A. Definition of Partial Computation

Formally, we can write $f_{i \rightarrow \ell}$, the partial computation from v_i to v_ℓ, via the recurrence:

$$f_{i \rightarrow \ell}(v_{0:i}) = \varphi_\ell \left(u_{ij}(v_{0:i}) \right)_{j \in A_i},$$

$$u_{ij}(v_{0:i}) = \begin{cases} v_j & \text{if } j \leq i \\ f_{i \rightarrow j}(v_{0:i}) & \text{if } j > i \end{cases}$$

Here, $u_{ij}(v_{0:i})$ will equal v_j for all j. For $j \leq i$, the value is obtained directly from the inputs to $f_{i \rightarrow \ell}$. For $j > i$, the value of u_{ij} is computed according to the partial computation from i to j.

B. Proof of Proposition 3

Proof. We write $f_{0 \rightarrow j}$ as a function of ϵ using the two given Taylor expansions:

$$f_{0 \rightarrow j}(x + \epsilon) = \varphi_j \left(f_{0 \rightarrow k}(x + \epsilon) \right),$$

$$= \varphi_j \left(v_k + (f_{0 \rightarrow k}(x + \epsilon) - v_k) \right),$$

$$= v_j + Q \left(f_{0 \rightarrow k}(x + \epsilon) - v_k \right),$$

$$= v_j + Q \left(R(\epsilon) \right),$$

where we used the Taylor expansion of φ_j in Line 3 and the Taylor expansion of $f_{0 \rightarrow k}$ in Line 4. The last expression is a power series in ϵ, and, since $f_{0 \rightarrow j}$ is analytic (the composition of two analytic functions is analytic), it is necessarily the Taylor series expansion of $f_{0 \rightarrow j}$ about x. \qed

C. Truncated Forward Algorithm

The truncated forward algorithm is the following variant of the forward algorithm for discrete HMMs, where N is an upper bound placed on the population size:

1. Set $\alpha_0(0) = 1$ and $\alpha_0(n) = 0$ for $n = 1$ to N.
2. For $k = 1$ to K
 (a) Compute the transition matrix P_k, where
 $$P_k(n, n') = \Pr(n_k = n' \mid n_{k-1} = n) \text{ for all } n, n' \in \{0, \ldots, N\} \text{ (details below)}$$
 (b) For $n' = 0$ to N, set
 $$\alpha_k(n') = p(y_k \mid n') \sum_{n=0}^{N} \alpha_{k-1}(n) P_k(n, n')$$
3. The likelihood is $\sum_{n=0}^{N} \alpha_K(n)$

Step 2(b) takes $O(N^2)$ time. Step 2(a) may take $O(N^3)$ or $O(N^2 \log N)$ time, depending on how it is implemented.

Observe that n_k is the sum of two random variables:

$$n_k = z_k + m_k, \quad z_k := \sum_{i=0}^{n_{k-1}} z_{k,i}$$

and we must reason about their convolution to construct the transition probabilities. Specifically, the nth row of P_k is the convolution of the first N values of the distribution $p(z_k \mid n_{k-1} = n)$ and the first N values of $p(m_k)$:

$$P_k(n, n') = \sum_{z=0}^{N} \Pr(z_k = z \mid n_{k-1} = n) \Pr(m_k = n' - z)$$

Let us assume we can compute the first N values of each distribution in $O(N)$ time. Then the time to compute each row of P_k is $O(N^2)$ if we use the direct convolution formula above, but $O(N \log N)$ if we use the fast Fourier transform (FFT) for convolution, making the overall procedure either $O(K N^3)$ or $O(K N^2 \log N)$. While the FFT is superior in terms of running time, it is inaccurate in many cases (see Section 5).
def A(s, k):
 if k < 0: return 1.0

 # This allows constant to be constructed in log space
 const = GDual.const(y[k] * np.log(rho[k]) - gammaln(y[k] + 1), as_log=True)

 return (s**y[k]) * const * \n diff(lambda u: Gamma(u, k), s*(1 - rho[k]), y[k])

def Gamma(u, k):
 F = lambda u: offspring_pgf(u, theta_offspring[k-1])
 G = lambda u: immigration_pgf(u, theta_immigration[k])
 return A(F(u), k-1) * G(u)

log_likelihood = log(A(1.0, K-1))

Figure 5. Code for AD based forward algorithm.