obtained as described above, which completes the desired construction.

As an example, a construction with four units is depicted in Figure 8. Its breakpoints are ¢ = %, to =
Its ReL.Us are hi(z) = max{0, —Zz+ 3}, hy(z) = max{0,9z—3}, hy(z) = max{0,92—5}, and
Finally, h(x) = [~1,1, —1,1][h1(x), ha(x), h3(x), ha(x)]T + 5.

%,tg = g,andt4 = g
ha(x) = max{0, 9z }.

O

Bounding and Counting Linear Regions of Deep Neural Networks

E. Proof of Theorem 8§

Theorem 8. The maximal number of linear regions induced by a rectifier network with ng input units and L hidden layers
with ny > 3ng for all l is lower bounded by

L—-1 n no no ny,

(1205 0)

=1 \L"0 i=o \J
Proof. We follow the proof of Theorem 5 from Montifar et al. (2014) except that we use a different 1-dimensional
construction. The main idea of the proof is to organize the network into ng independent networks with input dimension 1
cach and apply the 1-dimensional construction to each individual network. In particular, for cach layer [we assign |n;/ny |
ReLUs to each network, ignoring any remainder units. In Montifar et al. (2014), each of these networks have at least

H1L=1 |1 /no] regions. We instead use Theorem 7 to attain H1L=1 ([mi/no] + 1) regions in each network. We assume that
n; > 3ng since each of the networks from Theorem 7 requires at least 3 units per layer.

Since the networks are independent from each other, the number of activation patterns of the compound network is the
product of the number of activation patterns of each of the ng networks. Hence, the same holds for the number of regions.
Therefore, the number of regions of this network is at least (H1L=1([ny/no]| + 1))"0.

In addition, we can replace the last layer by a function representing an arrangement of nr, hyperplanes in general position
that partitions (0, 1)" into 37 (")) regions. This yields the lower bound of 125 (e /mo | + 1) ito (M)

O

F. Proof of Theorem 9

Theorem 9. For any values of m > 1 and w > 2, there exists a rectifier network with ng input units and L hidden layers of
size 2m + w(L — 1) that has 2 "7 ! (" 1) (w + 1)~ linear regions.

Proof. Theorem 6.1 and Lemma 6.2 in Arora et al. (2018) 1mply that for any m > 1, we can construct a layer representing a
function from R™ to R with 2m ReLUs that has 2 37" Y ; ') regions. Consider the network where this layer is the first
one and the remaining layers are the one- dlmensmnal layers from Theorem 7, each of size w. Then this network has size

2m +w(L —1)and 23772 ! (m] Y (w + 1)E~1 regions. O

G. Proof of Theorem 10

Theorem 10. Consider a deep neural network with L layers, n; rank-k maxout units at each layer I, and an input of
dimension ng. The maximal number of regions of this neural network is at most

L 4 (k(k 1))
=1 j5=0
where d; = min{ng, n1,...,n;}.
Asymptotically, if ny = nforalll = 1,...,L, n > ng, and ng = O(1), then the maximal number of regions is at most

O((k?*n)Ltmo).

Proof. We denote by W]l the n; x n;—1 matrix where the rows are given by the j-th weight vectors of each rank-k maxout
unit at layer [, for j = 1, ..., k. Similarly, bg is the vector composed of the j-th biases at layer .

In the case of maxout, an activation pattern S = (S, ..., S?) is such that S! is a vector that maps from layer-/ neurons to
{1,...,k}. We say that the activation of a neuron is j if w;x + b; attains the maximum among all of its functions; that is,
wjx +b; > wyx + by forall 7/ =1,..., 4. In the case of ties, we assume the function with lowest index is considered as
its activation.

Similarly to the ReLU case, denote by ¢ : R Xmi-1xk _ RruXni-1 the operator that selects the rows of WY, ... W}
that correspond to the activations in S'. More precisely, ¢ (W1, ..., W,i) is a matrix W such that its ¢-th row is the i-th

Bounding and Counting Linear Regions of Deep Neural Networks

row of Wf-, where j is the neuron i’s activation in S!. This essentially applies the maxout effect on the weight matrices
given an activation pattern.

Montifar et al. (2014) provides an upper bound of E?io (kj") for the number of regions for a single rank-£ maxout

layer with n neurons. The reasoning is as follows. For a single maxout unit, there is one region per linear function. The
boundarics between the regions are composed by segments that are cach contained in a hyperplane. Each segment is part of
the boundary of at least two regions and conversely each pair of regions corresponds to at most one segment. Extending
these segments into hyperplanes cannot decrease the number of regions. Therefore, if we now consider n maxout units in a
single layer, we can have at most the number of regions of an arrangement of k2n hyperplanes. In the results below we
replace k2 by (g), as only pairs of distinct functions need to be considered.

We need to define more precisely these (}5) n hyperplanes in order to apply a strategy similar to the one from the Section 3.1.
In a single layer setting, they are given by w;z + b; = wj + b/ for each distinct pair 7, j* within a neuron. In order to
extend this to multiple layers, consider a (g)nl X mj—1 matrix I/Vl where its rows are given by w; — w; for every distinct
pair 7, 7/ within a neuron ¢ and for every neuron ¢ = 1,...,n;. Given a region S, we can now write the weight matrix
corresponding to the hyperplanes described above: Wé =W pgia (W{‘l, . ,W,i_l) < (Wi, ..., W) In other
words, the hyperplanes that extend the boundary segments within region S are given by the rows of Wfsx -+ b = 0 for some
bias b.

A main difference between the maxout case and the ReLU case is that the maxout operator ¢ does not guarantee reductions
in rank, unlike the ReLU operator o. We show the analogous of Lemma 5 for the maxout case. However, we fully relax the
rank.

k(k—1)
Lemma 18. The number of regions induced by the n; neurons at layer | within a certain region S is at most Z‘;’:O (% 7”),

where d; = min{ng, n1,...,n;}.

Proof. For a fixed region S, an upper bound is given by the number of regions of the hyperplane arrangement corresponding
to W&z + b = 0 for some bias b. The rank of WY is upper bounded by

rank(W§) = rank(W' ¢ (W{1, WD) - ggn (W, W)
< min{rank(W*), rank(¢ g (Wi=1, ... WY, .. rank (g (W, ..., W)}
< min{ng,ny,...,n}.
Applying Lemma 4 yields the result. O
Since we can consider the partitioning of regions independently from each other, Lemma 18 implies that the maximal

k(k—1) .
2]‘ ") where d; = min{ng, ny,...,n}.

number of regions of a rank-k maxout network is at most Hle Z‘jl: 0 (

O

H. Implementation of the mixed-integer formulation

In practice, the value of constant M should be chosen to be as small as possible, which also implies choosing different values
on different places to make the formulation tighter and more stable numerically (Camm et al., 1990). For the constraints
set (1)—(6), it suffices to choose M to be as large as either hé or ﬁé can be given the bounds on the input. Hence, we can
respectively replace M with H! and H! in the constraints involving those variables. If we are given lower and upper bounds
for X, which we can use for H° and H°, then we can define subsequent bounds as follows:

H! = max O,Zmax{(),wﬁjH;_l} +b;
J

T, — max { 0,3 max {0, !, 7} 8}
J

For the constraint involving f in formulation P, we should choose a slightly larger value than H! for correctness because
some neurons may never be active within the input bounds.

Bounding and Counting Linear Regions of Deep Neural Networks

I. Mixed-integer representability of rectifier networks
Corollary 19. If the input X is a polytope, then the (x,y) mapping of a rectifier DNN is mixed-integer representable.

Proof. Immediate from the existence of a mixed-integer formulation mapping « to y, which is correct as long as the input is
bounded and thus a sufficiently large M exists. O

Formulation P and the result above have important consequences. First, they allow us to tap into the literature of mixed-
integer representability (Jeroslow, 1987) and disjunctive programming (Balas, 1979) to understand what can be modeled on
rectifier networks with a finite number of neurons and layers. To the best of our knowledge, that has not been discussed
before. Second, they imply that we can use mixed-integer optimization solvers to analyze the (x,y) mapping of a trained
neural network. For example, Cheng et al. (2017) use another mixed-integer formulation to generate adversarial examples.

J. Counting linear regions of ReLLUs with unrestricted inputs

More generally, we can represent linear regions as a disjunctive program (Balas, 1979), which consist of a union of polyhedra.
Disjunctive programs are used in the integer programming literature to generate cutting planes by lift-and-project (Balas
et al., 1993). In what follows, we assume that a neuron can be either active or inactive when the output lies on the activation
hyperplane.

For each active neuron, we can use the following constraints to map input to output:

wih! ™!+ bl = B @)
ht >0 ®)

For each inactive neuron, we use the following constraint:

wh=t 48t <0 ©)
Al =0 (10)

Theorem 20. The set of linear regions of a rectifier network is a union of polyhedra.

Proof. First, the activation set S for each level | defines the following mapping:

U {(R°, R, .. RN (1) — (8) i i € % (9) — (10) otherwise } (11)

SIC{1,...m b lE{1,...,.L+1}
Consequently, we can project the variables sets h',..., hZ*! out of each of those terms by Fourier-Motzkin elimina-
tion (Fourier, 1826), thereby yielding a polyhedron for each combination of active sets across the layers. O

Note that the result above is similar in essence to Theorem 2 of (Raghu et al., 2017).

Corollary 21. If X is unrestricted, then the number of linear regions can be counted using ‘P if M is large enough.

Proof. To count regions, we only need one point x from each linear region. Since the number of linear regions is finite,
then it suffices if M is large enough to correctly map a single point in each region. Conversely, each infeasible linear
region either corresponds to empty sets of (11) or else to a polyhedron P such that {(k',... Al € P|hl > 0Vi €
{1,...,L+1}i¢€ Sl} is empty, and neither case would yield a solution for the z-projection of P. O

K. Mixed-integer representability of maxout units

In what follows, we assume that we are given a neuron ¢ in level [with output hé. For that neuron, we denote the vector of

weights as w!?, ..., w!’. Thus, the neuron output corresponds to

Al = max {wi ! by, . w4 by}

Bounding and Counting Linear Regions of Deep Neural Networks

Hence, we can connect inputs to outputs for that given neuron as follows:

whh o =gl =1,k (12)
he>gli, j=1,..k (13)
hh<ghi+MA-ZF) =1,k (14)
zéi c{0,1}, j=1,...,k (15)

» o Ai=1 (16)

Jj=1

The formulation above generalizes that for ReLUs with some small modifications. First, we are computing the output of each
term with constraint (12). The output of the neuron is lower bounded by that of each term with constraint (13). Finally, we
have a binary variable zi,i per term of each neuron, which denotes which term matches the output. Constraint (16) enforces
that only one variable is at one per neuron, whereas constraint (14) equates the output of the neuron with the active term.
Each constant M should be chosen in a way that the other terms can vary freely, hence effectively disabling the constraint
when the corresponding binary variable is at zero.

L. Runtimes for counting the linear regions

Table 1 reports the median runtimes to count different configurations of networks on the experiment.

Network configuration Runtime (s)

1;21;10 5.3 x 10T
2:20;10 8.0 x 1071
3;19;10 5.0 x 10°
4;18; 10 4.0 x 10!
5;17;10 2.1 x 102
6;16;10 5.7 x 102
7:15;10 1.8 x 103
8:;14:10 4.5 x 103
9:13;10 9.2 x 103
10;12; 10 1.7 x 104
11:11;10 3.3 x 10%
12:10;10 5.3 x 10%
13;9;10 7.3 x 10*
14;8:;10 1.1 x 10°
15;7;10 9.3 x 104
16;6;10 1.3 x 10°
17;5;10 1.6 x 10°
18;4;10 1.8 x 10°
19;3:10 2.4 % 10°
20;2;10 9.9 x 104
21:1;10 3.7 x 104

Table 1. Median runtimes for counting the trained networks for each configuration used in the experiment.

