
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

TACO: Learning Task Decomposition via Temporal Alignment for Control -
Appendix

A. Technical Details
A.1. Implementation Details and Architecture

The policies for all tasks are modelled as MLPs unless im-
ages are used. In this case, convolutional layers, shared
between all sub-policies, are used to extract state features.
In continuous domains, action probabilities are modelled
as a∼N (µ, σ = 1) where µ is the output of the MLP. In
discrete domains, action probabilities are modelled using
categorical distributions. We found that having separate net-
works for the domain actions and the aSTOP action, leads
to better performance, especially for the Dial domain. See
Table 1 for implementation details of the architectures used
in each experiment where Core represents the convolutional
architecture that learns a feature representation of the input
space before feeding it into the stop and action policies.

For larger domains we found that dropout on the aSTOP
policy greatly improved results. It serves as regulariser as
well as to ensure optimising over a broad range of paths
as various alignment paths are sampled when units in the
network are dropped. For further performance, we exponen-
tialy decrease the dropout rate. All models are implemented
in TensorFlow (Abadi et al., 2016).

Experiment State Dim Core Stop Policy Action Policy Output Dim

Nav World 8 - FC [100] FC [100] 2
Craft 1076 - FC [400,100] FC [400,100] 7
Dial 39 - FC [300,200,100] FC [300,200,100] 9

Dial (Images) [112,112,3]
conv[10,5,3]
kernel[5,5,3]
stride[2,2,1]

FC [400,300] FC [400,300] 9

Table 1. Specification of the architectures used in each experiment.
For experiment Dial (Images) conv[], kernel[] and stride[] repre-
sent the number of channels, dimension of square kernels and 2D
strides per convolutional layer respectively

A.2. Data Collection

As mentioned in the paper, data collection took place us-
ing DART (Laskey et al., 2017) in order to compensate for
the issue of covariate shift and compounding errors during
policy deployment. For the Dial domain we add noise to
each joint, proportional to the maximum allowed torque,
which was manually tuned. During demonstrations we add
a varying degree of noise to better cover the state space re-
sulting in more robust policies that are better able to handle
suboptimality in the test domain.

B. Detailed Results
This section covers more detailed results for different do-
mains and algorithms. For the NavWorld scnario, we report
results on non-0-shot settings. For the Dial domain, we
additionally address the sub-task accuracy i.e how many
sub-tasks were completed out of the total attempted. Finally,
we detail alignment accuracy values for the methods con-
sidered in the paper. The metric describes the percentage of
correctly aligned sub-policies on a set of hold-out tasks.

B.1. NavWorld Domain
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Figure 1. Task accuracy on NavWorld. L = Ltest = 3.

As is seen in Figure 1, TACO not only vastly outperforms
CTC-BC (MLP and GRU), both of which favour poorly
in NavWorld, but as well asymptotically approaches the
fully supervised GT-BC with increasing number of training
trajectories.

B.2. Joint-State Dial Domain

The sub-task accuracy is displayed in Figure 2.

B.3. Sequence Alignment Accuracy

Alignment accuracy is measured as the % of agreement be-
tween the ground truth sub-task sequence of length T and
the most likely sequence predicted by either of the three
alignment architectures considered in the paper, TACO,
CTC-BC (MLP), CTC-BC (GRU). The most likely se-
quence is given by taking the argmax of the forward vari-
ables at each timestep for either CTC or TACO. For GT-BC,
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Figure 2. Sub-task accuracy for the Dial domain. We measure
the number of sub-tasks succeeded over the total given, for 5
independent evaluations of 20 tasks of task length 5. Due to the
complexity of the task and bad alignment performance, CTC based
methods are unable to complete any sub-tasks.

we pass the learned policies through TACO alignment with-
out learning. We compute the alignment accuracy for 100
hold-out test sequences, which come from the same dis-
tribution as the training data. The results across all the
experiment domains are stated in Table 2.

Domain

Algorithm Nav-World Craft Dial Dial (Image)

TACO 95.3 95.6 98.9 99.0
CTC-BC (MLP) 89.0 41.4 31.4 84.6
CTC-BC (GRU) 80.0 57.1 28.6 48.8
GT-BC (aligned with TACO) 94.6 99.4 98.7 98.2

Table 2. Alignment accuracy of each algorithm for all domains.
TACO always outperforms CTC emphasising the importance of
maximising the joint likelihood of task sequences and actions.

C. CTC Probabilistic Sub-Policy Training
While the naive extension of CTC (Section 4.1) trains sub-
policies based on the a single alignment by taking the
argmax of the forward variables αt(l) for every time-step,
this paragraph addresses the possible probabilistic assign-
ment of active sub-policies.

To obtain the probabilistic weighting based optimisation
objective in Equation (1), we first define the probability
distribution pt(l) at time-step t over all sub-policies l in a
sketch based on the normalised CTC forward variables in
Equation (2).

However, as the ground-truth targets in the trajectory ρ only
exist for the regular actions, we first compute the stop action
probability targets based on the CTC forward variables.

θ∗k=1,..,K = argmax
θk

Eρk [

T∑
t=1

L∑
l=1

log pt(l)πθk(a+
t |st)] (1)

where pt(l) =
αt(l)∑L
li=1 αt(li)

. (2)

Figure 3. CTC-based computation of stop action targets. The green
and blue areas respectively depict the relations for l = 1 in Equa-
tion 3 and l > 1 in Equation 4

To determine probabilistic targets for the stop actions, we
associate the edges in Figure 3 between nodes of the same or
subsequent sub-policies respectively with āstop and astop.
For l = 1, nodes depend only on a single relevant edge
from the same sub-policy at the previous time-step, while
for all nodes with l > 1 we take into account edges from the
same sub-policy and the previous sub-policy at the previous
time-step.

pt+1(1) = pt(1) · π1(āstop|st+1)] (3)
pt+1(l + 1) = pt(l + 1) · πl+1(āstop|st+1)+ (4)

pt(l) · πl(astop|st+1)

πl(astop|st) = 1− πl(āstop|st) (5)

Based on Equations (3), (4) and (5), we can derive the
targets in Equation (6) for t = 1, ..., T − 1. Starting with
the targets for l = 1 we can compute the targets for l + 1
based on the targets for l and the forward variables αt(l).

πl(āstop|st+1)


pt(l)
pt+1(l) , if l = 1,

pt+1(l+1)
pt(l+1) if l > 1.

− pt(l)·(1−πl(āstop|st+1))
pt(l+1)

(6)
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