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Abstract

A key challenge in complex visuomotor control
is learning abstract representations that are ef-
fective for specifying goals, planning, and gen-
eralization. To this end, we introduce universal
planning networks (UPN). UPNs embed differen-
tiable planning within a goal-directed policy. This
planning computation unrolls a forward model in
a latent space and infers an optimal action plan
through gradient descent trajectory optimization.
The plan-by-gradient-descent process and its un-
derlying representations are learned end-to-end to
directly optimize a supervised imitation learning
objective. We find that the representations learned
are not only effective for goal-directed visual imi-
tation via gradient-based trajectory optimization,
but can also provide a metric for specifying goals
using images. The learned representations can
be leveraged to specify distance-based rewards to
reach new target states for model-free reinforce-
ment learning, resulting in substantially more ef-
fective learning when solving new tasks described
via image-based goals. We were able to achieve
successful transfer of visuomotor planning strate-
gies across robots with significantly different mor-
phologies and actuation capabilities.

1. Introduction
Learning visuomotor policies is a central pursuit in build-
ing machines capable of performing complex skills in the
variety of unstructured and dynamic environments seen in
the real world (Levine et al., 2016; Pinto et al., 2016). A
key challenge in learning such policies lies in acquiring
representations of the visual environment and its dynamics
that are suitable for control. This challenge arises both in
the construction of the policy itself and in the specification
of the task. Extrinsic and perfect reward signals are typi-
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Figure 1. An overview of the UPN, which embeds a gradient de-
scent planner (GDP) in the action-selection process. We demon-
strate transfer to different, harder control tasks, including morpho-
logical (yellow point robot to ant) and topological (3-link to 7-link
reacher) variants, as shown above.

cally not available for real world reinforcement learning and
users must manually specify tasks via hand-crafted rewards
with hand-crafted representations. To automate this process,
some prior methods have proposed to specify tasks by pro-
viding an image of the goal scene (Deguchi & Takahashi,
1999; Watter et al., 2015; Finn et al., 2016b). However, a
reward that measures success based on matching the raw
pixels of the goal image is far from ideal: such a reward
is both uninformative and overconstrained, since matching
all pixels is usually not required for succeeding in tasks. If
we can automatically identify the right representation, we
can both accelerate the policy learning process and simplify
the specification of tasks via goal images. Prior work in
visual representation learning for planning and control has
relied predominantly on unsupervised or self-supervised
objectives (Watter et al., 2015; Finn et al., 2016b), which in
principle only provide an indirect connection to the utility
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of the representation for the underlying control problem.
Effective representation learning for planning and control
remains an open problem.

In this work, instead of learning from unsupervised or aux-
iliary objectives and expecting that useful representations
should emerge, we directly optimize for plannable represen-
tations: learning representations such that gradient-based
planning is successful with respect to the goal-directed task.
To that end, we propose universal planning networks (UPN),
a neural network architecture that can be trained to acquire
a plannable representation. By embedding a differentiable
planning computation inside the policy, our method enables
joint training of the planner and its underlying latent encoder
and forward dynamics representations. An outer imitation
learning objective ensures that the learned representations
are directly optimized for successful gradient-based plan-
ning on a set of training demonstrations. However, in princi-
ple, the architecture could also be trained with other policy
optimization techniques such as those from reinforcement
learning. An overview is provided in Figure 1(a).

We demonstrate that the representations learned by UPN
not only support gradient-based trajectory optimization for
successful visual imitation, but in fact acquire a meaning-
ful encoding of state, which can be used as a metric for
task-specific latent distance to a goal. We find that we can
reuse this representation to specify latent distance-based
rewards to reach new target states via standard model-free
reinforcement learning, resulting in substantially more effec-
tive learning when using image targets. These properties are
naturally induced by the agent’s reliance on the minimiza-
tion of the latent distance between its predicted terminal
state and goal state throughout the planning process. By
learning plannable representations, the UPN learns an op-
timizable latent distance metric. Our findings are based
on a new suite of challenging vision-based simulated robot
control tasks that involve planning.

At a high-level, our approach is a goal-conditioned policy
architecture that leverages a gradient-based planning compu-
tation in its action-selection process. While the architecture
is agnostic to the objective function in the outer loop, we
will focus on the imitation learning setting. From the per-
spective of representation learning, our method provides a
way to learn more effective representations suitable for spec-
ifying perceptual reward functions, which can then be used,
for example, with a model-free reinforcement learner. In
terms of meta-learning, our architecture can be seen as learn-
ing a planning computation by learning representations that
are in some sense traversible by gradient descent trajectory
optimization for satisfying the outer meta-objective.

In extensive experiments, we show that (1) UPNs learn ef-
fective visual goal-directed policies more efficiently (that
is, with less data) than traditional imitation learners; (2) the

latent representations induced by optimizing for successful
planning can be leveraged to transfer task-related semantics
to other agents for more challenging tasks through goal-
conditioned reward functions, which to our knowledge has
previously not been demonstrated; and (3) the learned plan-
ning computation improves when allowed more updates at
test-time, even in scenarios of less data, providing encour-
aging evidence of successful meta-learning for planning.

2. Universal Planning Networks
Model-based approaches leverage forward models to search
for, or plan, sequences of actions to achieve goal states such
that a planning objective is minimized. Forward modeling
supports simulation of future state and hence, in principle,
should allow for planning over extended horizons. In the
absence of known environment dynamics, a forward model
must be learned. Differentiable forward models allow for
end-to-end training of model-based planners, as well as
planning by back-propagating gradients with respect to input
actions (Schmidhuber, 1990; Henaff et al., 2017).

Nevertheless, learned forward models may: (1) suffer from
function approximation modeling error, especially in com-
plex, high-dimensional environments, (2) capture irrelevant
details under the incentive to reduce model-bias, as is of-
ten the case when learning directly from pixels, and (3)
not necessarily align with the task and planning problem at
hand, such that the inferred plans are sub-optimal even if
the planning objective is optimized.

These issues motivate a central idea of the proposed method:
instead of learning from surrogate unsupervised or auxiliary
objectives, we directly optimize for what we care about,
which is, representations with which gradient-based trajec-
tory optimization leads to the desired actions. We study
a model-based architecture that performs a differentiable
planning computation in a latent space jointly learned with
forward dynamics, trained end-to-end to encode what is
necessary for solving tasks by gradient-based planning.

2.1. Learning to Plan

The UPN computation graph forms a goal-directed policy
supported by an iterative planning algorithm. Given initial
and goal observations (ot and og) as input images, the model
produces an optimal plan ât:t+T to arrive at og, where ât
denotes the predicted action at time t. The computation
graph consists of a pair of tied encoders that encode both
ot and og, and their features are fed into a gradient descent
planner (GDP), which produces the action at as output. The
GDP uses a neural network encoder and forward dynamics
model to simulate transitions in a learned latent space and
is thus fully differentiable. An overview of the method is
presented in Figure 2.
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Figure 2. An overview of the proposed method. Given an initial ot and a goal og , the GDP (gradient descent planner) uses gradient
descent to optimize a plan to reach the goal observation with a sequence of actions in a latent space represented by fφ. This planning
process forms one large computation graph, chaining together the sub-graphs of each iteration of planning. The learning signal is derived
from the (outer) imitation loss and the gradient is back-propagated through the entire planning computation graph. The blue lines represent
the flow of gradients for planning, while the red lines depict the meta-optimization learning signal and the components of the architecture
affected by it. Note that the GDP iteratively plans across np updates, as indicated by the ith loop.

The GDP uses gradient descent to optimize for a sequence
of actions ât:t+T to reach the encoded goal observation og
from an initial ot. Since the model is differentiable, back-
propagation through time allows for computing the gradient
with respect to each planned action in order to end up closer
to the desired goal state. Each iteration of the GDP thus
involves unrolling the trajectory of latent state encodings us-
ing the current planned actions, and taking a step along the
gradient to improve the planning objective. The cumulative
planning process forms a large, differentiable computation
graph, chaining together each iteration of planning.

The actual learning signal is derived from an outer loss
function, which supervises the entire computation graph
(including the GDP) to output the correct action sequence.
The outer loss can in principle take any form, but in this
work we use an imitation learning loss and supervise the
entire model with demonstrations. The outer loss provides
task-specific grounding to optimize for representations that
support effective iterative planning for the task and environ-
ment at hand, as the gradient is back-propagated through
the entire iterative planning computation graph.

Training thus involves nested objectives. One can view the
learning process as first deriving a plan to achieve the goal
and then updating the model parameters to make the plan-
ning procedure more effective for the outer objective. In
other words, we seek to learn the planning computation
through its underlying representations for latent state encod-
ing and latent forward dynamics.

Parameters: The model is composed of a forward dynam-

ics model gθ and an encoder fφ, where θ and φ are neural
network parameters that are learned end-to-end:

xt = fφ(ot) x̂t+1 = gθ(xt, at)

Specifically, fφ is a convolutional network and gθ is a fully
connected network. Further architectural details can be
found in the supplementary. 1

Planning by Gradient Descent: The planner starts with an
element-wise randomly initialized plan â(0)t:t+T ∼ U(−1, 1)
and aims to minimize the distance between the predicted
terminal latent state and the encoded goal observation. T
denotes the horizon over which the agent plans, which can
depend on the task and hence may be treated as a hyper-
parameter, while np is the number of planning updates per-
formed. Algorithm 1 describes the iterative optimization
procedure that is implemented by the GDP.

Huber Loss: In practice, for L(i)
plan, we use a Huber Loss

centered around xg for well-behaved inner loop gradients

instead of a direct quadratic ||x̂(i)t+T+1 − xg||2
2

. This usage
is inspired from the Deep Q Networks paper of Mnih et al.
(2015) and similar metrics have also been used by Levine
et al. (2016) and Sermanet et al. (2017).

Action selection at test-time: At test-time, Algorithm 1

1We note that one could also use an action encoder hα(at) =
ut, with gθ operating on xt and ut. A temporal encoder h would
allow for abstract sequences of actions (options), for an option
conditioned latent forward model gθ . We work with flat sequences
of actions, leaving hierarchical extensions for future work.
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Algorithm 1 GDP (ot, og, α)→ ât:t+T

Require: α: hyperparameter for step size
Randomize an initial guess for the optimal plan â(0)t:t+T
for i from 0 to np − 1 do

Compute xt = fφ(ot), xg = fφ(og)
for j from 0 to T do
x̂
(i)
t+j+1 = gθ(x̂

(i)
t+j , â

(i)
t+j)

end for
Compute L(i)

plan = ||x̂(i)t+T+1 − xg||2
2

Update plan: â(i+1)
t:t+T = â

(i)
t:t+T − α∇â(i)t:t+T

L(i)
plan

end for
Return â(np)

t:t+T

can be used to produce a sequence of actions. A more
sophisticated approach is to use Algorithm 1 to re-plan at
each timestep. The agent first plans a trajectory suitable to
reach og from ot, but only executes the first action, before
replanning. This allows the agent to achieve goals requiring
longer planning horizons at test-time even if the GDP was
trained with a shorter horizon. This amounts to using model-
predictive control (MPC) over our learned planner.

2.2. Imitation as the Outer Objective

An idea central to our approach is to directly optimize the
planning computation for the task at hand, through the outer
objective. Though in this work we study the use of an
imitation loss as the outer objective, the policy can in prin-
ciple be trained through any gradient-based policy search
method including policy gradients (Schulman, 2016) and
value functions (Sutton & Barto, 1998).

To learn parameters φ and θ, we do not directly optimize
the planning error under Lplan, but instead train the plan-
ner to imitate demonstrations by iteratively applying Lplan
(Algorithm 2). The model is therefore trained to plan in
such a way as to produce actions that match the expert
demonstrations.

Note that the subroutine GDP (ot, og, α) is an accumulated
computation graph composed of several iterations of plan-
ning, each of which includes encoding observations and
unrolling of latent forward dynamics through time. Learn-
ing end-to-end thus requires that we back-propagate the
behavior cloning loss under the produced plan through the
GDP subroutine as depicted in Figure 2. We note that the
gradients obtained on the network parameters θ and φ from
the outer objective are composed of first-order derivatives of
these parameters. Therefore, even though the computation
graph of UPN may seem long and complicated, it is not
prohibitively expensive to compute.

In learning to plan via imitation, the agent jointly optimizes
for latent state and dynamics representations that capture

Algorithm 2 Learning the Planner via Imitation

Require: GDP (ot, og, α), expert a∗t:t+T , step sizes α, β
for n from 1 to N do

Sample a batch of demonstrations ot, og, a∗t:t+T
Compute ât:t+T = GDP (ot, og, α)
Compute Limitate = ||ât:t+T − a∗t:t+T ||22
Update θ := θ − β∇θLimitate
Update φ := φ− β∇φLimitate

end for

notions of state comparison useful for the imitation task and
that are in some sense traversible by gradient descent trajec-
tory optimization. This is naturally induced by the agent’s
reliance on the minimization of the latent distance between
its predicted terminal state and goal state throughout the
planning process. Thus, in requiring plannable represen-
tations, the encoder learns an optimizable latent distance
metric. This is key to the viability of using the learned latent
space as a metric from which to derive reward functions for
reinforcement learning.

2.3. Reinforcement Learning with a UPN Latent Space

Reward functions are difficult to manually specify for vi-
suomotor tasks described via image targets. Rewards purely
based on pixel errors are meaningless, particularly when
dealing with high dimensional images. A solution to this
problem is to specify rewards in terms of distance to the
target image in an abstract representation. There have been
attempts in the past to learn such abstract representations.
Watter et al. (2015) and Finn et al. (2016b) take the unsu-
pervised learning route using autoencoders, while Sermanet
et al. (2017) attempt to fine-tune representations from Im-
agenet using auxiliary losses tailor-made for robotic ma-
nipulation. With UPN having been trained for acquiring
plannable representations, it is only natural to expect that
its latent space encoded by fφ serves the role of an ab-
stract representation where rewards can be specified for
performing reinforcement learning on visuomotor tasks
with image targets. More specifically, we can exploit the
learned fφ from UPN to provide reward functions of the
form r(ot, og) = −||fφ(ot)−fφ(og)||22. In practice, we use
the Huber Loss around og to stay consistent with the metric
the UPN was trained with. Further, we had more success
normalizing the distance metric to lie in the interval [0, 1] by
passing the negative of the distance through an exponential.
The details are highlighted in the supplementary.

Figure 3 visually depicts the reinforcement learning process.
While performing reinforcement learning on the new tasks,
the agent gets access to its own embodiment st (joint angles
and velocities) and the feature vector of the goal fφ(og)
as its input observations. The agent optimizes for the per-
ceptual rewards computed from UPN and does not receive
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any extrinsic rewards from the environment. Providing the
feature vector of the goal is necessary when the evaluation
success is averaged over multiple goals at test time. In case
of a single fixed goal, the evaluation success is averaged
over different initial configurations of the robot which can
be captured in the information provided via st and the goal
feature vector becomes redundant. Unless specified, we
evaluate using multiple goals at test-time and feed in fφ(og)
as an additional input to the reinforcement learning agent,
thereby making the policy architecture at test time universal.
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�Figure 3. A reinforcement learning agent can derive rewards from
the latent representations learned by the UPN. The rewards are
based on the difference between ot and og in the abstract rep-
resentation, while the policy is conditioned on joint angles and
velocities specific to the agent, st; and the feature vector of the
goal, fUPNφ (og). The agent has to reason about the goals and how
to achieve them based on the learned features from UPN.

3. Related Work
Our work is primarily concerned with learning representa-
tions that can support planning for tasks described through
an image target. Watter et al. (2015) and Finn et al. (2016b)
take an unsupervised learning approach to learning such
representations, which they use for planning with respect
to target images using iLQR (Tassa et al., 2012). However,
reconstructing all the pixels in the scene could lead to the en-
coding of state variables not necessarily useful in the context
of planning (Higgins et al., 2017) and discard state variables
that are not visually prominent (Goodfellow et al. (2016),
Chapter 15). Our approach avoids this problem by explicitly
optimizing a representation for plannability through gradi-
ent descent as the only criterion. Self-supervised methods
that avoid pixel reconstruction by using other intermedi-
ate forms of supervision that can be obtained automatically
from the data have also been used to learn representations for
visuomotor control (Sermanet et al., 2016; 2017). We again
differ by optimizing directly for what we need: plannable
representations, instead of intermediate objectives. While
the goal in Sermanet et al. (2017) is to recover a reward func-
tion to mimic specific demonstrations, our goal is to acquire
a more broadly applicable representation from demonstra-
tions that can then be used to perform new tasks using just a

single goal image.

There has been work in learning state representations usable
for model-free RL when provided rewards (Lange et al.,
2012; Jonschkowski & Brock, 2015; Jonschkowski et al.,
2017; Higgins et al., 2017; de Bruin et al., 2018). The
key difference in our work is that we focus on learning
representations that can be used for defining metric-based
rewards for new tasks, as opposed to just learning state
representations for RL from external environment rewards.

Learning representations capable of providing distance met-
ric based rewards naturally relates to inverse reinforcement
learning (IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004;
Finn et al., 2016a; Ho & Ermon, 2016; Baram et al., 2017)
and reward shaping (Ng et al., 1999). IRL methods attempt
to learn a reward function from expert demonstrations which
could then be used to optimize a traditional reinforcement
learner. However, IRL from raw pixels is challenging due
to the lack of sufficient constraints in the problem defini-
tion; only a couple of methods have successfully applied
IRL to images, and to do so have relied on human domain
knowledge (Wulfmeier et al., 2016) and pre-training (Li
et al., 2017). Our work can be viewed as connecting IRL
and reward shaping: learning representations amenable to
gradient-based trajectory optimization is one way to extract
a perceptual reward function. However, we differ signif-
icantly from conventional IRL in that our derived reward
functions are effective even for new tasks.

From an architectural standpoint, we embed a differentiable
planner within our computation graph. Value iteration net-
works of Tamar et al. (2016) embed an approximate differen-
tiable value iteration computation, though their architecture
only supports discrete planning and is evaluated on tasks
with sparse state transition probabilities. We seek a more
general planning computation for more complex transition
dynamics and continuous actions suitable for motor control
from raw pixels. Tamar et al. (2017) attempt to learn an
embedded differential MPC controller by reshaping its cost
function in hindsight through a longer horizon MPC plan.
We, however, are interested in tasks where cost functions
are not available and cannot adopt this approach. Amos &
Kolter (2017); Donti et al. (2017) also look at embedding
differentiable optimization procedures (quadratic programs)
within neural networks. Concurrently, a few recent efforts
have been developed to embed differentiable planning proce-
dures in computation graphs (Guez et al., 2018; Pereira et al.,
2018; Farquhar et al., 2017). However, to our knowledge,
our paper is the first to connect the use of differentiable
planning procedures to learning reusable representations
that generalize across complex visuomotor tasks.

The idea of planning by gradient descent has existed
for decades (Kelley, 1960). While such work relied on
known analytic forms of environment dynamics, later work
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(a) Pointmass config. 1 (b) Pointmass config. 2 (c) Reacher config. 1 (d) Reacher config. 2

Figure 4. Examples of the visuomotor tasks considered for the zero shot generalization study. We consider two 2D robot models: a force-
controlled point robot and a 3-link torque-controlled reacher robot. We consider two types of generalization: fixing the obstacles while
varying the target goals (FOVG) and varying both the obstacle and target goals (VOVG). These tasks require non-trivial generalization
combining visual planning with low level motor control.

(Schmidhuber, 1990) explored jointly learning approxi-
mate models of dynamics with neural networks. Henaff
et al. (2017) adopt gradient-based trajectory optimization
for model-based planning in discrete action spaces, but rely
on representations learned from unsupervised pretraining.
Oh et al. (2017) and Silver et al. (2016) have also explored
forward predictions in a latent space that is learned by de-
coding the value function of a state. Our architecture is
related in so far as distance to goal in the learned latent
space can be viewed as a value function. However, we also
differ significantly by not relying on extrinsic rewards and
focusing on continuous control tasks.

Similar to our work, Pathak* et al. (2018) and Nair et al.
(2017) train goal-conditioned policies for imitation learning,
by providing an image of the goal as input to the policy.
However, we show in our experiments that, unlike these
methods, the representation learned via our approach can be
reused for planning and reward specification.

4. Experiments
We designed experiments to answer the following questions:
(1) does embedding a gradient descent planner help learn a
policy that can map from pixels to torque control when pro-
vided current and goal observations at test-time ? (2) how
does our method compare to reactive and autoregressive be-
havior cloning agents as the amount of training data varies?
(3) what are the properties of the representation learned by
UPN? (4) how can the learned representations from UPN be
leveraged for transfer to new and more complex tasks, com-
pared to representations from standard imitation methods
and unsupervised methods (e.g. VAE)?

Methods for comparison: We consider two alternative
imitation learning approaches for comparison: (1) a reac-
tive imitation learner (RIL), composed of a convolutional
feedforward policy that takes as input the current and goal
observation; (2) an auto-regressive imitation learner (AIL),
composed of a recurrent decoder initially conditioned on
convolutionally encoded representations of the current and

goal observation, trained to output a sequence of interme-
diate actions. Both (1) and (2) are methods adopted from
Pathak* et al. (2018). These comparisons are important for
studying the effects of the inductive bias of gradient descent
planning that is embedded within UPN. More specifically,
comparing to (1) allows us to understand the need for such
an inductive bias, while comparing to (2) is necessary to
understand whether the benefits are not purely due to re-
current computations. All methods are trained on the same
synthetically-generated expert demonstration datasets. We
refer the reader to the supplementary for details on the ar-
chitectures and dataset generation.

4.1. UPNs Learn Effective Imitation Policies

Here, we study the suitability of the UPN for learning visual
imitation policies that generalize to new goal-directed tasks.
We focus on two tasks: (1) navigating a 2D point robot
around obstacles to desired goal locations amidst distractors
(Figures 4(a) and 4(b)), wherein the color of the goal is
randomized; (2) a harder task of controlling a 3-DoF planar
arm to reach goals amidst scattered distractors and obstacles,
as shown in Figures 4(c) and 4(d).

For these tasks, we consider two types of generalization:
(1) generalizing to new goals for a fixed configuration of
obstacles having trained on the same configuration; (2) gen-
eralizing to new goals in new obstacle configurations having
trained across varying obstacle configurations. Figures 4(c)
and 4(d) show two different obstacle configurations for the
reaching task, while the differently colored locations in
Figure 4 represent varying goal locations.

We employ the action selection process described in subsec-
tion 2.1 with a chosen maximum episode length. Results
shown in Figure 5 compare performance over a varying
number of training demonstrations. As expected, the induc-
tive bias of embedding trajectory optimization via gradient
descent in UPN supports generalization from fewer demon-
strations. With more demonstrations, however, the expres-
sive AIL is able to almost match the performance of the
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(a) Pointmass- VOVG (b) Reacher - VOVG (c) Pointmass- FOVG (d) Reacher - FOVG

Figure 5. Notation: VOVG - Varying Obstacles and Varying Goals, FOVG - Fixed Obstacles and Varying Goals; Success on test tasks as
a function of the dataset size. Our approach (UPN) outperforms the RIL and AIL consistently across the four generalization conditioned
considered and is more sample efficient. As expected, the AIL improves with more data to eventually almost match the UPN. This
illustrates the tradeoff between inductive bias and expressive architectures when given sufficient data.

UPN. This is consistent with the conclusions of Tamar et al.
(2016), who observed that the benefit of the value iteration
inductive bias shrinks in regimes in which demonstrations
are plentiful. Note that generalization across obstacle con-
figurations in the reacher case (Figure 4(c)) is a hard task;
expert performance is only 73.12%. We encourage the
reader to refer to the supplementary for further details about
the experiment.

(a) (b)

Figure 6. (a) The effect of additional planning steps at test-time.
UPN learns an effective gradient descent planner whose conver-
gence improves with more planning steps at test-time. (b) A
comparison of the success rate of UPN between 40 and 160 plan-
ning steps at test time with varying number of demonstrations on
Reacher VOVG. Using 160 planning steps is consistently better
than using 40 steps (though the relative benefit shrinks with more
demonstrations) and allows the UPN to match the expert level.

4.2. Analysis of the Gradient Descent Planner

The UPN can be viewed in the context of meta-learning as
learning a planning algorithm and its underlying represen-
tations. We take inspiration from Finn & Levine (2018),
who studied a gradient-based model-agnostic meta-learning
algorithm and showed that a classifier trained for few-shot
image classification improves in accuracy at test-time with
additional gradient updates. In our case, the inner loop is
the GDP, which may not necessarily converge due to the
fixed number of planning updates. Hence, it is worth study-
ing whether additional test-time GDP updates yield more
accurate plans and therefore better success rates.

Planning more helps: Figure 6(a) shows that with more
planning steps at test-time, a UPN trained with fewer demon-
strations (20000) can improve on task success rate beginning
from 38.1% with 40 planning steps to 64.44% with 160 plan-
ning steps. As a reference, the average test success rate of
the expert on these tasks is 73.12% while the best UPN
model with 40 planning steps (trained on twice the num-
ber of demos (40000)) achieves 64.78%. Thus, with more
planning steps, we see that UPN can improve to match the
performance of a UPN with fewer planning steps but trained
on twice the number of demonstrations. We also find that
160 steps is consistently better than using 40 steps (though
the relative benefit shrinks with more demonstrations) and
that the UPN is able to match expert performance (Figure
6(b)). This finding suggests that the learned planning ob-
jective is well defined, and can likely be reused for related
control problems, as we explore in Sections 4.4 and 4.5.

4.3. Latent Space Visualization

We offer a qualitative analysis for studying the acquired
latent space for an instance of the reacher with obstacles
task. Given the selected initial pose, we compute the dis-
tance in the learned fφ space for 150 random final poses
and illustrate these distances qualitatively on the environ-
ment arena by color mapping each end-effector position
accordingly. The result is shown in Figure 7; lighter blue
corresponds to larger distances in the feature space. We
see that the learned distance metric is obstacle-aware and
task-specific: regions below the initial position in Figure 7
are less desirable even though they are near, while farther
regions above are comparatively favorable.

4.4. Transfer to Harder Scenarios

We have seen in subsections 4.1 and 4.2 that UPNs can learn
effective imitation policies that can perform close to the
expert level on visuomotor planning tasks. In principle, de-
riving reward functions from a trained UPN as explained in
subsection 2.3 should allow us to extend beyond the capabil-
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Figure 7. Visualization of the learned metric in the UPN latent
space on the reacher with obstacles task. Lighter color → larger
latent distance. The learned distance metric is obstacle-aware and
supports obstacle avoidance.

Table 1. Average Success Rate % in solving the task described in
Figure 4(d) for fixed and varying goals

FEATURE SPACE FIXED VARYING

RIL-RL 0% 0.01%
AIL-RL 0% 4.72%
VAE-RL 20.23% 24.67%
UPN-160 IMITATION 45.82% 47.99%
EXPERT 46.77% 51.1 %
UPN-RL 69.84% 71.12%

ities of the expert on harder scenarios where the expert fails.
We study this idea in the reaching scenario with obstacle
configuration as presented in Figure 4(d). The difference
between fixed and varying goals is that for varying goals,
we feed in a feature vector of the goal image as an additional
input to the RL policy. We use PPO (Schulman et al., 2017)
for model-free policy optimization of the rewards derived
from the feature space(s). Though the subsection 2.3 ex-
plains the reinforcement learning procedure in the context
of using fφ from a UPN, one could use a trained encoder fφ
from other methods such as our supervised learning com-
parisons RIL, AIL. In addition to RIL and AIL, a feature
space we compare to is an encoder obtained from training a
variational auto-encoder (VAE) (Kingma & Welling, 2013)
on the images of the demonstrations. This comparison is
necessary to judge how useful the feature space of a UPN is
for downstream reinforcement learning when compared to
pixel reconstruction methods such as VAEs. In Table 1, we
see that reinforcement learning on the feature space of RIL
and AIL clearly fail, while RL on the UPN feature space
is significantly better compared to that of a VAE. We also
see that UPN-RL is able to outperform the expert and the
imitating UPN-160.

4.5. Transfer Across Robots

Having seen the success of reinforcement learning using
rewards derived from UPN representations in subsection
4.4, we pose a harder problem in this subsection: Can we
leverage UPN representations trained on some source task(s)
to provide rewards for target task(s) with significantly dif-
ferent dynamics and action spaces? We propose to do this
by training and testing with different robots (morphologi-

cal variations) on the same desired functionality (reaching
/ locomotion, around obstacles). This study will highlight
the extrapolative nature of UPN representations. The idea
of trajectory optimization with a learned metric is a funda-
mental prior that can hold across a large class of visuomotor
control problems. Having trained UPN to learn such a prior,
it is natural to expect the underlying representation to be
amenable to providing suitable metric based rewards for sim-
ilar but unseen tasks. We craft two challenging experimental
scenarios to verify this hypothesis.

Reacher with new morphology: Having trained a UPN
with a shared fφ and different gθ for a 3-link and 4-link
reacher (on the obstacles task), can we leverage the learned
fφ to specify rewards for reinforcement-learning a 5-link
reacher to reach different goals around the same obstacles?
Figure 8(a) visually depicts this experiment. Such a trans-
fer scenario hasn’t been studied in the past for visuomotor
control. The dynamics of a 5-link reacher are more com-
plex (compared to 3 and 4 link reachers), thereby posing
a harder control problem to solve at test time. However,
a good path-planning reward function learned from 3 and
4-link reachers is likely to help for a 5-link reacher due to
morphological similarities. We train the UPN on both the 3
and 4 link reachers to avoid overfitting the learned metric to
a specific dynamical system. As comparison methods, we
train RIL and AIL (with a multi-task (head) architecture),
and a VAE (jointly on images from both the tasks).

Point to Ant: Higher-level navigation to goals amidst obsta-
cles should be common across different robots, from a 2D
point robot controlled through simple forces to a robot as
complex as an 8-joint quadruped ant. While the lower level
actuation varies across different robots, the visual spatial
planning should ideally be transferrable . We empirically
confirm this via an experiment illustrated in Figure 8(b).
Here, we learn representations with a UPN on demonstra-
tions collected from a 2D point robot trained to traverse
obstacles to reach varying goals. We randomize the robot’s
morphological appearance across demonstrations (Figure
8(b)), inspired by Sadeghi & Levine (2016); Tobin et al.
(2017). This allows the UPN to learn an encoder fφ that
is robust to the creature appearance. We then design an
experiment to use this fφ for a harder problem. First, we
train a UPN with a simple 2D point robot; we then replace
the point robot with a 3D-torque-controlled ant, which re-
quires more delicate handling of the surface contacts for
maneuvering the quadruped and avoiding obstacles. Once
again, to our knowledge, such morphological transfer has
not been demonstrated in prior work on visuomotor control.

In Figure 9 we see that for both the transfer scenarios, RL
with rewards from the UPN representation is significantly
more successful compared to other feature spaces (VAE,
AIL, and RIL). In addition to other feature spaces, we also
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UPN trained across randomized 
2D robot morphologies

UPNs with shared f� RL rewards from f�

RL rewards from f�

(a) Transfer to more complex topology (Reacher)

UPN trained across random morphologies

UPNs with shared f� RL rewards from f�

RL rewards from f�

(b) Transfer to new morphology (Point to Ant)
Figure 8. Transfer between robots as described in subsection 4.5.

(a) Point robot to Ant transfer (b) Reacher transfer (c) Pushing from poking transfer (d) 7-DoF Pushing task

Figure 9. (a-c) RL with rewards from the UPN representation is significantly more successful compared to other feature spaces (VAE,
AIL, RIL, shaped rewards), suggesting that UPNs learn transferrable, generalizable latent spaces.

compare the UPN-RL setup to a nave RL agent optimizing
a spatial distance to goal in the co-ordinate space as the
reward; this procedure assumes that the spatial position of
the goal is known, unlike UPN, RIL, AIL, and VAE where
the feature vector of the goal image is provided as input.
We note that this method also performs poorly, which is ex-
pected because, unlike distances in the feature space of UPN,
the spatial distance in the co-ordinate space is not obstacle-
aware. Note that UPN-RL relies only on the UPN represen-
tation to provide the RL agent with knowledge of the task,
thus inferring the goal from the obstacle-informative latent
space. These results show that optimizing for the rewards
derived from UPN correlates with task success, supporting
our claim that UPNs learn generalizable and transferrable
latent spaces. We show further extrapolation (6-link and
7-link reachers) in our video results. To our knowledge,
there has been no prior exposition of torque controlled goal
conditioned ant navigation for varying goals around obsta-
cle(s) even when spatial positions of the goal and ant torso
are known. UPN is therefore an effective way of uncover-
ing useful metric priors that can serve as perceptual reward
functions for complex tasks for which reward functions are
typically hard to engineer.

4.6. 3D 7-DoF Control from an Non-orthographic View

So far, we have demonstrated results with UPN on tasks
where the view point is orthographic, which may make it
easier for the agent to map from pixels to relative positions.
We next seek to answer the question: Can UPN still work
for scenarios where the camera view of the task is non-
orthographic? This is a common scenario for real robot
tasks or more complex manipulation tasks in simulation
(Finn et al., 2017b). To answer this, we consider the task of

controlling a 3D 7-DoF arm from non-orthographic view-
points, which presents a harder perception problem (shown
in Figure 9(d)). This task is adapted from Finn et al. (2017b)
where there is a distractor object in addition to a target object
that needs to be displaced to a goal location. However, here,
we do not focus on generalization to new objects unlike
Finn et al. (2017b). Instead, we look at skill generalization.
We collect a dataset of random pokes (see Agrawal et al.
(2016) for a detailed description of poking in robotics and
our video highlights for visual illustration of poking trajec-
tories). Having trained a UPN representation on poking
trajectories, we study whether rewards derived from it can
guide learning of more complex and composite skills, such
as pushing (which involves appropriately reaching for the
target object and guiding it to the goal). Further, we also
analyze whether the UPN representation based rewards can
replace hand-engineered reward shaping for such a task.

Having established the clear success of UPN over RIL, AIL,
and VAE for the RL experiments in subsections 4.4 and 4.5,
we perform a different comparison here. In addition to UPN-
RL, we train the agent on the pushing task assuming the
object and goal positions are known using RL without image
based inputs and a well shaped reward that is described here.
To our surprise, we find that the transfer from poking to
pushing using the UPN-RL setup works efficiently. Our
method, which relies only on UPN representation rewards
and the current image, approaches the performance of the
shaped reward function in terms of task success (Figure
9(c)). This result suggests that the UPN latent space captures
the proximity of the end-effector to the object as a pre-
requisite to moving the object to desired locations and hence
supports acquisition of even more complex behavior via
reinforcement learning. Thus, UPN can serve as a means to

https://github.com/openai/gym/blob/master/gym/envs/mujoco/pusher.py#L19
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acquiring a structured metric in the latent space from which
reward functions for complex manipulation tasks such as
pushing can emerge naturally.

(a) Humanoid Task (b) Ant: Long Horizon Task
Figure 10. Using UPN representations trained on a simple 2D point
robot, we control complex robots such as a full humanoid and an
ant to locomote around obstacles and reach the green goal. While
the humanoid task is challenging because of the complex actuation,
the ant task requires optimizing a policy over 8000 time steps,
providing evidence that the rewards from UPN representations can
aid in effective credit assignment over long horizons.

4.7. Transfer from Point Robot to a Humanoid:
Pushing the limits of generalization

In this subsection, we consider the following question: Can
a reward function derived from a very simple creature such
a 2D point robot be used to control a much more complex
robot such as a humanoid, for similar behaviors such as
locomotion around obstacles (ref Figure 10(a))? This is
a harder problem than transferring reward functions from
point robot to ant because a humanoid is a much more
complex robot to control. To deal with the visual differences
between a humanoid and a point robot, we assume that we
have access to the 2D co-ordinate position of the center of
mass of the humanoid. We re-render the humanoid as a
2D point robot whose center of mass is same as that of the
humanoid, and pass this image through a UPN trained on a
point robot to provide the reward function for the humanoid.
Note that this assumption of knowing the global location is
very minimal, since the reward function is still non-trivial,
and in this case, a learned perceptual metric.

In the case of the quadruped, it wasn’t necessary to shape
the rewards for balancing as long as we could terminate
episodes whenever the creature falls down. However, for a
humanoid, an explicit reward for staying on feet is necessary.
We saw that naive termination of episodes on falling down
resulted in the humanoid moving close to the side walls to
balance itself and stay on feet throughout the duration of
the task, rather than optimizing for the path planning reward
derived from the UPN representations. To get around this
issue, we adopted the strategy used in Bansal et al. (2017),
whereby a decaying curriculum for staying on feet is used,
and combined with the metric reward for the shortest path
locomotion. Check out the video of the behavior learned by
the humanoid on the project webpage: https://sites.

google.com/view/upn-public.

4.8. Using UPN rewards for long horizon tasks

Finally, we answer: To what extent can the learned metrics
from UPN guide a new reinforcement learning agent? One
way to push the limits is to consider long horizon tasks.
Typically, continuous control tasks studied in reinforcement
learning are restricted to a maximum horizon of less than
or equal to 1000 simulation steps. Taking inspiration from
Frans et al. (2018), we study a goal conditioned navigation
task wherein a quadruped has to locomote around obstacles
to reach a goal that is far away (time horizon of 8000 simu-
lation steps, refer to Figure 10(b)). In the case of Frans et al.
(2018), the reward was extrinsic and sparse, and thus a hier-
archical policy was required for efficient credit assignment
and exploration. In our case, we show that the shaped reward
from UPN on a point robot can overcome the problem of
sparse rewards and effective credit assignment. This experi-
ment indicates that UPN is able to learn efficient distance
metrics in an abstract space from very simple short hori-
zon tasks such as controlling a 2D point robot, which can
be powerful enough to guide the reinforcement learning of
complex policies such as controlling an ant to move around
mazes over much longer horizons. Check out the video
of the learned behavior on the project webpage: https:
//sites.google.com/view/upn-public.

5. Discussion
We posed the problem of learning representations for per-
forming generalizable visuomotor control. We focused on
one property such a space should satisfy: providing dis-
tance metrics for reinforcement learning on tasks specified
via goal images without extrinsic rewards. To this end, we
introduced universal planning networks, a goal-directed pol-
icy architecture with an embedded differentiable planner,
that can be trained end-to-end. Our extensive experiments
demonstrated that (1) UPNs learn effective visual goal-
directed policies efficiently; (2) UPN latent representations
can be leveraged to transfer task-related semantics to more
complex agents and more challenging tasks through goal-
conditioned reward functions; and (3) the learned planner
improves with more updates at test-time, providing encour-
aging evidence of meta-learning for planning. Our transfer
learning successes demonstrate that we have learned generic
representations that have notions of agency and planning.
Future work should investigate different ways to train UPN
representations, such as through reinforcement learning or
self-supervision, borrowing ideas from Andrychowicz et al.
(2017), Sukhbaatar et al. (2017), Weber et al. (2017) and
Pathak et al. (2017). Another important future direction is
to study representations wherein the metrics are structured
as value functions instead of rewards as a consequence of
which long horizon policy optimization could be more effec-

https://sites.google.com/view/upn-public
https://sites.google.com/view/upn-public
https://sites.google.com/view/upn-public
https://sites.google.com/view/upn-public
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tive and sample efficient. Further, the results from subsec-
tions 4.7 and 4.8 suggest that UPN-like architectures might
be practically applicable for learning complex real robotic
behaviors by leveraging simulated behaviors of much sim-
pler robots performing the same tasks.
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A. UPN Architecture details
We overview the details of the architecture to aid in repro-
ducing the work.

A.1. Input

Our current and goal observations (ot, og) are 84 × 84 × 3
RGB images. Our objective is to re-use the learned repre-
sentations (encodings) of pixel inputs. Thus, we kept things
simple and did not apply any standardization techniques
like mean subtraction or input batch normalization / layer
normalization because it’s not clear how such input transfor-
mations would transfer to new tasks. However, we scale the
input pixels by 1

255 .

A.2. Encoder fφ

Below, we describe the sequence of convolutional and feed-
forward layers. These operations together make our en-
coder fφ described in the UPN architecture. Note that
we use the swish nonlinearity that was proposed by Ra-
machandran et al. (2017). We found swish to work bet-
ter than relu for all our experiments. For more clarity,
swish(x) = sigmoid(x) ∗ x. The code snippet below re-
turns 128-dimensional vectors for xt and xg .

import tensorflow.contrib.layers as layers
# o: input pixel observation,
# x: encoded representation
# Encoder transformation o ---> x,
# example: o_t ---> x_t, o_g ---> x_g
h = layers.convolution2d(o,

num_outputs=32, kernel_size=8,
stride=4, padding=’VALID’,
activation_fn=None)

h = tf.nn.sigmoid(h)*h
h = layers.convolution2d(h,

num_outputs=64, kernel_size=4,
stride=2, padding=’VALID’,
activation_fn=None)

h = tf.nn.sigmoid(h)*h
h = layers.convolution2d(h,

num_outputs=64, kernel_size=3,
stride=1, padding=’VALID’,
activation_fn=None)

h = tf.nn.sigmoid(h)*h
h = layers.convolution2d(h,

num_outputs=16, kernel_size=2,
stride=1, padding=’VALID’,
activation_fn=None)

h = tf.nn.sigmoid(h)*h
for _ in range(2):

h = layers.fully_connected(h,
num_outputs=128, activation_fn=None)

h = layers.layer_norm(h, center=True,
scale=True)

h = tf.nn.sigmoid(h)*h

A.3. Bias Transformation and Embodiment
Information

In our experiments, we use torque-controlled agents. It is
an ill-defined problem to map purely from pixels to mo-
tor torques without information about the joint velocities.
Though it may be possible to recover the joint angles and
end-effector positions from pixels, recovering the veloci-
ties requires multiple frames from the past, thereby making
the problem of mapping from current image observation to
motor torques a partially observed problem. To get rid of
this problem, researchers in the robotic learning community
have typically provided the joint angles and velocities as
additional inputs that are concatenated with the encoded
features of the image observation (Levine et al., 2016; Finn
et al., 2017b). We follow the same technique for our paper.
Note that even though providing the robot arm configuration
is helpful for planning motor torques, the agent also needs
to rely on learning a good perceptual representation and
reward function, since the joint angles and velocities do not
contain any information about the goal or task at hand.

In addition to the above, we also borrow another trick called
the bias transformation (Finn et al., 2017b) to ensure stable
gradients in inner optimization loop of complex computation
graphs. The bias transformation units are free variables that
increase the expressivity of the gradient without adding
expressivity to the network, allowing for more control of
the gradient. See Finn et al. (2017b) for a more detailed
explanation of bias transformation and its usage in model-
agnostic meta-learning (MAML) (Finn et al., 2017a).

To summarize, our inner loop planner tries to identify a
sequence of actions that are optimal for reaching og from ot.
Having transformed ot and og to xt and xg respectively, we
seek ât:t+T that when rolled forward from xt, produces a
latent state close to xg. This forward unrolling takes in ad-
ditional inputs qt and b, where qt provides the sensorimotor
embodiment information, and b denotes the bias transfor-
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mation variable. We re-project xt to a 128-dimensional
space since xg is still 128-dimensional. We present the code
relevant to these tricks below:

# xt = encoded version of o_t
# qt = joint angles and velocities at time

step t
# bt_num_units = number of bias transform

dimensions
xt = tf.concat([xt, qt], axis=1)
bt_num_units = 20
bias_transform = tf.get_variable(

’bias_transform’,
[1,bt_num_units],
initializer=tf.constant_initializer(0.1))

bias_transform = tf.tile(bias_transform,
multiples=tf.stack([tf.shape(xt)[0],

1]))
xt = tf.concat([xt, bias_transform], 1)
# Project back to 128 dimensions
xt = layers.fully_connected(x,

num_outputs=128, activation_fn=None)
xt = layers.layer_norm(out, center=True,

scale=True)
xt = tf.nn.sigmoid(xt)*xt

A.4. Action Encoder

We encode the actions which are in turn used by the forward
dynamics model in the latent space. Our action encoder is
as follows:

# plan - current sequence of actions,
batch_size x horizon x act_dim

plan = tf.reshape(plan, [-1, act_dim])
plan = layers.fully_connected(plan,

num_outputs=64, activation_fn=None)
plan = layers.layer_norm(plan,

center=True, scale=True)
plan = tf.nn.sigmoid(plan)*plan
plan = tf.reshape(plan, [-1, horizon, 64])

A.5. Planning by Gradient Descent

Our planner rolls forward a dynamics model in the latent
space of the encoder using the current estimate of the op-
timal plan. Our dynamics model prediction for one-step is
best summarized as a rough skeleton code below:

A.5.1. DYNAMICS IN LATENT SPACE

# One-step dynamics in latent space
# Note: curr_state, next_state, action are

in the latent spaces.
next_state = layers.fully_connected(

tf.concat([curr_state, action]),
out_dim=128,
nonlinearity=None)

next_state = layers.layer_norm(next_state,
center=True, scale=True)

next_state =
tf.nn.sigmoid(next_state)*next_state

A.5.2. PLANNING UPDATES

We present pseudo-code below for better understanding of
the planning process, which uses multiple gradient descent
steps on a Huber Loss, with respect to the actions.

# g_theta: dynamics, f_phi: encoder
# ot: current obs, og: goal obs,
# plan: sequence of actions
# qt: joint angles and velocities of robot
# b: bias transformation variable
# T: horizon

# Encode observations to latent
xg = f_phi(og) # 128 dimensional
xt = f_phi(ot) # 128 dimensional
xt_joint = tf.concat([xt, qt,b],1)
xg_pred = fully_connected(xt_joint)
# 128 dimensional

# Encode plan to latent
latent_plan = fully_connected(plan)
# 64 dimensional

for update_step in range(num_updates):

# Roll out dynamics in latent
for timestep in range(T):

xg_pred = g_theta(
xg_pred, latent_plan[timestep])

# Compute plan error
error = tf.losses.huber_loss(
xg, xg_pred, huber_delta)

# Compute plan gradients
plan_grad = tf.gradients(error, plan)

# Improve plan using gradient descent
plan = plan - step_size * plan_grad

A.5.3. HYPERPARAMETER DETAILS

Table 2. Hyperparameters for planning module

HYPERPARAMETER VALUE

1 NUMBER OF PLAN UPDATES 40
2 GRADIENT CLIP VALUE 25
3 UPDATE STEP SIZE(S) 0.5, 0.25
4 HUBER DELTA 0.85
5 PLANNING HORIZON (2D POINT ROBOT) 50
6 PLANNING HORIZON (3-LINK REACHER) 100
7 PLANNING HORIZON (3D POKING) 100

Gradient Clipping: We use a simple gradient update to
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the actions (though exploring momentum based updates
like Adam could be an interesting direction for future
work). However, we clip the gradients using Tensorflow’s
clip-by-value with limits -25 and 25. Further, the step
sizes are important for getting the model to train well.

Huber Loss: This trick was, by far, the most important
to getting the model to train with well behaved inner loop
losses and gradients. We also tuned the delta parameter in
the huber loss (delta=1 is standard). In our experiments,
having a delta=0.85 turned out to be optimal. In the
absence of the Huber Loss, the inner loop planning error
increased over training agnostic of whether gradient clipping
was used or not. It is also worth noting that Sermanet et al.
(2017) use a Huber-style loss on their features to describe
reward functions, though the feature space wasn’t optimized
to provide such metrics at training time.

Step Size: We take an aggressive step size of 0.5 for the
first update, and step sizes of 0.25 for the remaining 39
updates during training. At test-time, we preserve the same
constants. Exploring other schemes (for example, geometric
decaying) is left for future work.

Horizon: The planning horizon listed in Table 2 is the max-
imum number of time steps to roll out planning across time.
Thus, we do not always roll out the dynamics across time
for the specified horizon for every pair of (ot, og). In prac-
tice, it is more data-efficient to extract many sub-sequences
from a single trajectory by picking different (ot1 , ot2) where
t2 > t1 and roll out the planning with a dynamic horizon.
The implementation thus resembles a dynamic RNN. Fur-
ther, it is useful to incentivize sampling of shorter horizons
over the longer ones early in training, drawing inspiration
from curriculum learning. We describe the specific details
of the curriculum in the next subsection.

A.6. Outer Loop Loss and Training

Our outer objective is the standard behavior cloning loss.
The updated plan from the inner loop is optimized against
the optimal plan we have from our demonstrations. We
use a mean squared error loss function because our actions
are continuous. This corresponds to a maximum likelihood
estimate on a Gaussian distribution with the identity matrix
as the covariance.

In Table 3, we describe the hyperparameters associated with
the outer loop training:

Larger Batch Size: Using a large batch size (128) was
crucial. It may be possible that using larger batch sizes
(example, 256 and more) with smaller Adam step sizes
could be better. We leave that analysis for future work.

Validation Frequency: Every 10000 batch updates, we
validate the network using a hold-out set from the training

Table 3. Hyperparameters for training

HYPERPARAMETER VALUE

1 BATCH SIZE 128
2 UPDATE RULE ADAM
3 LEARNING RATE 3E-4
5 NUMBER OF BATCH UPDATES 1E6
6 VALIDATION FREQUENCY 1E4
7 BATCH SAMPLING CURRICULUM
8 INPUT PIXEL SCALING 1/255

data as is typical in supervised learning experiments. We
then pick the best network over the course of a million
mini-batch updates. The wall clock time for this training
was around 1.5 days on an NVIDIA Titan X. Better wall
clock times are certainly achievable using multiple GPUs
and larger batch sizes.

Batch Sampling: As pointed out in the previous section, it
is important to bring in the aspect of curriculum training.
The credit assignment over longer planning horizons may
be easier if the model has learned on shorter horizons. How-
ever, pre-training and fine-tuning is expensive and needs
more hyper-parameters. Instead, we just skew the sampling
distribution to pick the shorter horizons early on during the
training, and uniformly later on. For the skewed sampling,
we adopt the Poisson distribution over the horizon range.
The Poisson sampling was used for the first 300000 mini-
batch updates. This trick had a substantial effect on good
training curves.

A.7. Things that did not work

1. Weight normalization: The motivation for using the Hu-
ber Loss was to stop the inner loop gradients, latent features,
and planning error from becoming too large. However, the
first trick we tried to get rid of the problem was to enforce
weight normalization (Salimans & Kingma, 2016) on the
features. Interestingly, Farquhar et al. (2017) also point
out the same issue when trying to backpropogate through
tree-based planning structures inside the computation graph.
Though the weight normalization tricked turned out to work
for them, we did not have success with it for our case.

2. Larger batch size training (256 and 512): We weren’t
successful in scaling up the training and observing gains out
of it. The performance on training with batch sizes of 256
was similar to that of 128, while 512 resulted in unstable
training.

3. Batch normalization on inputs: Similar to general
observations that batch normalization isn’t useful yet for im-
itation or reinforcement learning problems, we weren’t able
to observe benefits. In fact, using batch normalization hurt
the training because of correlations between observations
within small periods of time.

https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn
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4. Layer Normalization on convolution layers: Similar
to observations in Ba et al. (2016), layer normalization in
convolution layers hurt the training of UPNs. Therefore, we
only use layer norm in our recurrent dynamics and other
fully connected layers.

B. Action-selection with Model Predictive
Control (MPC)

In our imitation learning experiments, our action selection
procedure uses MPC at test time. The pipeline for UPN is
described in Figure 11 for better clarity. The pipeline for
AIL is similar to UPN (plan but execute only the first action);
while for RIL, we predict only one action and therefore
execute it without any notion of MPC.

GDP

â(np)
t:t+T

i

ât

ENV

ot

Figure 11. The agent plans a trajectory aiming to reach og from
ot, but only executes the first action in the inferred plan, before
replanning.

C. Demo collection
We designed the 2D point robot and 3-link reacher tasks
to necessitate planning. This makes collecting demonstra-
tions for these environments tricky because off-the-shelf
trajectory optimization and model-free algorithms require
a well-defined cost function. Such cost functions are not
straight-forward to engineer in this case due to the pres-
ence of obstacles. We adopt the hindsight experience replay
(HER) technique (Andrychowicz et al., 2017), which im-
plicitly learns to shape a cost function by optimizing for
task success instead of extrinsic rewards. Navigation and
reaching around obstacles naturally fall into the category
of path-planning problems which have a nice continual pro-
gression of goals in the configurational space associated
with the tasks. Thus, HER is suitable for solving such tasks
and can provide the demonstrations that we seek. This.
however, comes with a couple of issues: (1) HER may not
be able to solve the tasks perfectly, especially in the case
of longer horizons; (2) The policies learned using HER
are not general, i.e., HER would overfit or master a policy
for a specific configuration of obstacles when you work in

the configurational space (instead of pixel space). To deal
with the second issue, we train independent HER policies
for each obstacle configuration in our training distribution.
However, the learned policies may not be accurate. To deal
with this issue (1), we introduce a technique that we call
as hindsight rendering. Given a goal to reach, we roll out
the parametric expert tasked with achieving the goal. If the
rollout was successful, it is added to the list of demonstra-
tions. Else, we re-render the same rollout, now with the
goal being at the final position of the agent (or that of its
end-effector). This becomes a meaningful trajectory in most
cases and hence, can be added to the list of demonstrations.

D. Imitation Learning Comparisons :
Description and architecture details

For our comparisons, the network topology is described
below:

D.1. Reactive Imitation Learner (RIL)

Here, fφ is a conventional feed-forward architecture with
a convolutional encoder and a fully connected layer m, to
decode the action from the latent representation. Refer to
Figure 12(a).

fφ(ot, og) = xt

m(xt) = ât

D.2. Autoregressive Imitation Learner (AIL)

This model auto-regresses a sequence of actions conditioned
on a latent representation. fφ is the convolutional encoder
which produces the initial hidden state, g is a recurrent cell,
and m is a fully connected layer which decodes the action
from the recurrent latent representation. The initial hidden
state is initialized with the latent representation produced
by f . Refer to Figure 12(b).

fφ(ot, og) = xt

gθ(xt, ht−1) = ht

m(ht) = ât

D.3. Details relevant to RIL and AIL training

RIL: We retain the fφ described in the UPN architecture
for fair comparisons. Similar to how UPN uses joint angles
and velocities for torque control outputs, we fuse the con-
volutional encoding with the joint information st using 2
hidden layers of dimension 128. This is finally followed
by an output later corresponding to the number of actions
needed for the task.
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Figure 12. Baseline systems.

AIL: Similar to RIL, the fφ retention from UPN and joint
encoding concatenation exist in AIL for fair comparisons.
We unroll a recurrent computation over the planning horizon
that corresponds to the number of time steps between ot
and og in the trajectory. The recurrent computation is a
traditional vanilla RNN. We did not observe any benefits
from using more sophisticated cells like GRU. However, we
leave it for future work to explore temporal convolutions
with the caveat that any benefit from the specific recurrent
computation used in more sophisticated cells can also be
adopted for improving UPN. The recurrent dynamics are of
similar expressive power as that of the UPN (128 dimensions
for the hidden state). Similar to UPN, we adopt the same
skewed sampling of the batches to encourage curriculum
learning while training AIL. The actions are decoded from
the recurrent hidden states using a single fully connected
layer mapping to the action dimension of the task.

The hyperparameters that further clarify the RIL and AIL
training details are described in Table 4. To stay consistent,
we have the same train, validation and test splits for UPN,
RIL and AIL training.

E. Imitation Learning Benchmarks
Experimental Setup

We clarify two ambiguous details that were left out in the
main paper:

Table 4. Hyperparameters for RIL and AIL

HYPERPARAMETER VALUE

1 BATCH SIZE 128
2 UPDATE RULE ADAM
3 LEARNING RATE 3E-4
5 NUMBER OF BATCH UPDATES 1E6
6 VALIDATION FREQUENCY 1E4
7 BATCH SAMPLING (AIL) CURRICULUM
8 BATCH SAMPLING (RIL) UNIFORM
9 INPUT PIXEL SCALING 1/255

Expert Performance: Note that the expert performance is
not optimal, especially in the reacher VOVG setting. To
be clear, this does not mean that the representations of UP-
N/RIL/AIL are learned from imperfect demonstrations. As
explained in Appendix C, the demos are meaningfully cor-
rect executions because of hindsight rendering. Thus, the
parametric expert is not perfect in terms of achieving the
different goals used for training and evaluation. Hence, the
reported average success of the expert is lower than 100%,
particularly on the harder tasks like Reacher VOVG.

Notion of success: It is important we clarify the notion of
what a successful trajectory (for a given goal) is. For both
the point robot and the reacher (FOVG and VOVG) settings,
a rollout is deemed successful if the end-effector (read as
center of mass in the 2D point-robot case) is within 0.05
meters of the goal location.

Table 5 contains the task-specific hyperparameters: maxi-
mum number of time steps to roll out the plan (planning
horizon), number of demonstrations, and the number of ac-
tions. Both the tasks use a success threshold of 0.05 meters.

Table 5. Hyperparameters for Imitation Learning Tasks

TASK TYPE MAX HORIZON DEMOS ACTIONS

POINT ROBOT FOVG 50 10000 2
POINT ROBOT VOVG 50 20000 2
REACHER FOVG 100 20000 3
REACHER VOVG 100 40000 3

F. PPO Parameters
Table 6 contains the hyperparameters in the RL experiments
that we ran for the reacher morphology transfer, 2D point
robot to ant transfer (shorter horizons), and the poking to
pushing transfer.

Table 7 contains the hyperparameters for the long-horizon
ant navigation experiment.

Table 8 contains the hyperparameters for the humanoid ex-
periment.



Universal Planning Networks - Long Version + Supplementary

Table 6. PPO hyperparameters used for simpler RL experiments

HYPERPARAMETER VALUE

1 TIMESTEPS PER ACTORBATCH 4096
2 ADAM STEPSIZE 5E-5
3 NUMBER OF SIMULATION STEPS 1E8
4 NUMBER OF EPOCHS 1
5 GAE PARAMETER (λ) 0.95
6 MINIBATCH SIZE 256

Table 7. PPO hyperparameters used for long-horizon ant RL exper-
iment

HYPERPARAMETER VALUE

1 TIMESTEPS PER ACTORBATCH 65536
2 ADAM STEPSIZE 5E-5
3 NUMBER OF SIMULATION STEPS 1E10
4 NUMBER OF EPOCHS 3
5 GAE PARAMETER (λ) 0.95
6 MINIBATCH SIZE 1024

Table 9 contains specific details about the environments,
such as horizon and discount factor.

Network architecture: For all the experiments, we used
fully-connected neural networks with 3 hidden layers of
128 dimensions each, and tanh nonlinearities for both
the policy and the value function. The policy is Gaussian
with a state-independent diagonal covariance that is learned.
Further, we run each experiment with 3 random seeds and
average the results.

G. Reinforcement Learning Benchmarks
Experimental Setup

G.1. Comparison Methods

We evaluate the learned feature spaces based on whether
distance metrics described on them can be used as rewards
for reinforcement learning, particularly on new problems
where all we have are image targets and no demonstrations
or extrinsic rewards. A representation which can do this
effectively is what we call a generalizable and plannable
representation. Since we already compare to AIL and RIL in
our imitation learning experiments, we continue to analyze
the feature spaces learned by those models (AIL and RIL)
for the reinforcement learning scenario as well. However,
in addition to the feature spaces learned through supervised
learning, we also run an experiment to train a variational
auto-encoder (VAE) (Kingma & Welling, 2013) . This VAE
is trained with all the images in our demonstration trajecto-
ries (similar to Higgins et al. (2017)). We learn the decoder
with a mean-squared-error loss. We pull out the represen-
tation (z) of the VAE after sufficient training and refer to it
the VAE feature space.

Table 8. PPO hyperparameters used for humanoid RL experiment

HYPERPARAMETER VALUE

1 TIMESTEPS PER ACTORBATCH 16384
2 ADAM STEPSIZE 5E-5
3 NUMBER OF SIMULATION STEPS 1E9
4 NUMBER OF EPOCHS 3
5 GAE PARAMETER (λ) 0.95
6 MINIBATCH SIZE 512

Table 9. Environment Specific Details

ENVIRONMENT HORIZON DISCOUNT

1 ANT (SIMPLE) 1500 0.999
2 5-LINK REACHER 250 0.995
3 PUSHING 200 0.99
4 ANT (HARD) 8000 0.999875
5 HUMANOID 4000 0.99975

G.2. VAE Architecture Details

For a fair comparison, we preserve the convolutional en-
coder structure fφ that was used in the UPN, RIL and AIL
architectures. The gaussian posterior is 128 dimensional,
and is decoded back to the pixel space by reversing the con-
volutional encodings through deconvolutional layers. We
scale the input pixels by 1

255 and decode the outputs through
a sigmoid nonlinearity on the predicted pixels to stay in the
[0, 1] range. However, here are a three points to be made:

1. It is possible that using other nonlinearities (instead of
swish) are better for training a VAE. The swish nonlin-
earity was discovered through architecture search on su-
pervised learning benchmarks. It is possible that swish
doesn’t apply broadly to unsupervised learning objectives
and nonlinearities such as leaky-relu (Radford et al.,
2015) are better.

2. The traditional VAE is not the best generative model
among the class of models that parametrize the likelihood of
the pixels. Experimenting with the latest techniques such as
autoregressive decoders with temporal convolutions (Chen
et al., 2017) is necessary and we leave it for future work.

3. More expressive architectures helpful / better in terms
of the metric used to judge the representations, but they are
very likely not likely to change the conclusion of the paper
since there is no notion of agency or planning embedded in
the latent code of pure pixel prediction objectives.

G.3. Reacher Morphology Transfer

The physical dynamics and action spaces of the 3 and 4
link reachers are different. Our objective was to acquire a
common representation across the demonstrations from both
these robots. To get around this problem and still acquire a
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shared representation, we train a UPN on these tasks with
different gθ but shared fφ. We use 20000 demonstrations
each from the 3-link and 4-link reachers. For comparing to
our other feature spaces, we train them with shared encoders
and branched individual output heads corresponding to each
task. This is referred to as Multi-Head in the legend of the
corresponding plot (Figure 9(b)) in the main paper. The
VAE training does not consider actions. Thus, we train the
VAE as usual, but with an aggregated dataset containing the
demonstration snapshots from both the tasks. The success
threshold is being within 0.05 meters of the goal.

G.4. Point Robot to Ant Transfer

We collected 40000 trajectories with 40 randomized point
robot appearances. These trajectories are used to train UPN,
RIL, AIL and VAE for studying the point to ant (locomotion
around obstacles) transfer. The reason for this randomiza-
tion was to ensure that the learned UPN representation can
meaningfully interpret a creature like an ant which has extra
limbs apart from the central torso (that more or less resem-
bles a point robot when seen top down). The appearance
randomization adds planar non-actuated limbs to a point
robot. This biases the architectures to process the center of
the robot and allows them to work for a top-down snapshot
of an ant at test time. The success threshold for the ant task
is being within 0.5 meters of the goal.

G.5. Learning to Push from Poking Trajectories

It is hard to concretely define the poking task. As long as
the object is nudged to a sufficiently different pose, it is
considered a successful poke. The question we asked is: If
we collected a dataset of random but successful pokes, can
the robot learn to associate meaningful patterns such as end-
effector being close to the object to be able to displace it, the
direction and impulse of the movement for a corresponding
pose change, etc. If this were possible and were captured
in a latent space, it is natural to expect that latent space
to be able to provide shaped metric based rewards for a
sophisticated skill such as pushing. Unlike the other kinds
of transfer studied in this paper, this experiment is about
extrapolation of skills on the same robot. We collected
a dataset of 20000 pokes and trained the UPN on these
trajectories. The success threshold is for the object to be
within 0.08 meters of the goal. The goal location in the
pushing experiment and the randomization is over different
initial positions of the objects (target and distractor). Thus,
as described in subsection 2.3 in the main paper, we don’t
feed in fφ(og) to the RL policy at test time.

H. Camera viewpoint for each task
For each task, we present below the viewpoint provided to
the neural network architectures.

H.1. 2D point robot task

Figure 13. 2D Point Robot navigating around obstacles

H.2. Ant around obstacles task

Figure 14. Ant robot navigatng around obstacles

H.3. Reacher around obstacles task

Figure 15. 3 Link Reacher Robot around obstacles

H.4. Pusher

Figure 16. 7-DoF Pusher trying to push an object to a goal
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I. Exponential of distance metrics for rewards
As pointed out in subsection 2.3 of the main paper, we
normalize our huber metrics that are derived out of the UPN
representations through an exponential. This normalizes the
reward functions we optimize for and in practice resulted in
stable training with the PPO algorithm. We thank Xue Bin
(Jason) Peng for communicating this trick to us. We adopted
this transformation of the reward for all our reinforcement
learning experiments. To be specific, our rewards are of the
form e−σHuber(xt,xg). The specific functional forms used for
the different tasks are pointed out in Table 10.

Table 10. Environment Specific Details

ENVIRONMENT REWARD

NT (SIMPLE) e−2.5HUBER(xt,xg)

5-LINK REACHER e−HUBER(xt,xg)

ANT (HARD) 0.6e−HUBER(xt,xg) + 0.4e−2.5HUBER(xt,xg)

HUMANOID 0.6e−HUBER(xt,xg) + 0.4e−2.5HUBER(xt,xg)

PUSHING 0.6e−HUBER(xt,xg) + 0.4e−2.5HUBER(xt,xg)

J. Open Source Frameworks
All our experiments were done using TensorFlow (Abadi
et al., 2016), which allows automatic differentiation through
the gradient updates during the inner loop planning. We
also built our implementations of the tasks and reinforce-
ment learning methods on top of OpenAI Gym (Brock-
man et al., 2016) and OpenAI Baselines (Dhariwal et al.,
2017). Our environments use the MuJoCo physics simula-
tor (Todorov et al., 2012) and its python bindings (Schneider
et al., 2017) developed by OpenAI. The AWS Docker setup
was adapted from https://github.com/anair13/
selfsupervised/blob/master/Dockerfile.

https://xbpeng.github.io/
https://xbpeng.github.io/
https://github.com/anair13/selfsupervised/blob/master/Dockerfile
https://github.com/anair13/selfsupervised/blob/master/Dockerfile

