
First Order Generative Adversarial Networks

A. Proof of Things

Proof of Theorem 1. The proof of this theorem is split into smaller lemmas that are proven individually.

• That τP is a strict adversarial divergence which is equivalent to τW is proven in Lemma 4, thus showing that τP fulfills

Requirement 1.

• τP fulfills Requirement 2 by design.

• The existence of an optimal critic in OCτP (P,Q) follows directly from Lemma 3.

• That there exists a critic f∗ ∈ OCτP (P,Q) that fulfills Eq. 5 is because Lemma 3 ensures that a continuous differentiable

f∗ exists in OCτP (P,Q) which fulfills Eq. 9. Because Eq. 9 holds for f∗ ∈ C(X), the same reasoning as the end of

the proof of Lemma 7 can be used to show Requirement 4

We prepare by showing a few basic lemmas used in the remaining proofs

Lemma 1 (concavity of τP (P‖Q; ·)). The mapping C1(X) → R, f 7→ τP (P‖Q; f) is concave.

Proof. The concavity of f 7→ Ex∼P[f(x)]− Ex′∼Q[f(x
′)] is trivial. Now consider γ ∈ (0, 1), then

Ex∼P,x′∼Q

[

(γ(f(x)− f(x′)) + (1− γ)(f̂(x)− f̂(x′)))2

‖x− x′‖

]

≤Ex∼P,x′∼Q

[

γ(f(x)− f(x′))2 + (1− γ)(f̂(x)− f̂(x′))2

‖x− x′‖

]

=γEx∼P,x′∼Q

[
(f(x)− f(x′))2

‖x− x′‖

]

+ (1− γ)Ex∼P,x′∼Q

[

(f̂(x)− f̂(x′))2

‖x− x′‖

]

,

thus showing concavity of τP (P‖Q; ·).

Lemma 2 (necessary and sufficient condition for maximum). Assume P,Q ∈ P(X) fulfill assumptions 1 and 2. Then for

any f ∈ OCτP (P,Q) it must hold that

Px′∼Q

(

Ex∼P

[
f(x)− f(x′)

‖x− x′‖

]

=
1

2λ

)

= 1 (7)

and

Px∼P

(

Ex′∼Q

[
f(x)− f(x′)

‖x− x′‖

]

=
1

2λ

)

= 1. (8)

Further, if f ∈ C1(X) and fulfills Eq. 7 and 8, then f ∈ OCτP (P,Q)

Proof. Since in Lemma 1 it was shown that the the mapping f 7→ τP (P‖Q, f) is concave, f ∈ OCτ (P,Q) if and only

if f ∈ C1(X) and f is a local maximum of τP (P‖Q; ·). This is equivalent to saying that all u1, u2 ∈ C1(X) with

supp(u1) ∩ supp(Q) = ∅ and supp(u2) ∩ supp(P) = ∅ it holds

∇(ε,ρ)

[

EP[f + εu1]− EQ[f + ρu2]− λEx∼P,x′∼Q

[
((f + εu1)(x)− (f + ρu2)(x

′))2

‖x− x′‖

]] ∣
∣
∣
∣
ε=0,ρ=0

= 0

which holds if and only if

Ex∼P

[

u1(x)

(

1− 2λEx′∼Q

[
(f(x)− f(x′))

‖x− x′‖

])]

= 0

and

Ex′∼Q

[

u2(x
′)

(

1− 2λEx∼P

[
(f(x)− f(x′))

‖x− x′‖

])]

= 0

proving that Eq. 7 and 8 are necessary and sufficient.

First Order Generative Adversarial Networks

Lemma 3. Let P,Q ∈ P(X) be probability measures fulfilling Assumptions 1 and 2. Define an open subset of X , Ω ⊆ X ,

such that supp(Q) ⊆ Ω and infx∈supp(P),x′∈Ω ‖x− x′‖ > 0. Then there exists a f ∈ F = C1(X) such that

∀x′ ∈ Ω : Ex∼P

[
f(x)− f(x′)

‖x− x′‖

]

=
1

2λ
(9)

and

∀x ∈ supp(P) : Ex′∼Q

[
f(x)− f(x′)

‖x− x′‖

]

=
1

2λ
(10)

and τP (P‖Q; f) = τP (P‖Q).

Proof. Since τ(P‖Q; f) = τ(P‖Q; f + c) for any c ∈ R and is only affected by values of f on supp(P) ∪ Ω we first start

by considering

F =

{

f ∈ C1(supp(P) ∪ Ω) | Ex∼P,x′∼Q

[
f(x′)

‖x− x′‖

]

= 0

}

Observe that Eq. 9 holds if

x′ ∈ Ω : f(x′) =
Ex∼P[

f(x)
‖x−x′‖]−

1
2λ

Ex∼P[
1

‖x−x′‖]

and similarly for Eq. 10

∀x ∈ supp(P) : f(x) =
Ex′∼Q[

f(x′)
‖x−x′‖] +

1
2λ

Ex′∼Q[
1

‖x−x′‖]
.

Now it’s clear that if the mapping T : F → F defined by

T (f)(x) :=







Ex′∼Q[
f(x′)

‖x−x′‖
]+ 1

2λ

Ex′∼Q[
1

‖x−x′‖
]

x ∈ supp(P)

Ex′∼P[
f(x′)

‖x−x′‖
]− 1

2λ

Ex′∼P[
1

‖x−x′‖
]

x ∈ Ω

(11)

admit a fix point f∗ ∈ F , i.e. T (f∗) = f∗, then f∗ is a solution to Eq. 9 and 10, and with that a solution to Eq. 7 and 8 and

τP (P‖Q; f∗) = τP (P‖Q).

Define the mapping S : F → F by

S(f)(x) =
f(x)

2λEx̃∼P,x′∼Q

[
f(x̃)−f(x′)
‖x̃−x′‖

] .

Then

Ex̃∼P,x′∼Q

[
S(f)(x̃)− S(f)(x′)

‖x̃− x′‖

]

=
1

2λ
(12)

and

S(S(f))(x) =
S(f)(x)

2λEx̃∼P,x′∼Q

[
S(f)(x̃)−S(f)(x′)

‖x̃−x′‖

] =
S(f)(x)

2λ 1
2λ

= S(f)(x)

making S a projection. By the same reasoning, if Ex̃∼P,x′∼Q

[
f(x̃)−f(x′)
‖x̃−x′‖

]

= 1
2λ then f is a fix-point of S, i.e. S(f) = f .

Assume f is such a function, then by definition of T in Eq. 11

Ex̃∼P,x′∼Q

[
T (f)(x̃)− T (f)(x′)

‖x̃− x′‖

]

= Ex̃∼P

[

Ex′∼Q

[
T (f)(x̃)

‖x̃− x′‖

]]

− Ex′∼Q

[

Ex̃∼P

[
T (f)(x′)

‖x̃− x′‖

]]

= Ex̃∼P

[

Ex′∼Q

[
f(x′)

‖x̃− x′‖

]

+
1

2λ

]

− Ex′∼Q

[

Ex̃∼P

[
f(x̃)

‖x̃− x′‖

]

−
1

2λ

]

= −Ex̃∼P,x′∼Q

[
f(x̃)− f(x′)

‖x̃− x′‖

]

+ 2
1

2λ

=
1

2λ
.

First Order Generative Adversarial Networks

Therefore, S(T (S(f))) = T (S(f)). We can define S(F) = {S(f) | f ∈ F} and see that T : S(F) → S(F). Further,

since S(·) only multiplies with a scalar, S(F) ⊆ F .

Let f1, f2 ∈ S(F). From Eq. 12 we get

Ex∼P,x′∼Q

[
f1(x

′)− f2(x
′)

‖x− x′‖

]

= Ex∼P,x′∼Q

[
f1(x)− f2(x)

‖x− x′‖

]

.

Now since for every f ∈ F it holds by design that Ex∼P,x′∼Q

[
f(x′)

‖x−x′‖

]

= 0 and since S(F) ⊆ F we see that f1, f2 ∈ S(F)

that

Ex∼P,x′∼Q

[
f1(x

′)− f2(x
′)

‖x− x′‖

]

= Ex∼P,x′∼Q

[
f1(x)− f2(x)

‖x− x′‖

]

= 0

Using this with the continuity of f1, f2, there must exist x1 ∈ supp(P) with

Ex′∼Q

[
f1(x

′)− f2(x
′)

‖x1 − x′‖

]

= 0

With this (and compactness of our domain), Q must have mass in both positive and negative regions of f1 − f2 and exists a

constant p < 1 such that for all f1, f2 ∈ S(F) it holds

sup
x∈supp(P)

∣
∣
∣
∣
Ex′∼Q

[
f1(x

′)− f2(x
′)

‖x− x′‖

]∣
∣
∣
∣
≤ p sup

x∈supp(P)

Ex′∼Q

[
1

‖x− x′‖

]

sup
x′∈Ω

|f1(x
′)− f2(x

′)|. (13)

To show the existence of a fix-point for T in the Banach Space (F , ‖ · ‖∞) we use the Banach fixed-point theorem to

show that T has a fixed point in the metric space (S(F), ‖ · ‖∞) (remember that T : S(F) → S(F) and S(F) ⊆ F). If

f1, f2 ∈ S(F) then

sup
x∈supp(P)

|T (f1)(x)− T (f2)(x)| = sup
x∈supp(P)

∣
∣
∣
∣
∣
∣

Ex′∼Q

[
f1(x

′)−f2(x
′)

‖x−x′‖

]

Ex′∼Q

[
1

‖x−x′‖

]

∣
∣
∣
∣
∣
∣

≤ p sup
x′∈supp(Q)

|f1(x
′)− f2(x

′)| using Eq. 13

The same trick can be used to find some some q < 1 and show

sup
x′∈Ω

|T (f1)(x
′)− T (f2)(x

′)| ≤ q sup
x∈supp(P)

|f1(x)− f2(x)|

thereby showing

‖T (f1)− T (f2)‖∞ < max(p, q)‖f1 − f2‖∞

The Banach fix-point theorem then delivers the existence of a fix-point f∗ ∈ S(F) for T .

Finally, we can use the Tietze extension theorem to extend f∗ to all of X , thus finding a fix point for T in C1(X) and

proving the lemma.

Lemma 4. τP is a strict adversarial divergence and τP and τW are equivalent.

Proof. Let P,Q ∈ P(X) be two probability measures fulfilling Assumptions 1 and 2 with P 6= Q. It’s shown in

(Sriperumbudur et al., 2010) that µ = τW (P,Q) > 0, meaning there exists a function f ∈ C(X), ‖f‖L ≤ 1 such that

EP[f]− EQ[f] = µ > 0.

The Stone–Weierstrass theorem tells us that there exists a f ′ ∈ C∞(X) such that ‖f−f ′‖∞ ≤ µ
4 and thus EP[f

′]−EQ[f
′] ≥

µ
2 . Now consider the function εf ′ with ε > 0, it’s clear that

τP (P‖Q) ≥ τP (P‖Q; εf ′) = ε(EP[f
′]− EQ[f

′]
︸ ︷︷ ︸

≥µ
2

)− ε2λEx∼P,x′∼Q[
(f ′(x)− f ′(x′))2

‖x− x′‖
]

First Order Generative Adversarial Networks

and so for a sufficiently small ε > 0 we’ll get τP (P‖Q; εf ′) > 0 meaning τP (P‖Q) > 0 and τP is a strict adversarial

divergence.

To show equivalence, we note that

τP (P‖Q) ≤ sup
m∈C(X2)

Ex∼P,x′∼Q

[

m(x, x′)

(

1− λ
m(x, x′)

‖x− x′‖

)]

therefore for any optimum it must hold m(x, x′) ≤ ‖x−x′‖
2λ , and thus (similar to Lemma 2) any optimal solution will be

Lipschitz continuous with a the Lipschitz constant independent of P,Q. Thus τW (P‖Q) ≥ γτP (P‖Q) for γ > 0, from

which we directly get equivalence.

Proof of Theorem 2. We start by applying Lemma 5 giving us

• OCτF (P,Q
′
θ0
) 6= ∅.

• For any P,Q ∈ P(X) fulfilling Assumptions 1 and 2, it holds that τF (P‖Q) = τP (P‖Q), meaning τF is like τP a

strict adversarial divergence which is equivalent to τW , showing Requirement 1.

• τF fulfills Requirement 2 by design.

• Every f∗ ∈ OCτF (P,Q
′
θ0
) is in OCτP (P,Q

′
θ0
) ⊆ C1(X), therefore f∗ the gradient ∇θEQθ

[f∗]|θ0 exists. Further

Lemma 7 shows that the update rule ∇θEQθ
[f∗]|θ0 is unique, thus showing Requirement 3.

• Lemma 7 gives us every f∗ ∈ OCτF (P,Q
′
θ0
) with the corresponding update rule fulfills Requirement 4, thus proving

Theorem 2.

Before we can show this theorem, we must prove a few interesting lemmas about τF . The following lemma is quite powerful;

since τP (P‖Q) = τF (P‖Q) and OCτF (P,Q) ⊆ OCτP (P,Q) any property that’s proven for τP automatically holds for τF .

Lemma 5. If let X ⊆ Rn and P,Q ∈ P(X) be probability measures fulfilling Assumptions 1 and 2. Then

1. there exists f∗ ∈ OCτP (P,Q) so that τF (P‖Q; f∗) = τP (P‖Q; f∗),

2. τP (P‖Q) = τF (P‖Q),

3. ∅ 6= OCτF (P,Q),

4. OCτF (P,Q) ⊆ OCτP (P,Q).

Clain (4) is especially helpful, now anything that has been proven for all f∗ ∈ OCτP (P,Q) automatically holds for all

f∗ ∈ OCτF (P,Q)

Proof. For convenience define

G(P,Q; f) := Ex′∼Q








‖∇xf(x)
∣
∣
x′‖ −

∥
∥
∥Ex̃∼P[(x̃− x′) f(x̃)−f(x′)

‖x′−x̃‖3]
∥
∥
∥

Ex̃∼P[
1

‖x′−x̃‖]





2





(G is for gradient penalty) and note that

τF (P‖Q; f) = τP (P‖Q; f)−G(P,Q; f)
︸ ︷︷ ︸

≥0

Therefore it’s clear that τF (P‖Q) ≤ τP (P‖Q)

First Order Generative Adversarial Networks

Claim (1). Let Ω ⊆ X be an open set such that supp(Q) ⊆ Ω and Ω ∩ supp(P) = ∅. Then Lemma 3 tells us there is a

f ∈ OCτP (P,Q) (and thus f ∈ C1(X)) such that

∀x′ ∈ Ω : Ex̃∼P

[
f(x̃)− f(x′)

‖x̃− x′‖

]

=
1

2λ

and thus, because supp(Q) ⊆ Ω open and f ∈ C1(X),

∀x′ ∈ supp(Q) : ∇xEx̃∼P

[
f(x̃)− f(x)

‖x̃− x‖

] ∣
∣
∣
∣
x′

= 0

Now taking the gradients with respect to x′ gives us

∇xEx̃∼P

[
f(x̃)− f(x)

‖x̃− x‖

] ∣
∣
∣
∣
x′

= −∇xf(x)|x′Ex̃∼P

[
1

‖x̃− x′‖

]

+ Ex̃∼P

[

(x̃− x′)
f(x̃)− f(x′)

‖x̃− x′‖3

]

(14)

meaning

∀x′ ∈ supp(Q) : ∇xf(x)|x′ =
Ex̃∼P

[

(x̃− x′) f(x̃)−f(x′)
‖x̃−x′‖3

]

Ex̃∼P

[
1

‖x̃−x′‖

] (15)

thus G(P,Q; f) = 0, showing the claim.

Claims (2) and (3). The claims are a direct result of Claim (1); for every P,Q ∈ P(X) there exists a

f∗ ∈ OCτP (P,Q)

such that G(P,Q; f∗) = 0. Therefore

τP (P‖Q) ≥ τF (P‖Q) ≥ τF (P‖Q; f∗) = τP (P‖Q; f∗) = τP (P‖Q)

thus showing both τP (P‖Q) = τF (P‖Q) and f∗ ∈ OCτF (P‖Q).

Claim (4). This claim is a direct result of claim (2); since τP (P‖Q) = τF (P‖Q), that means that if f∗ ∈ OCτF (P‖Q),
then

τF (P‖Q) = τF (P‖Q; f∗) = τP (P‖Q; f∗)−G(P,Q; f)
︸ ︷︷ ︸

≥0

≤ τP (P‖Q; f∗) ≤ τP (P‖Q) = τF (P‖Q)

thus τP (P‖Q; f∗) = τP (P‖Q) and f∗ ∈ OCτP (P‖Q).

Lemma 6. For every f∗ ∈ OCτF (P,Q
′) it holds

∀x′ ∈ supp(Q′) : ∇xEx̃∼P

[
f∗(x̃)− f∗(x)

‖x̃− x‖

] ∣
∣
∣
∣
x′

= 0 (16)

Proof. Set

v =
Ex̃∼P[(x̃− x′) f

∗(x̃)−f∗(x′)
‖x′−x̃‖3]

∥
∥
∥Ex̃∼P[(x̃− x′) f

∗(x̃)−f∗(x′)
‖x′−x̃‖3]

∥
∥
∥

and note that due to construction of Q′ and v, v is such that for almost all x′ ∈ supp(Q′) there exists an a 6= 0 where for all

ε ∈ [0, |a|] it holds x′ + εsign(a)v ∈ supp(Q′).

Since f∗ ∈ C1(X) it holds

d

dε
f∗(x′ + εv)|ε=0 = 〈v,∇xf

∗(x′)〉.

First Order Generative Adversarial Networks

Using Eq. 7 we see,

Ex∼P

[
f∗(x)− f∗(x′ + εv)

‖x− (x′ + εv)‖

]

=ε

〈

v,∇x̂Ex∼P

[
f∗(x)− f∗(x̂)

‖x− x̂‖

] ∣
∣
∣
∣
x′

〉

+O(ε2)

=
Ex̃∼P

[〈

ε(x̃− x′),∇x̃Ex∼P

[
f∗(x)−f∗(x̂)

‖x−x̂‖

] ∣
∣
∣
x′

〉
f∗(x̃)−f∗(x′)

‖x′−x̃‖3

]

∥
∥
∥Ex̃∼P

[

(x̃− x′) f
∗(x̃)−f∗(x′)
‖x′−x̃‖3

]∥
∥
∥

+O(ε2)

=

Ex̃∼P







Ex∼P

[
f∗(x)− f∗(x′ + ε(x̃− x′))

‖x− x′ + ε(x̃− x′)‖

]

︸ ︷︷ ︸

= 1
2λ , Eq. 7 and definition of Q′

f∗(x̃)−f∗(x′)
‖x′−x̃‖3








∥
∥
∥Ex̃∼P

[

(x̃− x′) f
∗(x̃)−f∗(x′)
‖x′−x̃‖3

]∥
∥
∥

+O(ε2)

=
Ex̃∼P

[
1
2λ

f∗(x̃)−f∗(x′)
‖x′−x̃‖3

]

∥
∥
∥Ex̃∼P

[

(x̃− x′) f
∗(x̃)−f∗(x′)
‖x′−x̃‖3

]∥
∥
∥

+O(ε2)

which means

0 =
d

dε
Ex∼P

[
f∗(x)− f∗(x′ + εv)

‖x− (x′ + εv)‖

] ∣
∣
∣
∣
ε=0

= −
d

dε
f∗(x′ + εv)|ε=0Ex̃∼P

[
1

‖x̃− x′‖

]

− Ex∼P

[

〈v, x− x′〉
f∗(x)− f∗(x′)

‖x− x′‖3

]

.

Therefore,

d

dε
f∗(x′ + εv)|ε=0 = 〈v,∇xf

∗(x)|x′〉

=
Ex̃∼P

[

〈v, x̃− x′〉 f
∗(x̃)−f∗(x′)
‖x−x′‖3

]

Ex̃∼P

[
1

‖x̃−x′‖

]

=

〈

v,Ex̃∼P[(x̃− x′) f
∗(x̃)−f∗(x′)
‖x′−x̃‖3]

〉

Ex̃∼P

[
1

‖x̃−x′‖

]

=

∥
∥
∥Ex̃∼P[(x̃− x′) f

∗(x̃)−f∗(x′)
‖x′−x̃‖3]

∥
∥
∥

Ex̃∼P

[
1

‖x̃−x′‖

]

Now from the proof of Lemma 5 claim (4), we know that since G(P,Q; f∗) = 0 we get

‖∇xf
∗(x)

∣
∣
x′‖ =

∥
∥
∥Ex̃∼P[(x̃− x′) f

∗(x̃)−f∗(x′)
‖x′−x̃‖3]

∥
∥
∥

Ex̃∼P[
1

‖x′−x̃‖]
= 〈v,∇xf

∗(x)|x′〉

and since for x 6= 0 and ‖w‖ = 1 it holds 〈w, x〉 = ‖x‖ ⇔ w‖x‖ = x we discover ∇xf
∗(x) = v‖∇xf

∗(x)
∣
∣
x′‖ and thus

∇xf
∗(x)

∣
∣
x′ = v‖∇xf

∗(x)
∣
∣
x′‖ =

Ex̃∼P

[

(x̃− x′) f
∗(x̃)−f∗(x′)
‖x′−x̃‖3

]

Ex̃∼P[
1

‖x′−x̃‖]

and with

∇xf
∗(x)

∣
∣
x′Ex̃∼P[

1

‖x′ − x̃‖
] = Ex̃∼P

[

(x̃− x′)
f∗(x̃)− f∗(x′)

‖x′ − x̃‖3

]

.

First Order Generative Adversarial Networks

Plugging this into Eq. 14 gives us

∀x′ ∈ supp(Q′) : ∇xEx̃∼P

[
f∗(x̃)− f∗(x)

‖x̃− x‖

] ∣
∣
∣
∣
x′

= 0

Lemma 7. Let P and (Qθ)θ∈Θ in P(X) and fulfill Assumptions 1 and 2, further let (Q′
θ)θ∈Θ be as defined in introduction

to Theorem 2, then for any f∗ ∈ OCτF (P,Q
′
θ)

∇θτF (P‖Q
′
θ) ≈ −

1

2
∇θEx′∼Q′

θ
[f∗(x′)]

thus f∗ fulfills Eq. 5 and τF fulfills Requirement 4. Further, if P,Qθ are such that there exits an f with f(x) − f(x′) =
‖x− x′‖ for all x ∈ supp(P) and x′ ∈ supp(Q) then

∇θτF (P‖Q
′
θ) = −

1

2
∇θEx′∼Q′

θ
[f∗(x′)]

Proof. Start off by noting that for some f∗ ∈ OCτF (P,Qθ), Theorem 1 from (Milgrom & Segal, 2002) gives us

∇θτF (P‖Q
′
θ)|θ0 = ∇θτF (P‖Q

′
θ; f

∗)|θ0

Further, since for f∗ ∈ OCτF (P,Qθ) it holds

‖∇xf
∗(x)

∣
∣
x′‖ =

∥
∥
∥Ex̃∼P[(x̃− x′) f

∗(x̃)−f∗(x′)
‖x′−x̃‖3]

∥
∥
∥

Ex̃∼P[
1

‖x′−x̃‖]

the gradient of the gradient penalty part is zero, i.e.

∇θEx∼P,x′∼Qθ








‖∇xf
∗(x)

∣
∣
x′‖ −

∥
∥
∥Ex̃∼P[(x̃− x′) f

∗(x̃)−f∗(x′)
‖x′−x̃‖3]

∥
∥
∥

Ex̃∼P[
1

‖x′−x̃‖]





2



 = 0.

One last point needs to be made before the main equation, which is for x ∈ supp(P)

∇θEx′∼Q′
θ

[
f∗(x)− f∗(x′)

‖x− x′‖

]

≈ 0.

This is from the motivation of the penalized Wasserstein GAN where for an optimal critic it should hold that f∗(x)− f∗(x′)
is close to c‖x − x′‖ for some constant c. Note that if P and Qθ are such that f∗(x) − f∗(x′) = c‖x − x′‖ is possible

everywhere, then this term is equal to zero.

∇θτF (P‖Q
′
θ)|θ0 = ∇θEP⊗Q′

θ
[(f∗(x)− f∗(x′))(1− λ

f∗(x)− f∗(x′)

‖x− x′‖
)]|θ0 .

Since Qθ fulfills Assumption 1, Qθ ∼ g(θ, z) where g is differentiable in the first argument and z ∼ Z (Z was defined in

Assumption 1). Therefore if we set gθ(·) = g(θ, ·) we get

∇θτF (P‖Q
′)|θ0 =∇θEx,x̃∼P,z∼Z,α∼U([0,ε])

[

(f∗(x)− f∗(αx̃+ (1− α)gθ(z)))

(

1− λ
f∗(x)− f∗(αx̃+ (1− α)gθ(z))

‖x− αx̃+ (1− α)gθ(z)‖

)] ∣
∣
∣
∣
θ0

= − Ex,x̃∼P,z∼Z,α∼U([0,ε])

[

∇θf
∗(αx̃+ (1− α)gθ(z))|θ0

(

1− λ
f∗(x)− f∗(αx̃+ (1− α)gθ0(z))

‖x− αx̃+ (1− α)gθ0(z)‖

)]

(17)

− λEx,x̃∼P,z∼Z,α∼U([0,ε])

[

(f∗(x)− f∗(αx̃+ (1− α)gθ0(z)))∇θ

(
f∗(x)− f∗(αx̃+ (1− α)gθ(z))

‖x− αx̃+ (1− α)gθ(z)‖

) ∣
∣
∣
∣
θ0

]

.

(18)

First Order Generative Adversarial Networks

Now if we look at the 17 term of the equation, we see that it’s equal to:

− Ex̃∼P,z∼Z,α∼U([0,ε])







∇θf

∗(αx̃+ (1− α)gθ(z))|θ0 Ex∼P

[

1− λ
f∗(x)− f∗(αx̃+ (1− α)gθ0(z))

‖x− αx̃+ (1− α)gθ0(z)‖

]

︸ ︷︷ ︸

= 1
2 , Eq. 7 from Lemma 2








= −
1

2
∇θEx′∼Q′

θ
[f∗(x′)]|θ0

and term 18 of the equation is equal to

− λEx∼P







f∗(x)∇θEx′∼Q′

θ

[
f∗(x)− f∗(x′)

‖x− x′‖

]

︸ ︷︷ ︸

≈0, See above

∣
∣
∣
∣
θ0








+ λEx̃∼P,z∼Z,α∼U([0,ε])







f∗(αx̃+ (1− α)gθ0(z))∇θEx∼P

[

1− λ
f∗(x)− f∗(αx̃+ (1− α)gθ(z))

‖x− αx̃+ (1− α)gθ(z)‖

]

︸ ︷︷ ︸

=0, Eq. 16

∣
∣
∣
∣
θ0








thus showing

∇θτF (P‖Q
′
θ)|θ0 ≈ −

1

2
∇θEx′∼Q′

θ
[f∗(x′)]|θ0

Lemma 8. Let τI be the WGAN-GP divergence defined in Eq. 3, let the target distribution be the Dirac distribution δ0 and

the family of generated distributions be the uniform distributions U([0, θ]) with θ > 0. Then there is no C ∈ R that fulfills

Eq. 5 for all θ > 0.

Proof. For convenience, we’ll restrict ourselves to the λ = 1 case, for λ 6= 1 the proof is similar. Assume that f ∈
OCτI (δ0,U([0, θ]) and f(0) = 0. Since f is an optimal critic, for any function u ∈ C1(X) and any ε ∈ R it holds

τI(δ0‖U([0, θ]); f) ≥ τI(δ0‖U([0, θ]); f + εu). Therefore ε = 0 is a maximum of the continuously differentiable function

ε 7→ τI(δ0‖U([0, θ]); f + εu), and d
dε
τI(δ0‖U([0, θ]); f + εu)|ε=0 = 0. Therefore

d

dε
τI(δ0‖U([0, θ]); f + εu)|ε=0 = −

∫ θ

0

u(t)dt−

∫ θ

0

2

t

∫ t

0

u′(x)(f ′(x) + 1)dx dt = 0

multiplying by −1 and deriving with respect to θ gives us

u(θ) +
2

θ

∫ θ

0

u′(x)(f ′(x) + 1) dx = 0.

Since we already made the assumption that f(0) = 0 and since τI(P‖Q; f) = τI(P‖Q; f + c) for any constant c, we can

assume that u(0) = 0. This gives us u(θ) =
∫ θ

0
u′(x) dx and thus

∫ θ

0

u′(x) dx+
2

θ

∫ θ

0

u′(x)(f ′(x) + 1) dx =
2

θ

∫ θ

0

u′(x)

(
θ

2
+ f ′(x) + 1

)

dx.

Therefore, for the optimal critic it holds f ′(x) = −(θ2 + 1), and since f(0) = 0 the optimal critic is f(x) = −(θ2 + 1)x.

Now
d

dθ
EU([0,θ])[f] = −

d

dθ

∫ θ

0

(
θ

2
+ 1

)

x dx = −

(
θ

2
+ 1

)

θ

and
d

dθ
Eδ0⊗U([0,θ])[rf] =

d

dθ

1

θ

∫ θ

0

(
θ

2

)2

dx =
d

dθ

θ2

4
=

θ

2
.

Therefore there exists no γ ∈ R such that Eq. 5 holds for every distribution in the WGAN-GP context.

First Order Generative Adversarial Networks

B. Experiments

B.1. CelebA

The parameters used for CelebA training were:

’batch_size’: 64,

’beta1’: 0.5,

’c_dim’: 3,

’calculate_slope’: True,

’checkpoint_dir’: ’logs/1127_220919_.0001_.0001/checkpoints’,

’checkpoint_name’: None,

’counter_start’: 0,

’data_path’: ’celebA_cropped/’,

’dataset’: ’celebA’,

’discriminator_batch_norm’: False,

’epoch’: 81,

’fid_batch_size’: 100,

’fid_eval_steps’: 5000,

’fid_n_samples’: 50000,

’fid_sample_batchsize’: 1000,

’fid_verbose’: True,

’gan_method’: ’penalized_wgan’,

’gradient_penalty’: 1.0,

’incept_path’: ’inception-2015-12-05/classify_image_graph_def.pb’,

’input_fname_pattern’: ’*.jpg’,

’input_height’: 64,

’input_width’: None,

’is_crop’: False,

’is_train’: True,

’learning_rate_d’: 0.0001,

’learning_rate_g’: 0.0005,

’lipschitz_penalty’: 0.5,

’load_checkpoint’: False,

’log_dir’: ’logs/0208_191248_.0001_.0005/logs’,

’lr_decay_rate_d’: 1.0,

’lr_decay_rate_g’: 1.0,

’num_discriminator_updates’: 1,

’optimize_penalty’: False,

’output_height’: 64,

’output_width’: None,

’sample_dir’: ’logs/0208_191248_.0001_.0005/samples’,

’stats_path’: ’stats/fid_stats_celeba.npz’,

’train_size’: inf,

’visualize’: False

The learned networks (both generator and critic) are then fine-tuned with learning rates divided by 10. Samples from the

trained model can be viewed in figure 3.

First Order Generative Adversarial Networks

Figure 3. Images from a First Order GAN after training on CelebA data set.

First Order Generative Adversarial Networks

B.2. CIFAR-10

The parameters used for CIFAR-10 training were:

BATCH_SIZE: 64

BETA1_D: 0.0

BETA1_G: 0.0

BETA2_D: 0.9

BETA2_G: 0.9

BN_D: True

BN_G: True

CHECKPOINT_STEP: 5000

CRITIC_ITERS: 1

DATASET: cifar10

DATA_DIR: /data/cifar10/

DIM: 32

D_LR: 0.0003

FID_BATCH_SIZE: 200

FID_EVAL_SIZE: 50000

FID_SAMPLE_BATCH_SIZE: 1000

FID_STEP: 5000

GRADIENT_PENALTY: 1.0

G_LR: 0.0001

INCEPTION_DIR: /data/inception-2015-12-05

ITERS: 500000

ITER_START: 0

LAMBDA: 10

LIPSCHITZ_PENALTY: 0.5

LOAD_CHECKPOINT: False

LOG_DIR: logs/

MODE: fogan

N_GPUS: 1

OUTPUT_DIM: 3072

OUTPUT_STEP: 200

SAMPLES_DIR: /samples

SAVE_SAMPLES_STEP: 200

STAT_FILE: /stats/fid_stats_cifar10_train.npz

TBOARD_DIR: /logs

TTUR: True

The learned networks (both generator and critic) are then fine-tuned with learning rates divided by 10. Samples from the

trained model can be viewed in figure 4.

First Order Generative Adversarial Networks

Figure 4. Images from a First Order GAN after training on CIFAR-10 data set.

First Order Generative Adversarial Networks

B.3. LSUN

The parameters used for LSUN Bedrooms training were:

BATCH_SIZE: 64

BETA1_D: 0.0

BETA1_G: 0.0

BETA2_D: 0.9

BETA2_G: 0.9

BN_D: True

BN_G: True

CHECKPOINT_STEP: 4000

CRITIC_ITERS: 1

DATASET: lsun

DATA_DIR: /data/lsun

DIM: 64

D_LR: 0.0003

FID_BATCH_SIZE: 200

FID_EVAL_SIZE: 50000

FID_SAMPLE_BATCH_SIZE: 1000

FID_STEP: 4000

GRADIENT_PENALTY: 1.0

G_LR: 0.0001

INCEPTION_DIR: /data/inception-2015-12-05

ITERS: 500000

ITER_START: 0

LAMBDA: 10

LIPSCHITZ_PENALTY: 0.5

LOAD_CHECKPOINT: False

LOG_DIR: /logs

MODE: fogan

N_GPUS: 1

OUTPUT_DIM: 12288

OUTPUT_STEP: 200

SAMPLES_DIR: /samples

SAVE_SAMPLES_STEP: 200

STAT_FILE: /stats/fid_stats_lsun.npz

TBOARD_DIR: /logs

TTUR: True

The learned networks (both generator and critic) are then fine-tuned with learning rates divided by 10. Samples from the

trained model can be viewed in figure 5.

First Order Generative Adversarial Networks

Figure 5. Images from a First Order GAN after training on LSUN data set.

First Order Generative Adversarial Networks

Change spent kands that the righ

Qust of orlists are mave hor int

Is that the spens has lought ant

If a took and their osiy south M

Willing contrased vackering in S

The Ireas’s last to vising 5t ..

The FNF sicker , Nalnelber once

She ’s wast to miblue as ganemat

threw pirnatures for hut only a

Umialasters are not oversup on t

Beacker it this that that that W

Though ’s lunge plans wignsper c

He says : WalaMurka in the moroe

Dry Hall Sitning tven the concer

There are court phinchs hasffort

He scores a supponied foutver il

Bartfol reportings ane the depor

Seu hid , it ’s watter ’s remold

Later fasted the store the inste

Indiwezal deducated belenseous K

Starfers on Rbama ’s all is lead

Inverdick oper , caldawho ’s non

She said , five by theically rec

RichI , Learly said remain .““

Reforded live for they were like

The plane was git finally fuels

Figure 6. Samples generated by First Order GAN trained on fhe One Billion Word benchmark with FOGAN (left) the original TTUR

method (right).

B.4. Billion Word

The parameters used for the Billion Word training were one run with the following settings, followed by a second run using

initialized with the best saved model from the first run and learning rates divided by 10. Samples from our method and the

WGAN-GP baseline can be found in figure 6

’activation_d’: ’relu’,

’batch_norm_d’: False,

’batch_norm_g’: True,

’batch_size’: 64,

’checkpoint_dir’: ’logs/checkpoints/0201_181559_0.000300_0.000100’,

’critic_iters’: 1,

’data_path’: ’1-billion-word-language-modeling-benchmark-r13output’,

’dim’: 512,

’gan_divergence’: ’FOGAN’,

’gradient_penalty’: 1.0,

’is_train’: True,

’iterations’: 500000,

’jsd_test_interval’: 2000,

’learning_rate_d’: 0.0003,

’learning_rate_g’: 0.0001,

’lipschitz_penalty’: 0.1,

’load_checkpoint_dir’: ’False’,

’log_dir’: ’logs/tboard/0201_181559_0.000300_0.000100’,

’max_n_examples’: 10000000,

’n_ngrams’: 6,

’num_sample_batches’: 100,

’print_interval’: 100,

’sample_dir’: ’logs/samples/0201_181559_0.000300_0.000100’,

’seq_len’: 32,

’squared_divergence’: False,

’use_fast_lang_model’: True

