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Abstract

A key challenge in complex visuomotor control
is learning abstract representations that are ef-
fective for specifying goals, planning, and gen-
eralization. To this end, we introduce univer-
sal planning networks (UPN). UPNs embed dif-
ferentiable planning within a goal-directed pol-
icy. This planning computation unrolls a forward
model in a latent space and infers an optimal
action plan through gradient descent trajectory
optimization. The plan-by-gradient-descent pro-
cess and its underlying representations are learned
end-to-end to directly optimize a supervised imi-
tation learning objective. We find that the rep-
resentations learned are not only effective for
goal-directed visual imitation via gradient-based
trajectory optimization, but can also provide a
metric for specifying goals using images. The
learned representations can be leveraged to spec-
ify distance-based rewards to reach new target
states for model-free reinforcement learning, re-
sulting in substantially more effective learning
when solving new tasks described via image-
based goals. Visit https://sites.google.
com/view/upn-public/home for video
highlights.

1. Introduction
Learning visuomotor policies is a central pursuit in build-
ing machines capable of performing complex skills in the
variety of unstructured and dynamic environments seen in
the real world (Levine et al., 2016; Pinto et al., 2016). A
key challenge in learning such policies lies in acquiring
representations of the visual environment and its dynamics
that are suitable for control. This challenge arises both in
the construction of the policy itself and in the specification
of the task. Extrinsic and perfect reward signals are typi-
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Figure 1. An overview of the UPN, which embeds a gradient de-
scent planner (GDP) in the action-selection process. We demon-
strate transfer to different, harder control tasks, including morpho-
logical (yellow point robot to ant) and topological (3-link to 7-link
reacher) variants, as shown above.

cally not available for real world reinforcement learning and
users must manually specify tasks via hand-crafted rewards
with hand-crafted representations. To automate this process,
some prior methods have proposed to specify tasks by pro-
viding an image of the goal scene (Deguchi & Takahashi,
1999; Watter et al., 2015; Finn et al., 2016b). However, a
reward that measures success based on matching the raw
pixels of the goal image is far from ideal: such a reward
is both uninformative and overconstrained, since matching
all pixels is usually not required for succeeding in tasks. If
we can automatically identify the right representation, we
can both accelerate the policy learning process and simplify
the specification of tasks via goal images. Prior work in
visual representation learning for planning and control has
relied predominantly on unsupervised or self-supervised
objectives (Watter et al., 2015; Finn et al., 2016b), which in
principle only provide an indirect connection to the utility
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of the representation for the underlying control problem.
Effective representation learning for planning and control
remains an open problem.

In this work, instead of learning from unsupervised or aux-
iliary objectives and expecting that useful representations
should emerge, we directly optimize for plannable repre-
sentations; that is, representations through which gradient-
based planning is successful with respect to the goal-
directed task. We propose universal planning networks
(UPN), a neural network architecture that can be trained to
acquire a plannable representation. By embedding a differ-
entiable planning computation inside the policy, our method
enables joint training of the planner and its underlying latent
encoder and forward dynamics representations. An outer im-
itation learning objective ensures that the learned represen-
tations are directly optimized for successful gradient-based
planning on a set of training demonstrations. In principle,
however, the architecture could also be trained with other
policy optimization techniques such as those from reinforce-
ment learning. An overview is provided in Figure 1(a).

We demonstrate that the representations learned by UPN
not only support gradient-based trajectory optimization for
successful visual imitation, but in fact acquire a meaning-
ful encoding of state, which can be used as a metric for
task-specific latent distance to a goal. We find that we can
reuse this representation to specify latent distance-based
rewards to reach new target states via standard model-free
reinforcement learning, resulting in substantially more effec-
tive learning when using image targets. These properties are
naturally induced by the agent’s reliance on the minimiza-
tion of the latent distance between its predicted terminal
state and goal state throughout the planning process. By
learning plannable representations, the UPN learns an op-
timizable latent distance metric. Our findings are based on
a suite of challenging vision-based simulated robot control
tasks that involve planning.

At a high-level, our approach is a goal-conditioned policy
architecture that leverages a gradient-based planning compu-
tation in its action-selection process. While the architecture
is agnostic to the objective function in the outer loop, we
will focus on the imitation learning setting. From the per-
spective of representation learning, our method provides a
way to learn more effective representations suitable for spec-
ifying perceptual reward functions, which can then be used,
for example, with a model-free reinforcement learner. In
terms of meta-learning, our architecture can be seen as learn-
ing a planning computation by learning representations that
are in some sense traversible by gradient descent trajectory
optimization for satisfying the outer meta-objective.

In extensive experiments, we show that (1) UPNs learn ef-
fective visual goal-directed policies more efficiently (that
is, with less data) than traditional imitation learners; (2) the

latent representations induced by optimizing for successful
planning can be leveraged to transfer task-related semantics
to other agents for more challenging tasks through goal-
conditioned reward functions, which to our knowledge has
previously not been demonstrated; and (3) the learned plan-
ning computation improves when allowed more updates at
test-time, even in scenarios of less data, providing encour-
aging evidence of successful meta-learning for planning.

2. Universal Planning Networks
Model-based approaches leverage forward models to search
for, or plan, sequences of actions to achieve goal states such
that a planning objective is minimized. Forward modeling
supports simulation of future state and hence, in principle,
should allow for planning over extended horizons. In the
absence of known environment dynamics, a forward model
must be learned. Differentiable forward models allow for
end-to-end training of model-based planners, as well as
planning by back-propagating gradients with respect to input
actions (Schmidhuber, 1990; Henaff et al., 2017).

Nevertheless, learned forward models may: (1) suffer from
function approximation modeling error, especially in com-
plex, high-dimensional environments, (2) capture irrelevant
details under the incentive to reduce model-bias, as is of-
ten the case when learning directly from pixels, and (3)
not necessarily align with the task and planning problem at
hand, such that the inferred plans are sub-optimal even if
the planning objective is optimized.

These issues motivate a central idea of the proposed method:
instead of learning from surrogate unsupervised or auxiliary
objectives, we directly optimize for what we care about,
which is, representations with which gradient-based trajec-
tory optimization leads to the desired actions. We study
a model-based architecture that performs a differentiable
planning computation in a latent space jointly learned with
forward dynamics, trained end-to-end to encode what is
necessary for solving tasks by gradient-based planning.

2.1. Learning to Plan

The UPN computation graph forms a goal-directed policy
supported by an iterative planning algorithm. Given initial
and goal observations (ot and og) as input images, the model
produces an optimal plan ât:t+T to arrive at og, where ât
denotes the predicted action at time t. The computation
graph consists of a pair of tied encoders that encode both
ot and og, and their features are fed into a gradient descent
planner (GDP), which produces the action at as output. The
GDP uses a neural network encoder and forward dynamics
model to simulate transitions in a learned latent space and
is thus fully differentiable. An overview of the method is
presented in Figure 2.
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Figure 2. An overview of the proposed method. Given an initial ot and a goal og , the GDP (gradient descent planner) uses gradient
descent to optimize a plan to reach the goal observation with a sequence of actions in a latent space represented by fφ. This planning
process forms one large computation graph, chaining together the sub-graphs of each iteration of planning. The learning signal is derived
from the (outer) imitation loss and the gradient is back-propagated through the entire planning computation graph. The blue lines represent
the flow of gradients for planning, while the red lines depict the meta-optimization learning signal and the components of the architecture
affected by it. Note that the GDP iteratively plans across np updates, as indicated by the ith loop.

The GDP uses gradient descent to optimize for a sequence
of actions ât:t+T to reach the encoded goal observation og
from an initial ot. Since the model is differentiable, back-
propagation through time allows for computing the gradient
with respect to each planned action in order to end up closer
to the desired goal state. Each iteration of the GDP thus
involves unrolling the trajectory of latent state encodings us-
ing the current planned actions, and taking a step along the
gradient to improve the planning objective. The cumulative
planning process forms a large, differentiable computation
graph, chaining together each iteration of planning.

The actual learning signal is derived from an outer loss
function, which supervises the entire computation graph
(including the GDP) to output the correct action sequence.
The outer loss can in principle take any form, but in this
work we use an imitation learning loss derived from demon-
strations. The outer loss provides task-specific grounding to
optimize for representations that support effective iterative
planning for the task and environment at hand, as the gradi-
ent is back-propagated through the entire iterative planning
computation graph.

Training thus involves nested objectives. One can view the
learning process as first deriving a plan to achieve the goal
and then updating the model parameters to make the plan-
ning procedure more effective for the outer objective. In
other words, we seek to learn the planning computation
through its underlying representations for latent state encod-
ing and latent forward dynamics.

Parameters: The model is composed of a forward dynam-

ics model gθ and an encoder fφ, where θ and φ are neural
network parameters that are learned end-to-end:

xt = fφ(ot) x̂t+1 = gθ(xt, at)

Specifically, fφ is a convolutional network and gθ is a fully
connected network. Further architectural details can be
found in the supplementary. 1

Planning by Gradient Descent: The planner starts with an
element-wise randomly initialized plan â(0)t:t+T ∼ U(−1, 1)
and aims to minimize the distance between the predicted
terminal latent state and the encoded goal observation. T
denotes the horizon over which the agent plans, which can
depend on the task and hence may be treated as a hyper-
parameter, while np is the number of planning updates per-
formed. Algorithm 1 describes the iterative optimization
procedure that is implemented by the GDP.

Huber Loss: In practice, for L(i)
plan, we use a Huber Loss

centered around xg for well-behaved inner loop gradients

instead of a direct quadratic ||x̂(i)t+T+1 − xg||2
2

. This usage
is inspired from the Deep Q Networks paper of Mnih et al.
(2015) and similar metrics have also been used by Levine
et al. (2016) and Sermanet et al. (2017).

Action selection at test-time: At test-time, Algorithm 1

1We note that one could also use an action encoder hα(at) =
ut, with gθ operating on xt and ut. A temporal encoder h would
allow for abstract sequences of actions (options), for an option
conditioned latent forward model gθ . We work with flat sequences
of actions, leaving hierarchical extensions for future work.
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Algorithm 1 GDP (ot, og, α)→ ât:t+T

Require: α: hyperparameter for step size
Randomize an initial guess for the optimal plan â(0)t:t+T
for i from 0 to np − 1 do

Compute xt = fφ(ot), xg = fφ(og)
for j from 0 to T do
x̂
(i)
t+j+1 = gθ(x̂

(i)
t+j , â

(i)
t+j)

end for
Compute L(i)

plan = ||x̂(i)t+T+1 − xg||2
2

Update plan: â(i+1)
t:t+T = â

(i)
t:t+T − α∇â(i)t:t+T

L(i)
plan

end for
Return â(np)

t:t+T

can be used to produce a sequence of actions. A more
sophisticated approach is to use Algorithm 1 to re-plan at
each timestep. The agent first plans a trajectory suitable to
reach og from ot, but only executes the first action, before
replanning. This allows the agent to achieve goals requiring
longer planning horizons at test-time even if the GDP was
trained with a shorter horizon. This amounts to using model-
predictive control (MPC) over our learned planner.

2.2. Imitation as the Outer Objective

An idea central to our approach is to directly optimize the
planning computation for the task at hand, through the outer
objective. Though in this work we study the use of an
imitation loss as the outer objective, the policy can in prin-
ciple be trained through any gradient-based policy search
method including policy gradients (Schulman, 2016) and
value functions (Sutton & Barto, 1998).

To learn parameters φ and θ, we do not directly optimize
the planning error under Lplan, but instead learn the planner
insofar as it can imitate an expert agent by iteratively ap-
plying Lplan (Algorithm 2). The model is therefore trained
to plan in such a way as to produce actions that match the
expert demonstrations.

Note that the subroutine GDP (ot, og, α) is an accumulated
computation graph composed of several iterations of plan-
ning, each of which includes encoding observations and
unrolling of latent forward dynamics through time. Learn-
ing end-to-end thus requires that we back-propagate the
behavior cloning loss under the produced plan through the
GDP subroutine as depicted in Figure 2. We note that the
gradients obtained on the network parameters θ and φ from
the outer objective are composed of first-order derivatives of
these parameters. Therefore, even though the computation
graph of UPN may seem long and complicated, it is not
prohibitively expensive to compute.

In learning to plan via imitation, the agent jointly optimizes
for latent state and dynamics representations that capture

Algorithm 2 Learning the Planner via Imitation

Require: GDP (ot, og, α), expert a∗t:t+T , step sizes α, β
for n from 1 to N do

Sample a batch of demonstrations ot, og, a∗t:t+T
Compute ât:t+T = GDP (ot, og, α)
Compute Limitate = ||ât:t+T − a∗t:t+T ||22
Update θ := θ − β∇θLimitate
Update φ := φ− β∇φLimitate

end for

notions of state comparison useful for the imitation task
and that are traversible by gradient descent for trajectory
optimization. This is naturally induced by the agent’s re-
liance on the minimization of the latent distance between
its predicted terminal state and goal state throughout the
planning process. Thus, in necessitating plannable repre-
sentations, the encoder learns an optimizable latent distance
metric. This is key to the viability of using the learned latent
space as a metric from which to derive reward functions for
reinforcement learning.

2.3. RL with Rewards from a pre-trained UPN

A potential solution to the reward specification problem
for image targets is to use distance to the target image in
an abstract representation. Previous work such as Watter
et al. (2015) and Finn et al. (2016b) propose unsupervised
learning with autoencoders, while others attempt to fine-
tune representations from Imagenet using auxiliary losses
tailor-made for robotic manipulation Sermanet et al. (2017).

With the UPN having been trained to acquire plannable
representations, we might naturally expect the learned latent
space encoded by fφ to serve well as an abstract representa-
tion through which rewards can be specified for RL visuo-
motor tasks with image targets from scratch. We can lever-
age the learned fφ from pre-trained UPN to provide reward
functions of the form r(ot, og) = −||fφ(ot) − fφ(og)||22.
The RL procedure is portrayed in Figure 3. As we will
see in subsection 4.4, this enables transferring general task
semantics learned by the UPN such that other RL agents of
different form can be trained with RL from scratch.
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Figure 3. UPN-RL Agent: The rewards are based on the difference
between ot and og in the UPN latent space, while the policy is
conditioned on joint angles and velocities specific to the agent, st;
and the feature vector of the goal, fUPNφ (og). The agent has to
reason about the goals and how to achieve them.
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3. Related Work
Our work is primarily concerned with learning representa-
tions that can support planning for tasks described through
an image target. Watter et al. (2015) and Finn et al. (2016b)
take an unsupervised learning approach to learning such
representations, which they use for planning with respect
to target images using iLQR (Tassa et al., 2012). However,
reconstructing all the pixels in the scene could lead to the en-
coding of state variables not necessarily useful in the context
of planning (Higgins et al., 2017) and discard state variables
that are not visually prominent (Goodfellow et al. (2016),
Chapter 15). Our approach avoids this problem by explicitly
optimizing a representation for plannability through gradi-
ent descent as the only criterion. Self-supervised methods
that avoid pixel reconstruction by using other intermedi-
ate forms of supervision that can be obtained automatically
from the data have also been used to learn representations for
visuomotor control (Sermanet et al., 2016; 2017). We again
differ by optimizing directly for what we need: plannable
representations, instead of intermediate objectives.

There has been work in learning state representations usable
for model-free RL when provided rewards (Lange et al.,
2012; Jonschkowski & Brock, 2015; Jonschkowski et al.,
2017; Higgins et al., 2017; de Bruin et al., 2018). The
key difference in our work is that we focus on learning
representations that can be used for defining metric-based
rewards for new tasks, as opposed to just learning state
representations for RL from external environment rewards.

Learning representations capable of providing metric based
rewards naturally relates to inverse reinforcement learning
(IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004; Finn et al.,
2016a; Ho & Ermon, 2016; Baram et al., 2017) and reward
shaping (Ng et al., 1999). However, IRL from raw pixels is
challenging due to the lack of sufficient constraints in the
problem definition Our work can be viewed as connecting
IRL and reward shaping: learning representations amenable
to gradient-based trajectory optimization is one way to ex-
tract a perceptual reward function. However, we differ sig-
nificantly from conventional IRL in that our derived reward
functions are effective even for new tasks.

From an architectural standpoint, we embed a differentiable
planner within our computation graph. Value iteration net-
works of Tamar et al. (2016) embed an approximate differen-
tiable value iteration computation, though their architecture
only supports discrete planning and is evaluated on tasks
with sparse state transition probabilities. We seek a more
general planning computation for more complex transition
dynamics and continuous actions suitable for motor control
from raw pixels. Concurrently, a few recent efforts have
been developed to embed differentiable planning procedures
in computation graphs (Guez et al., 2018; Farquhar et al.,
2017). However, to our knowledge, our paper is the first

to connect the use of differentiable planning procedures
to learning reusable representations that generalize across
complex visuomotor tasks.

The idea of planning by gradient descent has existed
for decades (Kelley, 1960). While such work relied on
known analytic forms of environment dynamics, later work
(Schmidhuber, 1990) explored jointly learning approxi-
mate models of dynamics with neural networks. Henaff
et al. (2017) adopt gradient-based trajectory optimization
for model-based planning in discrete action spaces, but rely
on representations learned from unsupervised pretraining.
Oh et al. (2017) and Silver et al. (2016) have also explored
forward predictions in a latent space that is learned by de-
coding the value function of a state. Our architecture is
related in so far as distance to goal in the learned latent
space can be viewed as a value function. However, we also
differ significantly by not relying on extrinsic rewards and
focusing on continuous control tasks.

4. Experiments
We designed experiments to answer the following questions:
(1) does embedding a gradient descent planner help learn a
policy that can map from pixels to torque control when pro-
vided current and goal observations at test-time ? (2) how
does our method compare to reactive and autoregressive be-
havior cloning agents as the amount of training data varies?
(3) what are the properties of the representation learned by
UPN? (4) how can the learned representations from UPN
be leveraged for transfer to new and more complex tasks,
compared to representations from standard imitation and
unsupervised methods (e.g. VAE)?

Methods for comparison: We consider two alternative
imitation learning approaches for comparison: (1) a reac-
tive imitation learner (RIL), composed of a convolutional
feedforward policy that takes as input the current and goal
observation; (2) an auto-regressive imitation learner (AIL),
composed of a recurrent decoder initially conditioned on
convolutionally encoded representations of the current and
goal observation, trained to output a sequence of interme-
diate actions. Both (1) and (2) are methods adopted from
Pathak* et al. (2018). These comparisons are important for
studying the effects of the inductive bias of gradient descent
planning that is embedded within UPN. More specifically,
comparing to (1) allows us to understand the need for such
an inductive bias, while comparing to (2) is necessary to
understand whether the benefits are not purely due to re-
current computations. All methods are trained on the same
synthetically-generated expert demonstration datasets. We
refer the reader to the supplementary materials for details
on the architectures and dataset generation.
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(a) Pointmass config. 1 (b) Pointmass config. 2 (c) Reacher config. 1 (d) Reacher config. 2

Figure 4. Examples of the visuomotor tasks considered for the zero shot generalization study. We consider two 2D robot models: a force-
controlled point robot and a 3-link torque-controlled reacher robot. We consider two types of generalization: fixing the obstacles while
varying the target goals (FOVG) and varying both the obstacle and target goals (VOVG). These tasks require non-trivial generalization
combining visual planning with low level motor control.

(a) Pointmass- VOVG (b) Reacher - VOVG (c) Pointmass- FOVG (d) Reacher - FOVG

Figure 5. Notation: VOVG - Varying Obstacles and Varying Goals, FOVG - Fixed Obstacles and Varying Goals; Success on test tasks as
a function of the dataset size. Our approach (UPN) outperforms the RIL and AIL consistently across the four generalization conditioned
considered and is more sample efficient. As expected, the AIL improves with more data to eventually almost match the UPN. This
illustrates the tradeoff between inductive bias and expressive architectures when given sufficient data.

4.1. UPNs Learn Effective Imitation Policies

Here, we study the suitability of the UPN for learning visual
imitation policies that generalize to new goal-directed tasks.
We focus on two tasks: (1) navigating a 2D point robot
around obstacles to desired goal locations amidst distractors
(Figures 4(a) and 4(b)), wherein the color of the goal is
randomized; (2) a harder task of controlling a 3-DoF planar
arm to reach goals amidst scattered distractors and obstacles,
as shown in Figures 4(c) and 4(d).

For these tasks, we consider two types of generalization:
(1) generalizing to new goals for a fixed configuration of
obstacles having trained on the same configuration; (2) gen-
eralizing to new goals in new obstacle configurations having
trained across varying obstacle configurations. Figures 4(c)
and 4(d) show two different obstacle configurations for the
reaching task, while the differently colored locations in
Figure 4 represent varying goal locations.

We employ the action selection process described in subsec-
tion 2.1 with a chosen maximum episode length. Results
shown in Figure 5 compare performance over a varying
number of training demonstrations. As expected, the induc-
tive bias of embedding trajectory optimization via gradient
descent in UPN supports generalization from fewer demon-
strations. With more demonstrations, however, the expres-
sive AIL is able to almost match the performance of the

UPN. This is consistent with the conclusions of Tamar et al.
(2016), who observed that the benefit of the value iteration
inductive bias shrinks in regimes in which demonstrations
are plentiful. Note that generalization across obstacle con-
figurations in the reacher case (Figure 4(c)) is a hard task;
expert performance is only 73.12%. We encourage the
reader to refer to the supplementary for further details about
the experiment.

(a) (b)

Figure 6. (a) The effect of additional planning steps at test-time.
UPN learns an effective gradient descent planner whose conver-
gence improves with more planning steps at test-time. (b) A
comparison of the success rate of UPN between 40 and 160 plan-
ning steps at test time with varying number of demonstrations on
Reacher VOVG. Using 160 planning steps is consistently better
than using 40 steps (though the relative benefit shrinks with more
demonstrations) and allows the UPN to match the expert level.
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4.2. Analysis of the Gradient Descent Planner

The UPN can be viewed in the context of meta-learning as
learning a planning algorithm and its underlying representa-
tions. We take inspiration from Finn & Levine (2018), which
studied a gradient-based model-agnostic meta-learning al-
gorithm and showed that a classifier trained for few-shot
image classification improves in accuracy at test-time with
additional gradient updates. In our case, the inner loop is
the GDP, which may not necessarily converge due to the
fixed number of planning updates. Hence, it is worth study-
ing whether additional test-time GDP updates yield more
accurate plans and therefore better success rates.

Planning more helps: Figure 6(a) shows that with more
planning steps at test-time, a UPN trained with fewer demon-
strations (20000) can improve on task success rate beginning
from 38.1% with 40 planning steps to 64.44% with 160 plan-
ning steps. As a reference, the average test success rate of
the expert on these tasks is 73.12% while the best UPN
model with 40 planning steps (trained on twice the num-
ber of demos (40000)) achieves 64.78%. Thus, with more
planning steps, we see that UPN can improve to match the
performance of a UPN with fewer planning steps but trained
on twice the number of demonstrations. We also find that
160 steps is consistently better than using 40 steps (though
the relative benefit shrinks with more demonstrations) and
that the UPN is able to match expert performance (Figure
6(b)). This finding suggests that the learned planning ob-
jective is well defined, and can likely be reused for related
control problems, as we explore in Sections 4.4 and 4.5.

4.3. Latent Space Visualization

We offer a qualitative analysis for studying the acquired
latent space for an instance of the reacher with obstacles
task. Given the selected initial pose, we compute the dis-
tance in the learned fφ space for 150 random final poses
and illustrate these distances qualitatively on the environ-
ment arena by color mapping each end-effector position
accordingly. The result is shown in Figure 7; lighter blue
corresponds to larger distances in the feature space. We
see that the learned distance metric is obstacle-aware and
task-specific: regions below the initial position in Figure 7
are less desirable even though they are near, while farther
regions above are comparatively favorable.

4.4. Transfer to Harder Scenarios

We have seen in subsections 4.1 and 4.2 that UPNs can
learn effective imitation policies that can perform close to
the expert level on visuomotor planning tasks. In principle,
deriving reward functions from a pre-trained UPN as ex-
plained in subsection 2.3 should allow us to extend beyond
the capabilities of the expert on harder scenarios where the

Figure 7. Visualization of the learned metric in the UPN latent
space on the reacher with obstacles task. Lighter color → larger
latent distance. The learned distance metric is obstacle-aware and
supports obstacle avoidance.

Table 1. Average Success Rate % in solving the task described in
Figure 4(d) for fixed and varying goals

FEATURE SPACE FIXED VARYING

RIL-RL 0% 0.01%
AIL-RL 0% 4.72%
VAE-RL 20.23% 24.67%
UPN-160 IMITATION 45.82% 47.99%
EXPERT 46.77% 51.1 %
UPN-RL 69.84% 71.12%

expert fails. We study this idea in the reaching scenario
with obstacle configuration as presented in Figure 4(d). The
difference between fixed and varying goals is that for vary-
ing goals, we feed in a feature vector of the goal image as
an additional input to the RL policy. We use PPO (Schul-
man et al., 2017) for model-free policy optimization of the
rewards derived from the feature space(s).

Though the subsection 2.3 explains an RL procedure based
on using the fφ of a UPN, one could use a trained encoder
fφ from other methods such as our supervised learning
comparisons RIL, AIL. In addition to RIL and AIL, a feature
space we compare to is an encoder obtained from training a
variational auto-encoder (VAE) (Kingma & Welling, 2013)
on the images of the demonstrations. This comparison is
necessary to judge how useful the feature space of a UPN is
for downstream reinforcement learning when compared to
pixel reconstruction methods such as VAEs. In Table 1, we
see that reinforcement learning on the feature space of RIL
and AIL clearly fail, while RL on the UPN feature space is
better compared to that of a VAE. We also see that UPN-RL
is able to outperform the expert and the imitating UPN-160.

4.5. Transfer Across Robots

Having seen the success of reinforcement learning using
rewards derived from UPN representations in subsection
4.4, we pose a harder problem in this subsection: can we
leverage UPN representations trained on some source task(s)
to provide rewards for target task(s) with significantly dif-
ferent dynamics and action spaces? We propose to do this
by training and testing with different robots (morphologi-
cal variations) on the same desired functionality (reaching
/ locomotion, around obstacles). This study will highlight



Universal Planning Networks

UPN trained across randomized 
2D robot morphologies

UPNs with shared f� RL rewards from f�

RL rewards from f�

(a) Transfer to more complex topology (Reacher)

UPN trained across random morphologies

UPNs with shared f� RL rewards from f�

RL rewards from f�

(b) Transfer to new morphology (Point to Ant)
Figure 8. Transfer between robots as described in subsection 4.5.

(a) Point robot to Ant transfer (b) Reacher transfer

Figure 9. RL with rewards from the UPN representation is signif-
icantly more successful compared to other feature spaces (VAE,
AIL, RIL, shaped rewards), suggesting that UPNs learn trans-
ferrable, generalizable latent spaces.

the extrapolative generalizability of UPN representations.
The idea of trajectory optimization with a learned metric
is a fundamental prior that can hold across a large class
of visuomotor control problems. Having trained UPN to
learn such a prior, it is natural to expect the underlying
representation to be amenable to providing suitable metric
based rewards for similar but unseen tasks. We craft two
challenging experimental scenarios to verify this hypothesis.

Reacher with new morphology: Having trained a UPN
with a shared fφ and different gθ for a 3-link and 4-link
reacher (on the obstacles task), can we leverage the learned
fφ to specify rewards for reinforcement-learning a 5-link
reacher to reach different goals around the same obstacles?
Figure 8(a) visually depicts this experiment. To the best of
our knowledge, such a transfer scenario has not previously
been studied in the past for visuomotor control. The dynam-
ics of a 5-link reacher are more complex (compared to 3
and 4 link reachers), thereby posing a harder control prob-
lem to solve at test time. However, a good path-planning
reward function learned from 3 and 4-link reachers is likely
to help for a 5-link reacher due to morphological similari-
ties. We train the UPN on both the 3 and 4 link reachers to
avoid overfitting the learned metric to a specific dynamical
system. As comparison methods, we train RIL and AIL
(with a multi-task (head) architecture), and a VAE (jointly
on images from both the tasks).

Point to Ant: High level visual planning for navigation
should be common across different robots, from a 2D point
robot controlled through simple forces to a robot as complex
as an 8-joint quadruped ant. We empirically confirm this

via an experiment illustrated in Figure 8(b). Here, we learn
representations with a UPN on demonstrations collected
from a 2D point robot trained to traverse obstacles to reach
varying goals. We randomize the robot’s morphological
appearance across demonstrations (Figure 8(b)), inspired
by Sadeghi & Levine (2016); Tobin et al. (2017). This
allows the UPN to learn an encoder fφ that is robust to the
creature appearance. We then replace the point robot with
a 3D-torque-controlled ant to study how well the learned
representation transfers to a harder task.

In Figure 9, we see that for both the transfer scenarios, RL
with rewards from the UPN representation is more success-
ful compared to other feature spaces (VAE, AIL, and RIL).
Additionally, we also compare the UPN-RL setup to a naı̈ve
RL agent optimizing a spatial distance to goal in the co-
ordinate space as the reward; this procedure assumes that
the spatial position of the goal is known, unlike UPN, RIL,
AIL, and VAE where the feature vector of the goal image
is provided as input. We note that this method performs
poorly, as expected, because the spatial distance in the co-
ordinate space is not obstacle-aware. These results show
that optimizing for the rewards derived from UPN correlates
with task success, supporting our claim that UPNs learn
generalizable and transferrable latent spaces.

5. Discussion
We studied the problem of learning generalizable representa-
tions for visuomotor control and introduced universal plan-
ning networks, a goal-directed policy architecture with an
embedded differentiable planner, that can be trained end-to-
end. Our extensive experiments demonstrated that (1) UPNs
learn effective visual goal-directed policies efficiently; (2)
UPN latent representations can be leveraged to transfer task-
related semantics to more complex agents and more chal-
lenging tasks through goal-conditioned reward functions;
and (3) the learned planner improves with more updates at
test-time, providing encouraging evidence of meta-learning
for planning. Our transfer learning results demonstrate that
UPNs learn generic representations with task-specific struc-
ture of agency and goals useful for planning. Future work
should investigate self-supervised ways to train UPN-like
representations, borrowing ideas from Weber et al. (2017).
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