
Structured Control Nets for Deep Reinforcement Learning

Mario Srouji* 1 Jian Zhang* 2 Ruslan Salakhutdinov 1 2

Abstract

In recent years, Deep Reinforcement Learning
has made impressive advances in solving several
important benchmark problems for sequential de-
cision making. Many control applications use
a generic multilayer perceptron (MLP) for non-
vision parts of the policy network. In this work,
we propose a new neural network architecture for
the policy network representation that is simple
yet effective. The proposed Structured Control
Net (SCN) splits the generic MLP into two sepa-
rate sub-modules: a nonlinear control module and
a linear control module. Intuitively, the nonlinear
control is for forward-looking and global control,
while the linear control stabilizes the local dy-
namics around the residual of global control. We
hypothesize that this will bring together the bene-
fits of both linear and nonlinear policies: improve
training sample efficiency, final episodic reward,
and generalization of learned policy, while requir-
ing a smaller network and being generally appli-
cable to different training methods. We validated
our hypothesis with competitive results on simula-
tions from OpenAI MuJoCo, Roboschool, Atari,
and a custom urban driving environment, with var-
ious ablation and generalization tests, trained with
multiple black-box and policy gradient training
methods. The proposed architecture has the po-
tential to improve upon broader control tasks by
incorporating problem specific priors into the ar-
chitecture. As a case study, we demonstrate much
improved performance for locomotion tasks by
emulating the biological central pattern generators
(CPGs) as the nonlinear part of the architecture.

*Equal contribution 1Carnegie Mellon University, 5000 Forbes
Ave, Pittsburgh, PA 15213. 2Apple Inc., 1 Infinite Loop, Cuper-
tino, CA 95014. This work is done during Mario’s internship at
Apple. Correspondence to: Jian Zhang, Ruslan Salakhutdinov
<jianz@apple.com, rsalakhutdinov@apple.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Figure 1. The proposed Structured Control Net (SCN) for policy
network that incorporates a nonlinear control module, un, and a
linear control module, ul. o is the observation, s is encoded state,
and a is the action output of the policy network. Here time t is
dropped for notation compactness.

1. Introduction
Sequential decision making is crucial for intelligent sys-
tem to interact with the world successfully and optimally.
Deep Reinforcement Learning (DRL) recently has made
significant progress on solving several important benchmark
problems, such as Atari (Mnih et al., 2015), the game of Go
(Silver et al., 2017), high-dimensional continuous control
simulations (Schulman et al., 2017; Lillicrap et al., 2015),
and robotics (Levine et al., 2016). Many successful appli-
cations, especially control problems, still use generic mul-
tilayer perceptron (MLP) for non-vision part of the policy
network. There have been only few efforts exploring adding
specific structures to the policy network as an inductive bias
for improving training sampling efficiency, episodic reward,
generalization, and robustness (Wang et al., 2016).

In this work, we focus on an alternative but complementary
area by introducing a policy network architecture that is
simple yet effective for control problems (Figure 1). Specif-
ically, to improve the policy network architecture, we intro-
duce control-specific priors on the structure of the policy
network. The proposed Structured Control Net (SCN) splits
the generic multilayer perceptron (MLP) into a nonlinear
control stream and a linear control stream that combine ad-
ditively into the final action. This approach has the benefit
of being easily combined with many existing DRL algo-
rithms and complementary to the methods with structures
for planning (Tamar et al., 2016; Oh et al., 2017).

Without any special treatment, we extensively tested SCN
across 3 types of training method (Evolutionary Strate-
gies (Salimans et al., 2017), PPO (Schulman et al., 2017),
ACKTR (Wu et al., 2017)) and 4 types of environment
(MuJoCo (Brockman et al., 2016; Todorov et al., 2012),
Roboschool (OpenAI, 2017), Atari (Bellemare et al., 2013),



Structured Control Nets for Deep Reinforcement Learning

simulated urban driving). Our results demonstrate that this
architecture brings together the benefits of both linear and
nonlinear policies by improving training sampling efficiency,
final episodic reward, and generalization of learned policy,
while using a smaller network compared to standard MLP
baselines. Our ablation tests also show that sub-modules
of the architecture are effectively learned. This structured
policy network has the potential to be expanded to broader
sequential decision making tasks, by incorporating problem
specific priors into the architecture.

2. Related Work
Discrete control problems, such as Atari games, and high-
dimensional continuous control problems are some of the
most popular and important benchmarks for sequential de-
cision making. They have applications in video game intel-
ligence (Mnih et al., 2015), simulations (Schulman et al.,
2017), robotics (Levine et al., 2016), and self-driving cars
(Shalev-Shwartz et al., 2016). Those problems are chal-
lenging for traditional methods, due to delayed rewards,
unknown transition models, and high dimensionality of the
state space.

Recent advances in Deep Reinforcement Learning (DRL)
hold great promise for learning to solve challenging continu-
ous control problems. Popular approaches are Evolutionary
Strategy (ES) (Salimans et al., 2017; Such et al., 2017; Conti
et al., 2017) and various policy gradient methods, such as
TRPO (Schulman et al., 2015), A3C (Mnih et al., 2016),
DDPG (Lillicrap et al., 2015; Plappert et al., 2017), PPO
(Schulman et al., 2017), and ACKTR (Wu et al., 2017).
Those algorithms demonstrated learning effective policies
in Atari games and physics-based simulations without using
any control specific priors.

Most existing work focuses on training or optimization algo-
rithms, while the policy networks are typically represented
as generic multilayer perceptrons (MLPs) for the non-vision
part (Schulman et al., 2015; Mnih et al., 2016; Salimans
et al., 2017; Schulman et al., 2017; Wu et al., 2017). There
are only few efforts exploring adding specific structures to
DRL policy networks, such as inductive bias for improv-
ing sampling efficiency, episodic reward, and generalization
(Wang et al., 2016).

Some of the recent work also focused on studying network
architectures for DRL. The Dueling network of (Wang et al.,
2016) splits the Q-network into two separate estimators: one
for the state value function and the other one for the state-
dependent action advantage function. They demonstrated
state-of-the-art performance on discrete control of the Atari
2600 domain. However, the dueling Q-network is not easily
applicable to continuous control problems. Here, instead
of value or Q network, we directly add continuous control-
specific structure into the policy network. (Tu & Recht,

2017) studied the sampling efficiency of least-squares tem-
poral difference learning for Linear Quadratic Regulator.
Consistent with some of our findings, (Rajeswaran et al.,
2017; Mania et al., 2018) showed that a linear policy can still
achieve reasonable performance on some of the MuJoCo
continuous control problems. This also supports the idea of
finding a way to effectively incorporate a linear policy into
the architecture.

The idea of splitting nonlinear and linear components can
also be found in traditional feedback control liturature
(Khalil, 1996), with successful applications in control of
aircrafts (Camacho & Alba, 2013), robotics, and vehicles
(Thrun et al., 2006); albeit, those control methods are not
learned and are typically mathematically designed through
control and stability analysis. Our intuition is inspired by
the physical interpretations of those traditional feedback
control approaches.

Similar ideas of using both nonlinear and linear networks
have been explored in the vision domain, e.g. ResNet (He
et al., 2016), adding linear transformations in perceptrons
(Raiko et al., 2012), and Highway networks (Srivastava et al.,
2015). Our architecture resembles those and probably shares
the benefits of easing signal passing and optimization. In
addition, we experimentally show the learned sub-modules
of our architecture are functional control policies and are
robust against both state and action noise.

3. Background
We formulate the problem in a standard reinforcement learn-
ing setting, where an agent interacts with an infinite-horizon,
discounted Markov Decision Process (O,S,A, γ, P, r).
S ⊆ Rn, A ⊆ Rm. At time t, the agent chooses an
action at ∈ A according to its policy πθ(at|st) given its
current observation ot ∈ O or state st ∈ S, where policy
network πθ(at|st) is parameterized by θ. For problems
with visual input as observation ot, state st is considered
to be the encoded state after visual processing using a Con-
vNet, i.e. st = µ(ot). The environment returns a reward
r(st, at) and transitions to the next state st+1 according to
the transition probability P (st+1|st, at). The goal of the
agent is to maximize the expected γ-discounted cumula-
tive return: J(θ) = Eπθ

[Rt] = Eπθ
[
∑∞
i=0 γ

ir(st+i, at+i)],
with respect to the policy network parameters θ.

4. Structured Control Network Architecture
In this section, we develop an architecture for policy net-
work πθ(at|st) by introducing control-specific priors in its
structure. The proposed Structured Control Net (SCN) splits
the generic multilayer perceptron (MLP) into two separate
streams: a nonlinear control and a linear control. The two
streams combine additively into the final action. Specifi-



Structured Control Nets for Deep Reinforcement Learning

Figure 2. Various environments: (a) MuJoCo, (b) Roboschool, (c) Atari games, (d) Urban driving environments

cally, the resulting action at time t is

at = unt + ult, (1)

where unt is a nonlinear control module, and ult is a linear
control module. Intuitively, the nonlinear control is for
forward-looking and global control, while the linear control
stabilizes the local dynamics around the residual of global
control. The proposed network architecture is shown in
Figure 1.

This decoupling of control modules is inspired by traditional
nonlinear control theory (Khalil, 1996). To illustrate, let us
consider the example of the trajectory tracking problem. In
this setting, we typically have the ‘desired’ optimal trajec-
tory of the state, denoted as sdt , provided by the planning
module. The goal of the control is to track the desired trajec-
tory as close as possible, i.e. the tracking error, et = st−sdt ,
should be small. To this end, in the nonlinear control setting,
the action is given by:

at = ust + uet = ust (st, s
d
t ) +K · (st − sdt ), (2)

where ust (st, s
d
t ) is a nonlinear control term, defined as

a function of st and sdt , while uet = K · (st − sdt ) is a
linear control term, with K being the linear control gain
matrix for the tracking error et. Control theory tells us
that the nonlinear term, ust , is for global feedback control
and also feed-forward compensation based on the predicted
system behavior, sdt , while the linear control, uet , is for
reactively maintaining the local stability of the residual dy-
namics of et. At the first glance, Eq. 2 looks different from
Eq. 1. However, if we apply the following transformation,
unt (st, s

d
t ) = ust (st, s

d
t )−K · sdt , we obtain:

at = ust (st, s
d
t ) +K · (st − sdt )

= ust (st, s
d
t ) +K · st −K · sdt = unt (st, s

d
t ) +K · st,

(3)
where unt (st, s

d
t ) can be viewed as the lumped nonlinear

control term, and ult = K · st is the corresponding lin-
ear control. This formulation shows that the solution for
the tracking problem can be converted into the same form
as SCN, providing insights into the intuition behind SCN.
Moreover, learning the nonlinear module unt (st, s

d
t ) would

imply learning the desired trajectory, sdt , (planning) implic-
itly.

Figure 3. Example learning curves of MuJoCo environments using
Linear policies vs. MLP policies averaged across three trials.

For the linear control module of SCN, the linear term is
ult = K · st + b, where K is the linear control gain matrix
and b is the bias term, both of which are learned. To further
motivate the use of linear control for DRL, we empirically
observed that a simple linear policy can perform reasonably
well on some of the MuJoCo tasks, as shown in Figure 3.

For the nonlinear control module of SCN, we use a standard
fully-connected MLP, but remove the last bias term from
the output layer, as the bias is provided by the linear control
module. In the next section, we show the size of our non-
linear module can be much smaller than standard Deep RL
MLP networks due to our split architecture. We also show
that both control modules of the architecture are essential to
improving model performance and robustness.

5. Experimental Setup
We design and conduct all of our experiments following
the guidelines introduced by the recent study on DRL re-
produciblity (Henderson et al., 2017). To demonstrate the
general applicability and effectiveness of our approach, we
experiment across different training algorithms and a diverse
set of environments.



Structured Control Nets for Deep Reinforcement Learning

Figure 4. Learning curves of SCN-16 in blue, and baseline MLP-64 in orange, for ES on MuJoCo and Roboschool environments.

Figure 5. Learning curves of SCN-16 (blue), and baseline MLP-64 (orange), for PPO on MuJoCo and Roboschool environments.

5.1. Environments
We conduct experiments on several benchmarks, shown in
Figure 2, including OpenAI MuJoCo v1 (Todorov et al.,
2012), OpenAI Roboschool v1 (OpenAI, 2017), and Atari
Games (Bellemare et al., 2013). OpenAI Roboschool has
several environments similar to those of MuJoCo, but the
physics engine and model parameters differ (OpenAI, 2017).
In addition, we test our method on a custom urban driving
simulation that requires precise control and driving negotia-
tions, e.g. yielding and merging in dense traffic.

5.2. Training Methods
We train the proposed SCN using several state-of-the-art
training methods, i.e., Evolutionary Strategies (ES) (Sal-
imans et al., 2017), PPO (Schulman et al., 2017), and
ACKTR (Wu et al., 2017).

For our ES implementation, we use an efficient shared-
memory implementation on a single machine with 48 cores.
We set the noise standard deviation and learning rate as 0.1

and 0.01, respectively, and the number of workers to 30. For
PPO and ACKTR, we use the same hyper-parameters and al-
gorithm implementation from OpenAI Baselines (Dhariwal
et al., 2017).

We avoid any environment specific hyper-parameter tun-
ing and fixed all hyper-parameters throughout the training
session and across experiments. Favoring random seeds
has been shown to introduce large bias on the model per-
formance (Henderson et al., 2017). For fair comparisons,
we also avoid any specific random seed selections. As a
result, we only varied network architectures based on the
experimental need.

6. Results
Our primary goal is to empirically investigate if the pro-
posed architecture can bring together the benefits of both
linear and nonlinear policies in terms of improving training
sampling efficiency, final episodic reward, and generaliza-
tion of learned policy, while using a smaller network.



Structured Control Nets for Deep Reinforcement Learning

Figure 6. Ablation study on training performance: SCN in blue, Linear policy in orange, and MLP policy in green (same size as nonlinear
module of SCN), trained with PPO on MuJoCo and Roboschool tasks.

Following the general experimental setup, we conducted
seven sets of experiments:

(1) Performance of SCN vs. baseline MLP: we compare
our SCN with the baseline MLP architecture (MLP-64) in
terms of sampling efficiency, final episodic reward, and
network size.

(2) Generalization and Robustness: we compare our SCN
with the baseline MLP architecture (MLP-64) in terms of
robustness and generalization by injecting action and obser-
vation noise at test time.

(3) Ablation Study of the SCN Performance: we show
how performance of the Linear policy and Nonlinear MLP,
used inside of the SCN, compares.

(4) Ablation Study of Learned Structures: we test if SCN
has effectively learned functioning linear and nonlinear mod-
ules by testing each learned modules in isolation.

(5) Performance of Environment-specific SCN vs. MLP:
we compare the best SCN and the best MLP architecture for
each environment.

(6) Vehicle Driving Domain: we test the effectiveness of
SCN on solving driving negotiation problems from the urban
self-driving domain.

(7) Atari Domain: we show the ability of SCN to effec-
tively solve Atari environments.

6.1. Performance of SCN vs. baseline MLP
The baseline MLP architecture (MLP-64) used by most pre-
vious algorithms (Schulman et al., 2017; Wu et al., 2017),
is a fully-connected MLP with two hidden layers, each con-
sisting of 64 units, and tanh nonlinearities. For each action
dimension, the network outputs the mean of a Gaussian
distribution, with variable standard deviation. For PPO and

ACKTR, the nonlinear module of the SCN is an MLP with
two hidden layers, each containing 16 units. For ES, the non-
linear module of SCN is an MLP with a single hidden layer,
containing 16 units, with the SCN outputting the actions
directly due to the inherent stochasticity of the parameter
space exploration.

For each experiment, we trained each network for 2M
timesteps and averaged over 5 training runs with random
seeds from 1 to 5 to obtain each learning curve. The training
results of ES and PPO for MuJoCo/Roboschool are shown
in Figure 4 and Figure 5 respectively. The ACKTR plots are
not shown here due to their similarity to PPO. From the re-
sults, we can see that the proposed SCN generally performs
on par or better compared to baseline MLP-64, in terms of
training sampling efficiency and final episodic reward, while
using only a fraction of the weights. As an example, for ES,
the size of SCN-16 is only 15.6% of the size of baseline
MLP-64 averaged across 6 MuJoCo environments.

We calculated the training performance improvement to
be the percentage improvement for average episodic re-
ward. The average episodic reward is calculated over all 2M
timesteps of the corresponding learning curve. This met-
ric indicates the sampling efficiency of training, i.e. how
quickly the training progresses in addition to the achieved fi-
nal reward. Even with the same hidden-layer size, across all
the environments, SCN-16 achieved an averaged improve-
ment of 13.2% for PPO and 17.5% for ES, compared to
baseline MLP-64.

6.2. Generalization and Robustness
We next tested generalization and robustness of the SCN
policy by injecting Gaussian noise in action and observation
spaces at test time, and then comparing with the baseline
MLP. We injected varying levels of noise by adjusting the



Structured Control Nets for Deep Reinforcement Learning

Final Final Average Average
Task SCN MLP SCN MLP
HalfCheetah 3310 3386 2148 1693
Hopper 2479 2619 1936 1977
Humanoid 2222 1078 979 674
Walker2d 3761 3520 2404 2349
Swimmer 81 109 58 74
Ant 2977 2948 1195 1155
Roboschool
HalfCheetah

1901 2259 1419 1693

Roboschool
Hopper

2027 1411 1608 914

Roboschool Hu-
manoid

187 175 131 115

Roboschool
Walker2d

1547 774 1048 584

Roboschool
Ant

1968 2018 1481 1394

Roboschool
AtlasForward-
Walk

273 236 202 176

Table 1. Results of final episodic reward and averaged episodic
reward for best SCN vs. best MLP per environment.

standard deviation of a normal distribution. The episodic
reward for each level of noise is averaged over 10 episodes.
Figure 7 shows the superior robustness of the proposed
SCN against noise unseen during training compared to the
baseline MLP-64.

6.3. Ablation Study of the SCN Performance
To demonstrate the synergy between the linear and the non-
linear control modules for SCN architecture, we trained the
different sub-modules of SCN separately and conducted
ablation comparison, i.e. linear policy and nonlinear MLP
policy with the same size as the nonlinear module of SCN.
The results on the MuJoCo and OpenAI Roboschool with
PPO are shown in Figure 6. We make following observa-
tions: (1) the linear policy alone can be trained to solve the
task to a reasonable degree despite its simplicity; (2) SCN
outperforms both the linear and nonlinear MLP policy alone
by a large margin for most of the environments.

6.4. Ablation Study of Learned Structures
To investigate whether SCN has learned effective linear and
nonlinear modules, we conducted three tests after training
the model for 2M timesteps. Here, we denote the linear
module inside SCN as SCN-L and nonlinear module inside
SCN as SCN-N to distinguish from the separately trained
Linear policy and ablation MLP policy. We run SCN-L or
SCN-N by simply not using the other stream.

The first test compares the performance of the separately
trained Linear policy, with the linear control module learned
inside SCN (SCN-L). In simpler environments, where a
Linear policy performs well, SCN-L performs similarly.
Thus SCN appears to have learned an effective linear policy.

However, in more complex environments, like Humanoid,
SCN-L does not perform well on its own emphasizing the
fact that the nonlinear module is very important. Across
MuJoCo environments, SCN-L is able to achieve 68% of the
performance of the stand alone Linear policy when trained
with ES, and 65% with PPO. Hence for most environments,
the linear control of SCN is effectively learned and func-
tional.

The second test compares the performance of the MLP
versus the nonlinear module inside SCN (SCN-N). Unlike
the linear module test, the performance of the two identical
MLPs are drastically different. Across all environments,
SCN-N is not able to perform well without the addition of
the linear module. We found that SCN-N is only able to
achieve about 9% of the performance of the stand-alone
MLP when trained with ES, and 8% with PPO. These tests
verify the hypothesis that the linear and nonlinear modules
learn very different behaviors when trained in unison as
SCN and rely on the synergy between each other to have
good overall performance.

The third test compares the performance of SCN versus a
pseudo SCN, which is assembled post-training by a pre-
trained MLP and a pre-trained Linear policy. For tested
environments, the naive combination of the two already-
trained policies does not perform well. By combining the
separate MLP and linear model, we were able to achieve
only 18% of the performance of SCN when using ES, and
21% with PPO. This demonstrates the importance of training
both components of the structure in the same network, like
SCN.

6.5. Performance of Environment-specific SCN
In general, different environments have different complexi-
ties. To study the SCN for the most efficient size for each
environment, we sweep the hidden-layer size of the non-
linear module across the set of model sizes 64, 32, 16, 8,

Figure 7. Performance degradation of SCN compared to the base-
line MLP-64 when varying levels of noise are injected into the
action and state space.



Structured Control Nets for Deep Reinforcement Learning

Figure 8. Two sequences of 3 frames showing learned agent (blue)
via SCN, making a merge (top 3) and an unprotected left turn
(bottom 3) with oncoming traffic (red).

Urban Driving Results
Task ES

SCN/MLP
PPO
SCN/MLP

UnprotectedLeftTurn 93/76 138/102
Merge 95/81 101/88

Table 2. Final episodic rewards on the driving scenarios using the
SCN vs. MLP with ES and PPO.

and 4. As a comparison, we also sweep the hidden-layer
size of the baseline MLP to get the best MLP size for each
environment for the same size set. We keep the number of
hidden layers fixed at two.

For each environment, we compared the environment-wise
best SCN and best MLP from the model size set. We cal-
culated the average episodic reward as episodic rewards
averaged over the whole 2M timesteps of the corresponding
learning curve. This metric indicates the sampling efficiency
of training, i.e. how quickly the training progresses. Final
episodic reward is the averaged rewards of the last 100
episodes. We illustrate the results with data trained with
PPO. From Table 1, we can see SCN shows equal or bet-
ter performance, compared to the environment-wise best
performing MLP.

6.6. Vehicle Driving Domain
We next validate the effectiveness of SCN on solving negoti-
ation problems in the urban self-driving domain. Sequential
decisions in dense traffic are difficult for human drivers.
We picked two difficult driving scenarios: completing an
unprotected left turn and learning to merge in dense traffic.

For the simulation, we used a bicycle model as the vehicle
dynamics (Thrun et al., 2006). Simulation updates at 10Hz.
The other traffic agents are driven by an intelligent driver
model with capabilities of adaptive cruise control and lane
keeping. Both learned agents and other traffic agents are
initialized randomly within a region and a range of starting

Atari Results
Metric SCN MLP

Average Reward 34 26
Final Reward 35 25

Table 3. Number of Atari games won by SCN-8 vs. MLP-512
when trained with PPO.

speeds. The other traffic agents have noise injected into their
distance keeping and actions for realism. The state observed
by the agent consists of ego vehicle state, states of other
traffic agents, and the track on which it is traveling (e.g.
center lane). The reward is defined to be -200 for a crash,
200 for reaching the goal, small penalties for being too close
to other agents, small penalties for going too slow or too
fast, and small incentives for making progress on the track.
An episode reward larger than 50 is considered to be solved.
A Stanley steering controller (Thrun et al., 2006) is used to
steer the vehicle to follow the track. The action space for
the learned agent is a continuous acceleration value.

Table 2 shows the final episodic reward achieved, comparing
SCN and MLP-64, trained with ES and PPO. In Figure 8, we
visualize the learned SCN policies controlling the learned
agent (blue) while successfully making a merge and an
unprotected left turn through a traffic opening.

6.7. Atari Domain
In this section, we show that SCN is able to learn effective
policies in Atari environments. The SCN with visual in-
puts uses the same convolutional layers and critic model
as (Schulman et al., 2017), but the learned visual features
are flattened and fed into the linear and nonlinear modules
of SCN. The baseline Atari policy from PPO (Schulman
et al., 2017) is a fully-connected MLP with one hidden layer
containing 512 units, chosen by cross-validation, on the
flattened visual features, which we denote as MLP-512. The
nonlinear module of SCN is a MLP with one hidden layer
that has 8 units (SCN-8).

Each learning curve and metric is averaged across three
10M-timestep trials (random seeds: 0,1,2). Learning curves
for all 60 games are provided in the Appendix. We summa-
rize the results in Table 3, where we show that the SCN-8
can perform competitively in comparison to Atari baseline
policy, MLP-512 (much larger in size), across 60 Atari
games. If the metric is similar, we consider SCN wins
since it is smaller in size. Figure 9 displays learning curves
for 6 randomly chosen games. We can see that SCN-8,
achieves equal or better learning performance compared to
the baseline policy, MLP-512, and the ablation policy, MLP-
8. We further observed that even with 4 hidden units, SCN-4,
which is smaller in size than SCN-8, performs similarly well
on many games tested.



Structured Control Nets for Deep Reinforcement Learning

Figure 9. Atari environments: SCN-8 in blue, baseline Atari MLP (MLP-512) in orange, and ablation MLP (MLP-8) in green. 10M
timesteps equal 40M frames.

Figure 10. Locomotive tasks from MuJoCo and Roboschool: lo-
comotor net (Loco) in blue, SCN in orange, and baseline MLP
(MLP-64) in green. Results achieved using ES.

7. Case Study: Locomotion-specific SCN
In our final set of experiments, we use dynamic legged
locomotion as a case study to demonstrate how to tailor
SCN to specific tasks using the task-specific priors.

In nature, neural controllers for locomotion have specific
structures, termed central pattern generators (CPGs), which
are neural circuits capable of producing coordinated rhyth-
mic patterns (Ijspeert, 2008). While the rhythmic motions
are typically difficult to learn with general feedforward net-
works, by emulating biological CPGs using Fourier series
and training the Fourier coefficients, we are able to show
the power of adding this inductive bias when learning cyclic
movements in the locomotive control domain. The nonlinear
module of SCN becomes

unt =

c∑
i=1

Aisin(ωit+ φi), (4)

where for each action dimension, Ai, ωi, φi are the ampli-
tude, frequency and phase, respectively, of the component i,
that will be learned, and c is set to 16 sinusoids. In our
experimental results, we find that the linear module of SCN
is necessary for achieving better performance, by stabilizing
the system around the residual of CPGs outputs. We name
this specific instantiation of SCN “Locomotor Net”. By
replacing the MLP in the nonlinear module of SCN with a
locomotive-specific implementation, we were able to further
improve sampling efficiency and the final reward on those
environments. Example results on locomotive tasks from
MuJoCo and Roboschool are shown in Figure 10.

8. Conclusion
In this paper we developed a novel policy network architec-
ture that is simple, yet effective. The proposed Structured
Control Net (SCN) has the benefits of both linear and non-
linear control: improving training sampling efficiency, final
episodic reward, and generalization of learned policy, in
addition to using a smaller network and being general and
applicable to different training methods. By incorporating
problem specific priors into the architecture, the proposed ar-
chitecture has the potential to improve upon broader control
tasks. Our case study demonstrated further improved per-
formance for locomotion tasks, by emulating the biological
central pattern generators (CPGs) as the nonlinear part of the
architecture. For future work, we plan to extend the SCN
to incorporate a planning module. The planning module
will be responsible for long-term planning and high-level
abstracted decision making.



Structured Control Nets for Deep Reinforcement Learning

ACKNOWLEDGMENTS

We thank Emilio Parisotto, Yichuan Tang, Nitish Srivastava,
and Hanlin Goh for helpful comments and discussions. We
also thank Russ Webb, Jerremy Holland, Barry Theobald,
and Megan Maher for helpful feedback on the manuscript.

References
Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

The arcade learning environment: An evaluation platform
for general agents. J. Artif. Intell. Res.(JAIR), 47:253–279,
2013.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Camacho, E. F. and Alba, C. B. Model predictive control.
Springer Science & Business Media, 2013.

Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stan-
ley, K. O., and Clune, J. Improving exploration in evo-
lution strategies for deep reinforcement learning via a
population of novelty-seeking agents. arXiv preprint
arXiv:1712.06560, 2017.

Dhariwal, P., Hesse, C., Plappert, M., Radford, A., Schul-
man, J., Sidor, S., and Wu, Y. Openai baselines. https:
//github.com/openai/baselines, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that
matters. arXiv preprint arXiv:1709.06560, 2017.

Ijspeert, A. J. Central pattern generators for locomotion
control in animals and robots: a review. Neural networks,
21(4):642–653, 2008.

Khalil, H. K. Noninear systems. Prentice-Hall, New Jersey,
2(5):5–1, 1996.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. Journal of Machine
Learning Research, 17(39):1–40, 2016.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Mania, H., Guy, A., and Recht, B. Simple random search
provides a competitive approach to reinforcement learn-
ing. arXiv preprint arXiv:1803.07055, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pp. 1928–
1937, 2016.

Oh, J., Singh, S., and Lee, H. Value prediction network. In
Advances in Neural Information Processing Systems, pp.
6120–6130, 2017.

OpenAI. Roboschool. https://github.com/
openai/roboschool, 2017.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,
R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychow-
icz, M. Parameter space noise for exploration. arXiv
preprint arXiv:1706.01905, 2017.

Raiko, T., Valpola, H., and LeCun, Y. Deep learning made
easier by linear transformations in perceptrons. In Artifi-
cial Intelligence and Statistics, pp. 924–932, 2012.

Rajeswaran, A., Lowrey, K., Todorov, E. V., and Kakade,
S. M. Towards generalization and simplicity in continu-
ous control. In Advances in Neural Information Process-
ing Systems, pp. 6553–6564, 2017.

Salimans, T., Ho, J., Chen, X., and Sutskever, I. Evolu-
tion strategies as a scalable alternative to reinforcement
learning. arXiv preprint arXiv:1703.03864, 2017.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In Proceedings of
the 32nd International Conference on Machine Learning
(ICML-15), pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shalev-Shwartz, S., Ben-Zrihem, N., Cohen, A., and
Shashua, A. Long-term planning by short-term prediction.
arXiv preprint arXiv:1602.01580, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway
networks. arXiv preprint arXiv:1505.00387, 2015.

https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/openai/roboschool
https://github.com/openai/roboschool


Structured Control Nets for Deep Reinforcement Learning

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley,
K. O., and Clune, J. Deep neuroevolution: Genetic algo-
rithms are a competitive alternative for training deep neu-
ral networks for reinforcement learning. arXiv preprint
arXiv:1712.06567, 2017.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P.
Value iteration networks. In Advances in Neural Informa-
tion Processing Systems, pp. 2154–2162, 2016.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D.,
Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M.,
Hoffmann, G., et al. Stanley: The robot that won the
darpa grand challenge. Journal of field Robotics, 23(9):
661–692, 2006.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Con-
ference on, pp. 5026–5033. IEEE, 2012.

Tu, S. and Recht, B. Least-squares temporal difference
learning for the linear quadratic regulator. arXiv preprint
arXiv:1712.08642, 2017.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,
and Freitas, N. Dueling network architectures for deep
reinforcement learning. In International Conference on
Machine Learning, pp. 1995–2003, 2016.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., and Ba,
J. Scalable trust-region method for deep reinforcement
learning using kronecker-factored approximation. In
Advances in neural information processing systems, pp.
5285–5294, 2017.


