
Universal Planning Networks

Aravind Srinivas 1 Allan Jabri 1 Pieter Abbeel 1 Sergey Levine 1 Chelsea Finn 1

Abstract

A key challenge in complex visuomotor control
is learning abstract representations that are ef-
fective for specifying goals, planning, and gen-
eralization. To this end, we introduce univer-
sal planning networks (UPN). UPNs embed dif-
ferentiable planning within a goal-directed pol-
icy. This planning computation unrolls a forward
model in a latent space and infers an optimal
action plan through gradient descent trajectory
optimization. The plan-by-gradient-descent pro-
cess and its underlying representations are learned
end-to-end to directly optimize a supervised imi-
tation learning objective. We find that the rep-
resentations learned are not only effective for
goal-directed visual imitation via gradient-based
trajectory optimization, but can also provide a
metric for specifying goals using images. The
learned representations can be leveraged to spec-
ify distance-based rewards to reach new target
states for model-free reinforcement learning, re-
sulting in substantially more effective learning
when solving new tasks described via image-
based goals. Visit https://sites.google.
com/view/upn-public/home for video
highlights.

1. Introduction
Learning visuomotor policies is a central pursuit in build-
ing machines capable of performing complex skills in the
variety of unstructured and dynamic environments seen in
the real world (Levine et al., 2016; Pinto et al., 2016). A
key challenge in learning such policies lies in acquiring
representations of the visual environment and its dynamics
that are suitable for control. This challenge arises both in
the construction of the policy itself and in the specification
of the task. Extrinsic and perfect reward signals are typi-

1UC Berkeley, Computer Science. Correspondence to: Aravind
Srinivas <aravind@cs.berkeley.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Limitate

r�,✓ L
imitate

GDP
r

â(i) L
plan

L(i)
plani

actions

initial
obs.

goal
obs.

encoder

forward dynamics

encoder

latent
goal

latent
end

latent
initial

optimized
actions

expert
actions

improve plan

improve model

(a) Universal Planning Network (UPN)

learn UPN representations

UPN✓,�

derive reward functions
from learned metric

Demonstrations for training tasks

Reinforcement learning on harder tasks

�

(b) Leveraging learned latent representations

Figure 1. An overview of the UPN, which embeds a gradient de-
scent planner (GDP) in the action-selection process. We demon-
strate transfer to different, harder control tasks, including morpho-
logical (yellow point robot to ant) and topological (3-link to 7-link
reacher) variants, as shown above.

cally not available for real world reinforcement learning and
users must manually specify tasks via hand-crafted rewards
with hand-crafted representations. To automate this process,
some prior methods have proposed to specify tasks by pro-
viding an image of the goal scene (Deguchi & Takahashi,
1999; Watter et al., 2015; Finn et al., 2016b). However, a
reward that measures success based on matching the raw
pixels of the goal image is far from ideal: such a reward
is both uninformative and overconstrained, since matching
all pixels is usually not required for succeeding in tasks. If
we can automatically identify the right representation, we
can both accelerate the policy learning process and simplify
the specification of tasks via goal images. Prior work in
visual representation learning for planning and control has
relied predominantly on unsupervised or self-supervised
objectives (Watter et al., 2015; Finn et al., 2016b), which in
principle only provide an indirect connection to the utility

https://sites.google.com/view/upn-public/home
https://sites.google.com/view/upn-public/home

Universal Planning Networks

of the representation for the underlying control problem.
Effective representation learning for planning and control
remains an open problem.

In this work, instead of learning from unsupervised or aux-
iliary objectives and expecting that useful representations
should emerge, we directly optimize for plannable repre-
sentations; that is, representations through which gradient-
based planning is successful with respect to the goal-
directed task. We propose universal planning networks
(UPN), a neural network architecture that can be trained to
acquire a plannable representation. By embedding a differ-
entiable planning computation inside the policy, our method
enables joint training of the planner and its underlying latent
encoder and forward dynamics representations. An outer im-
itation learning objective ensures that the learned represen-
tations are directly optimized for successful gradient-based
planning on a set of training demonstrations. In principle,
however, the architecture could also be trained with other
policy optimization techniques such as those from reinforce-
ment learning. An overview is provided in Figure 1(a).

We demonstrate that the representations learned by UPN
not only support gradient-based trajectory optimization for
successful visual imitation, but in fact acquire a meaning-
ful encoding of state, which can be used as a metric for
task-specific latent distance to a goal. We find that we can
reuse this representation to specify latent distance-based
rewards to reach new target states via standard model-free
reinforcement learning, resulting in substantially more effec-
tive learning when using image targets. These properties are
naturally induced by the agent’s reliance on the minimiza-
tion of the latent distance between its predicted terminal
state and goal state throughout the planning process. By
learning plannable representations, the UPN learns an op-
timizable latent distance metric. Our findings are based on
a suite of challenging vision-based simulated robot control
tasks that involve planning.

At a high-level, our approach is a goal-conditioned policy
architecture that leverages a gradient-based planning compu-
tation in its action-selection process. While the architecture
is agnostic to the objective function in the outer loop, we
will focus on the imitation learning setting. From the per-
spective of representation learning, our method provides a
way to learn more effective representations suitable for spec-
ifying perceptual reward functions, which can then be used,
for example, with a model-free reinforcement learner. In
terms of meta-learning, our architecture can be seen as learn-
ing a planning computation by learning representations that
are in some sense traversible by gradient descent trajectory
optimization for satisfying the outer meta-objective.

In extensive experiments, we show that (1) UPNs learn ef-
fective visual goal-directed policies more efficiently (that
is, with less data) than traditional imitation learners; (2) the

latent representations induced by optimizing for successful
planning can be leveraged to transfer task-related semantics
to other agents for more challenging tasks through goal-
conditioned reward functions, which to our knowledge has
previously not been demonstrated; and (3) the learned plan-
ning computation improves when allowed more updates at
test-time, even in scenarios of less data, providing encour-
aging evidence of successful meta-learning for planning.

2. Universal Planning Networks
Model-based approaches leverage forward models to search
for, or plan, sequences of actions to achieve goal states such
that a planning objective is minimized. Forward modeling
supports simulation of future state and hence, in principle,
should allow for planning over extended horizons. In the
absence of known environment dynamics, a forward model
must be learned. Differentiable forward models allow for
end-to-end training of model-based planners, as well as
planning by back-propagating gradients with respect to input
actions (Schmidhuber, 1990; Henaff et al., 2017).

Nevertheless, learned forward models may: (1) suffer from
function approximation modeling error, especially in com-
plex, high-dimensional environments, (2) capture irrelevant
details under the incentive to reduce model-bias, as is of-
ten the case when learning directly from pixels, and (3)
not necessarily align with the task and planning problem at
hand, such that the inferred plans are sub-optimal even if
the planning objective is optimized.

These issues motivate a central idea of the proposed method:
instead of learning from surrogate unsupervised or auxiliary
objectives, we directly optimize for what we care about,
which is, representations with which gradient-based trajec-
tory optimization leads to the desired actions. We study
a model-based architecture that performs a differentiable
planning computation in a latent space jointly learned with
forward dynamics, trained end-to-end to encode what is
necessary for solving tasks by gradient-based planning.

2.1. Learning to Plan

The UPN computation graph forms a goal-directed policy
supported by an iterative planning algorithm. Given initial
and goal observations (ot and og) as input images, the model
produces an optimal plan ât:t+T to arrive at og, where ât
denotes the predicted action at time t. The computation
graph consists of a pair of tied encoders that encode both
ot and og, and their features are fed into a gradient descent
planner (GDP), which produces the action at as output. The
GDP uses a neural network encoder and forward dynamics
model to simulate transitions in a learned latent space and
is thus fully differentiable. An overview of the method is
presented in Figure 2.

Universal Planning Networks

Figure 2.An overview of the proposed method. Given an initialot and a goalog , the GDP (gradient descent planner) uses gradient
descent to optimize a plan to reach the goal observation with a sequence of actions in a latent space represented byf � . This planning
process forms one large computation graph, chaining together the sub-graphs of each iteration of planning. The learning signal is derived
from the (outer) imitation loss and the gradient is back-propagated through the entire planning computation graph. The blue lines represent
the �ow of gradients for planning, while the red lines depict the meta-optimization learning signal and the components of the architecture
affected by it. Note that the GDP iteratively plans acrossnp updates, as indicated by thei th loop.

The GDP uses gradient descent to optimize for a sequence
of actionsât :t + T to reach the encoded goal observationog

from an initialot . Since the model is differentiable, back-
propagation through time allows for computing the gradient
with respect to each planned action in order to end up closer
to the desired goal state. Each iteration of the GDP thus
involves unrolling the trajectory of latent state encodings us-
ing the current planned actions, and taking a step along the
gradient to improve the planning objective. The cumulative
planning process forms a large, differentiable computation
graph, chaining together each iteration of planning.

The actual learning signal is derived from an outer loss
function, which supervises the entire computation graph
(including the GDP) to output the correct action sequence.
The outer loss can in principle take any form, but in this
work we use an imitation learning loss derived from demon-
strations. The outer loss provides task-speci�c grounding to
optimize for representations that support effective iterative
planning for the task and environment at hand, as the gradi-
ent is back-propagated through the entire iterative planning
computation graph.

Training thus involves nested objectives. One can view the
learning process as �rst deriving a plan to achieve the goal
and then updating the model parameters to make the plan-
ning procedure more effective for the outer objective. In
other words, we seek to learn the planning computation
through its underlying representations for latent state encod-
ing and latent forward dynamics.

Parameters:The model is composed of a forward dynam-

ics modelg� and an encoderf � , where� and� are neural
network parameters that are learned end-to-end:

x t = f � (ot) x̂ t +1 = g� (x t ; at)

Speci�cally, f � is a convolutional network andg� is a fully
connected network. Further architectural details can be
found in the supplementary.1

Planning by Gradient Descent:The planner starts with an
element-wise randomly initialized plan̂a(0)

t :t + T � U (� 1; 1)
and aims to minimize the distance between the predicted
terminal latent state and the encoded goal observation.T
denotes the horizon over which the agent plans, which can
depend on the task and hence may be treated as a hyper-
parameter, whilenp is the number of planning updates per-
formed. Algorithm 1 describes the iterative optimization
procedure that is implemented by the GDP.

Huber Loss: In practice, forL (i)
plan , we use a Huber Loss

centered aroundxg for well-behaved inner loop gradients

instead of a direct quadraticjj x̂ (i)
t + T +1 � xg jj2

2
. This usage

is inspired from the Deep Q Networks paper of Mnih et al.
(2015) and similar metrics have also been used by Levine
et al. (2016) and Sermanet et al. (2017).

Action selection at test-time: At test-time, Algorithm 1

1We note that one could also use an action encoderh� (at) =
ut , with g� operating onx t andut . A temporal encoderh would
allow for abstract sequences of actions (options), for an option
conditioned latent forward modelg� . We work with �at sequences
of actions, leaving hierarchical extensions for future work.

Universal Planning Networks

Algorithm 1 GDP (ot ; og; �) ! ât :t + T

Require: � : hyperparameter for step size
Randomize an initial guess for the optimal planâ(0)

t :t + T
for i from 0 to np � 1 do

Computex t = f � (ot), xg = f � (og)
for j from 0 to T do

x̂ (i)
t + j +1 = g� (x̂ (i)

t + j ; â(i)
t + j)

end for
ComputeL (i)

plan = jj x̂ (i)
t + T +1 � xg jj2

2

Update plan:̂a(i +1)
t :t + T = â(i)

t :t + T � � r â(i)
t : t + T

L (i)
plan

end for
Returnâ(n p)

t :t + T

can be used to produce a sequence of actions. A more
sophisticated approach is to use Algorithm 1 to re-plan at
each timestep. The agent �rst plans a trajectory suitable to
reachog from ot , but only executes the �rst action, before
replanning. This allows the agent to achieve goals requiring
longer planning horizons at test-time even if the GDP was
trained with a shorter horizon. This amounts to using model-
predictive control (MPC) over our learned planner.

2.2. Imitation as the Outer Objective

An idea central to our approach is to directly optimize the
planning computation for the task at hand, through the outer
objective. Though in this work we study the use of an
imitation loss as the outer objective, the policy can in prin-
ciple be trained through any gradient-based policy search
method including policy gradients (Schulman, 2016) and
value functions (Sutton & Barto, 1998).

To learn parameters� and� , we do not directly optimize
the planning error underL plan , but instead learn the planner
insofar as it can imitate an expert agent by iteratively ap-
plying L plan (Algorithm 2). The model is therefore trained
to plan in such a way as to produce actions that match the
expert demonstrations.

Note that the subroutineGDP (ot ; og; �) is an accumulated
computation graph composed of several iterations of plan-
ning, each of which includes encoding observations and
unrolling of latent forward dynamics through time. Learn-
ing end-to-end thus requires that we back-propagate the
behavior cloning loss under the produced plan through the
GDP subroutine as depicted in Figure 2. We note that the
gradients obtained on the network parameters� and� from
the outer objective are composed of �rst-order derivatives of
these parameters. Therefore, even though the computation
graph of UPN may seem long and complicated, it is not
prohibitively expensive to compute.

In learning to plan via imitation, the agent jointly optimizes
for latent state and dynamics representations that capture

Algorithm 2 Learning the Planner via Imitation

Require: GDP (ot ; og; �), experta�
t :t + T , step sizes�; �

for n from 1 to N do
Sample a batch of demonstrationsot ; og; a�

t :t + T
Computêat :t + T = GDP (ot ; og; �)
ComputeL imitate = jj ât :t + T � a�

t :t + T jj2
2

Update� := � � � r � L imitate

Update� := � � � r � L imitate

end for

notions of state comparison useful for the imitation task
and that are traversible by gradient descent for trajectory
optimization. This is naturally induced by the agent's re-
liance on the minimization of the latent distance between
its predicted terminal state and goal state throughout the
planning process. Thus, in necessitatingplannablerepre-
sentations, the encoder learns an optimizable latent distance
metric. This is key to the viability of using the learned latent
space as a metric from which to derive reward functions for
reinforcement learning.

2.3. RL with Rewards from a pre-trained UPN

A potential solution to the reward speci�cation problem
for image targets is to use distance to the target image in
an abstract representation. Previous work such as Watter
et al. (2015) and Finn et al. (2016b) propose unsupervised
learning with autoencoders, while others attempt to �ne-
tune representations from Imagenet using auxiliary losses
tailor-made for robotic manipulation Sermanet et al. (2017).

With the UPN having been trained to acquireplannable
representations, we might naturally expect the learned latent
space encoded byf � to serve well as an abstract representa-
tion through which rewards can be speci�ed for RL visuo-
motor tasks with image targets from scratch. We can lever-
age the learnedf � from pre-trained UPN to provide reward
functions of the formr (ot ; og) = �jj f � (ot) � f � (og)jj2

2:
The RL procedure is portrayed in Figure 3. As we will
see in subsection 4.4, this enables transferring general task
semantics learned by the UPN such that other RL agents of
different form can be trained with RLfrom scratch.

Figure 3.UPN-RL Agent: The rewards are based on the difference
betweenot andog in the UPN latent space, while the policy is
conditioned on joint angles and velocities speci�c to the agent,st ;
and the feature vector of the goal,f UP N

� (og). The agent has to
reason about the goals and how to achieve them.

Universal Planning Networks

3. Related Work

Our work is primarily concerned with learning representa-
tions that can support planning for tasks described through
an image target. Watter et al. (2015) and Finn et al. (2016b)
take an unsupervised learning approach to learning such
representations, which they use for planning with respect
to target images using iLQR (Tassa et al., 2012). However,
reconstructing all the pixels in the scene could lead to the en-
coding of state variables not necessarily useful in the context
of planning (Higgins et al., 2017) and discard state variables
that are not visually prominent (Goodfellow et al. (2016),
Chapter 15). Our approach avoids this problem by explicitly
optimizing a representation forplannability through gradi-
ent descentas the only criterion. Self-supervised methods
that avoid pixel reconstruction by using other intermedi-
ate forms of supervision that can be obtained automatically
from the data have also been used to learn representations for
visuomotor control (Sermanet et al., 2016; 2017). We again
differ by optimizing directly for what we need: plannable
representations, instead of intermediate objectives.

There has been work in learning state representations usable
for model-free RL when provided rewards (Lange et al.,
2012; Jonschkowski & Brock, 2015; Jonschkowski et al.,
2017; Higgins et al., 2017; de Bruin et al., 2018). The
key difference in our work is that we focus on learning
representations that can be used for de�ning metric-based
rewards for new tasks, as opposed to just learning state
representations for RL from external environment rewards.

Learning representations capable of providing metric based
rewards naturally relates to inverse reinforcement learning
(IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004; Finn et al.,
2016a; Ho & Ermon, 2016; Baram et al., 2017) and reward
shaping (Ng et al., 1999). However, IRL from raw pixels is
challenging due to the lack of suf�cient constraints in the
problem de�nition Our work can be viewed as connecting
IRL and reward shaping: learning representationsamenable
to gradient-based trajectory optimization is one way to ex-
tract a perceptual reward function. However, we differ sig-
ni�cantly from conventional IRL in that our derived reward
functions are effective even for new tasks.

From an architectural standpoint, we embed a differentiable
planner within our computation graph. Value iteration net-
works of Tamar et al. (2016) embed an approximate differen-
tiable value iteration computation, though their architecture
only supports discrete planning and is evaluated on tasks
with sparse state transition probabilities. We seek a more
general planning computation for more complex transition
dynamics and continuous actions suitable for motor control
from raw pixels. Concurrently, a few recent efforts have
been developed to embed differentiable planning procedures
in computation graphs (Guez et al., 2018; Farquhar et al.,
2017). However, to our knowledge, our paper is the �rst

to connect the use of differentiable planning procedures
to learning reusable representations that generalize across
complex visuomotor tasks.

The idea of planning by gradient descent has existed
for decades (Kelley, 1960). While such work relied on
known analytic forms of environment dynamics, later work
(Schmidhuber, 1990) explored jointly learning approxi-
mate models of dynamics with neural networks. Henaff
et al. (2017) adopt gradient-based trajectory optimization
for model-based planning in discrete action spaces, but rely
on representations learned from unsupervised pretraining.
Oh et al. (2017) and Silver et al. (2016) have also explored
forward predictions in a latent space that is learned by de-
coding the value function of a state. Our architecture is
related in so far as distance to goal in the learned latent
space can be viewed as a value function. However, we also
differ signi�cantly by not relying on extrinsic rewards and
focusing on continuous control tasks.

4. Experiments

We designed experiments to answer the following questions:
(1) does embedding a gradient descent planner help learn a
policy that can map from pixels to torque control when pro-
vided current and goal observations at test-time ? (2) how
does our method compare to reactive and autoregressive be-
havior cloning agents as the amount of training data varies?
(3) what are the properties of the representation learned by
UPN? (4) how can the learned representations from UPN
be leveraged for transfer to new and more complex tasks,
compared to representations from standard imitation and
unsupervised methods (e.g. VAE)?

Methods for comparison: We consider two alternative
imitation learning approaches for comparison: (1) a reac-
tive imitation learner (RIL), composed of a convolutional
feedforward policy that takes as input the current and goal
observation; (2) an auto-regressive imitation learner (AIL),
composed of a recurrent decoder initially conditioned on
convolutionally encoded representations of the current and
goal observation, trained to output a sequence of interme-
diate actions. Both (1) and (2) are methods adopted from
Pathak* et al. (2018). These comparisons are important for
studying the effects of the inductive bias of gradient descent
planning that is embedded within UPN. More speci�cally,
comparing to (1) allows us to understand the need for such
an inductive bias, while comparing to (2) is necessary to
understand whether the bene�ts are not purely due to re-
current computations. All methods are trained on the same
synthetically-generated expert demonstration datasets. We
refer the reader to the supplementary materials for details
on the architectures and dataset generation.

