
Learning in Integer Latent Variable Models

A. Definition of Partial Computation
Formally, we can write f

i!`

, the partial computation from
v
i

to v
`

, via the recurrence:

f
i!`

(v0:i) = '
`

�
u
ij

(v0:i)
�
j2A`

,

u
ij

(v0:i) =

(
v
j

if j  i

f
i!j

(v0:i) if j > i

Here, u
ij

(v0:i) will equal v
j

for all j. For j  i, the value
is obtained directly from the inputs to f

i!`

. For j > i, the
value of u

ij

is computed according to the partial computa-
tion from i to j.

B. Proof of Proposition 3
Proof. We write f0!j

as a function of ✏ using the two given
Taylor expansions:

f0!j

(x+ ✏) = '
j

�
f0!k

(x+ ✏)
�
,

= '
j

⇣
v
k

+

�
f0!k

(x+ ✏)� v
k

�⌘
,

= v
j

+Q
⇣
f0!k

(x+ ✏)� v
k

⌘
,

= v
j

+Q
�
R(✏)

�
,

where we used the Taylor expansion of '
j

in Line 3 and the
Taylor expansion of f0!k

in Line 4. The last expression is
a power series in ✏, and, since f0!j

is analytic (the compo-
sition of two analytic functions is analytic), it is necessarily
the Taylor series expansion of f0!j

about x.

C. Truncated Forward Algorithm
The truncated forward algorithm is the following variant of
the forward algorithm for discrete HMMs, where N is an
upper bound placed on the population size:

1. Set ↵0(0) = 1 and ↵0(n) = 0 for n = 1 to N .

2. For k = 1 to K

(a) Compute the transition matrix P
k

, where
P
k

(n, n0
) = Pr(n

k

= n0 | n
k�1 = n) for all

n, n0 2 {0, . . . , N} (details below)
(b) For n0

= 0 to N , set

↵
k

(n0
) = p(y

k

| n0
)

NX

n=0

↵
k�1(n)Pk

(n, n0
)

3. The likelihood is
P

N

n=0 ↵K

(n)

Step 2(b) takes O(N2
) time. Step 2(a) may take O(N3

) or
O(N2

logN) time, depending on how it is implemented.

Observe that n
k

is the sum of two random variables:

n
k

= z
k

+m
k

, z
k

:=

nk�1X

i=0

z
k,i

and we must reason about their convolution to construct
the transition probabilities. Specifically, the nth row of P

k

is the convolution of the first N values of the distribution
p(z

k

| n
k�1 = n) and the first N values of p(m

k

):

P
k

(n, n0
) =

NX

z=0

Pr(z
k

= z | n
k�1 = n) Pr(m

k

= n0� z)

Let us assume we can compute the first N values of each
distribution in O(N) time. Then the time to compute each
row of P

k

is O(N2
) if we use the direct convolution formula

above, but O(N logN) if we use the fast Fourier transform
(FFT) for convolution, making the overall procedure either
O(KN3

) or O(KN2
logN). While the FFT is superior in

terms of running time, it is inaccurate in many cases (see
Section 5).

Learning in Integer Latent Variable Models

def A(s, k):

if k < 0: return 1.0

This allows constant to be constructed in log space

const = GDual.const(y[k]

*

np.log(rho[k]) - gammaln(y[k] + 1), as_log=True)

return (s

**

y[k])

*

const

*

\

diff(lambda u: Gamma(u, k), s

*

(1 - rho[k]), y[k])

def Gamma(u, k):

F = lambda u: offspring_pgf(u, theta_offspring[k-1])

G = lambda u: immigration_pgf(u, theta_immigration[k])

return A(F(u), k-1)

*

G(u)

log_likelihood = log(A(1.0, K-1))

Figure 5. Code for AD based forward algorithm.

