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Abstract

Low-dimensional discriminative representations
enhance machine learning methods in both per-
formance and complexity, motivating supervised
dimensionality reduction (DR) that transforms
high-dimensional data to a discriminative sub-
space. Most DR methods require data to be i.i.d.,
however, in some domains, data naturally come
in sequences, where the observations are tem-
porally correlated. We propose a DR method
called LT-LDA to learn low-dimensional tempo-
ral representations. We construct the separabili-
ty among sequence classes by lifting the holistic
temporal structures, which are established based
on temporal alignments and may change in differ-
ent subspaces. We jointly learn the subspace and
the associated alignments by optimizing an objec-
tive which favors easily-separable temporal struc-
tures, and show that this objective is connected to
the inference of alignments, thus allows an itera-
tive solution. We provide both theoretical insight
and empirical evaluation on real-world sequence
datasets to show the interest of our method.

1. Introduction
Multivariate temporal sequences arise in a wide range of
applications, where the pattern of interest is represented
as a sequence of local feature vectors. The local features
may be high-dimensional and contain noisy information.
Thus it is desirable to reduce the dimension of the fea-
tures in sequences by projecting them to a discriminative
low-dimensional subspace, in which sequence classifica-
tion would become faster and more accurate.

Various supervised dimensionality reduction (DR) methods
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have been developed for vector data under the i.i.d. assump-
tion, but they cannot be applied to the features in sequences
by omitting the temporal dependencies. DR for sequence
data aims at learning a subspace by maximizing the sep-
arability among sequence classes, where the separability
embodies in the differences on temporal structures. The
temporal structures reflect the common evolutions of all se-
quences from the same class, and they depend on temporal
alignments to establish correspondences among sequences
with local temporal differences. The separability and ob-
jective are more difficult to formulate and manipulate by
nature. For these reasons, DR for sequence data has re-
ceived much less attention.

Existing methods such as Linear Sequence Discriminan-
t Analysis (LSDA) (Su & Ding, 2013; Su et al., 2018)
and Max-Min inter-Sequence Distance Analysis (MMS-
DA) (Su et al., 2017a) construct the separability based on
generative models. For each class, they train a left-
to-right Hidden Markov Model (HMM) (Rabiner, 1989))
from the original sequences. The mean of the features
aligned to each hidden state is calculated, and the mean-
s of all ordered states form a mean sequence. The inter-
class distance is measured as the Dynamic Time Warping
(DTW) (Sakoe & Chiba, 1978) distance between the mean
sequences. Such separability depends on the alignments
between the sequences and the hidden states, which fur-
ther rely on the similarities of the features. When pro-
jecting the features to a subspace, the local similarities a-
mong the transformed features may change, and hence the
alignments may change accordingly. On the other hand,
the projection is determined by maximizing the separabili-
ty, where the separability should be constructed based on
the alignments in the subspace. Therefore, learning the
projection and inferring the alignments are entangled. To
make it tractable, existing methods simply fix the align-
ments in the underlying subspace to those in the original s-
pace. However, the resulting separability cannot reflect the
real confusion relationship between classes in the subspace.
Also, HMM-based separability requires a large number of
sequences for training and is poor in scalability.

In this paper, we propose a supervised DR method for se-
quence data called Latent Temporal Linear Discriminan-
t Analysis (LT-LDA). We learn an abstract template for
each class to discover the temporal structures via employ-
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ing the modified DTW barycenter (Petitjean et al., 2011;
Su et al., 2016). We then construct the separability among
sequence classes based on the alignments between the ab-
stract templates and the training sequences. Although de-
termining the alignments by learning the abstract templates
and learning the subspace by maximizing the constructed
separability still rely on each other, we show that their ob-
jectives are actually connected, which allows us to jointly
learn the most discriminative subspace together with the
associated latent alignments, resulting in sequences of low-
dimensional discriminative temporal representations.

The main contributions are as follows. (1) Different from
the HMM-based separability, our new construction of sep-
arability does not require lots of training data. It can be
performed even when only one training sequence per class
is available. (2) Different from previous methods where
the subspace can only be learned through pre-fixing the
alignments, we propose to learn the subspace and the latent
alignments simultaneously and develop an efficient itera-
tive solution. The learned subspace is thereby holistically
optimal. (3) We establish a connection between our objec-
tive formulation and the abstract template learning, which
ensures the convergence of our solution. We further pro-
vide theoretical insight on the subspace selection.

2. Related Work
Various supervised linear DR methods have been proposed
for vector data, such as Linear Discriminant Analysis (L-
DA) (Fisher, 1936), Marginal Fisher Analysis (Yan et al.,
2007), and Max-min Distance Analysis (Bian & Tao, 2011;
Zhang & Yeung, 2010). LDA optimizing the Fisher crite-
rion is perhaps the most widely used method for its sim-
pleness, effectiveness and the well-established theory, and
is getting consistent interest (De la Torre & Kanade, 2006;
Ding & Li, 2007; Ye et al., 2007; Nikitidis et al., 2014) in
machine learning. These methods cannot be applied to vec-
tors in sequences, which violate the basic i.i.d. assumption.
Our method performs DR for sequence data by lifting the
inherent temporal dependencies.

In (Zhou & De la Torre, 2012; Trigeorgis et al., 2018), lin-
ear and non-linear transformations were learned for each
sequence pair to perform multi-modal alignments. The
transformations for different sequence pairs are differen-
t. In our method, the projection is for discriminating dif-
ferent classes and stays the same for all sequences from
all classes. In (Shyr et al., 2010), a sufficient DR ap-
proach was proposed for sequence labeling by building
sequence kernels. The labels are associated with the vec-
tors in sequences rather than the whole sequences, and the
task is to predict a class label for each vector in the se-
quences. In (Flamary et al., 2012), the features are trans-
formed by unidimensional convolutions of all dimensions

for sequence labeling. Our method focuses on linear pro-
jection and the task is to predict a label for each entire se-
quence. In (Lajugie et al., 2014), a Mahalanobis distance
was learned given the ground-truth alignments of training
samples for multivariate sequence alignment, while in our
method the alignments of both the training sequences and
the test sequences are unavailable.

LSDA (Su & Ding, 2013; Su et al., 2018) and MMS-
DA (Su et al., 2017a) targeted at the same problem as this
paper, where the projection was learned by maximizing the
separability defined on HMM-based temporal structures.
The alignments of the sequences to the hidden states in the
original space and the underlying subspace were assumed
to be the same. LSDA optimized the Fisher criterion and
made further approximations on the inter-class scatter to
make the optimization tractable; MMSDA optimized the
max-min distance criterion, resulting in solving a series of
time-consuming semi-definite programming problems and
cannot scale to high dimension. Differently, in our method,
the discovery of temporal structures is DTW-based and on-
ly depends on deterministic operations, which avoids the es-
timation of massive parameters of HMM; The latent align-
ments in the subspace can be jointly learned with the pro-
jection owing to our construction of separability.

Recurrent Neural Networks (RNNs) (Graves et al., 2013;
Sutskever et al., 2014) have seldom been used for DR but
often as classifiers. The sequences can be projected first
by our method, and then input to RNNs for classification.
This way, the input sequences are more discriminative and
RNNs need to learn fewer parameters.

3. Latent Temporal Linear Discriminant
Analysis

3.1. Learning Abstract Templates

We learn an abstract template M consisting of ordered tem-
poral structures for each sequence class from all its training
sequence samples. Each sequence X = [x1,x2, · · · ,xT ]
consists of a series of ordered frame-wide feature vectors,
where xt is the feature vector extracted from the t-th frame,
and T is the length of the sequence. For a specific se-
quence class, we denote its training sequence sample set
by {X1,X2, · · · ,XN}, where N is the number of training
sequences in the set, and Tn is the length of Xn. Different
sequence samples may have different lengths.

We define the abstract template as a sequence of the ab-
stracted temporal structures M = [m1,m2, · · · ,mL],
where the element mj captures the average frame-wide fea-
tures of a temporal structure or stage that each sequence
must go through. Hence M can be considered as an atomic
sequence. L is the length of M, which is generally shorter
than any sequence sample, because the learned template on-
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ly contains the essential temporal structures and each struc-
ture will last several frames in a sequence.

M can be used to divide a sequence sample X into dif-
ferent temporal regions. This is achieved by aligning X
to M with a warping function, which can be defined by
a warping path P = [p1,p2, · · · ,pL]. pt = [st, et]

T

means that the {st, st +1, · · · , et}-th elements in X are
aligned to the t-th element of M. Similar to DTW, sever-
al constraints are applied to P: (1) s1 = 1, eL = T ; (2)
et < st+1, ∀t = 1, · · · , L − 1; (3) et ≥ st; (4) lt ≤ aT

L ,
where lt=et−st+1 is the number of elements in X that are
aligned to the t-th element in M, a ≥ 1 is a factor that con-
trols the allowed degree of warping. This constraint means
that the number of elements in X aligned to any element in
M should not exceed a multiple of the average number, and
hence prevents extremely unbalanced partitioning. There-
fore, only salient temporal structures that are universal in
all training sequences can be captured by M.

We employ the modified DTW algorithm (Su et al., 2016;
2017b) to compute the optimal warping path. We denote
the cost of a partial path of aligning the first i elements in
X to the first j elements in M as c(i, j, l), where the last l
elements of the first i elements in X are aligned to the j-th
element in M. c(i, j, l) can be determined recurrently:

c(i, j, l) =


d(i, j), l = 1, i = j = 1

d(i, j) +
aT/L

min
k=1

c(i− 1, j − 1, k), l = 1

d(i, j) + c(i− 1, j, l − 1), l ≤ aT
L

Inf, otherwise

,

(1)
where d(i, j) is the Euclidean distance between the i-th ele-
ment of X and the j-th element of M. The minimum align-
ment cost can be found by such a dynamic programming
and is achieved at the end of recursion. The corresponding
optimal warping path is obtained by back tracking.

Based on the dynamic alignment Eq. (1), M can be ob-
tained by employing the DTW barycenter averaging (D-
BA) (Petitjean et al., 2011) as follows. We first use the u-
niform alignments to initialize M. Specially, in the n-th
training sequence Xn, lnj = Tn

L elements in Xn are aligned
to the j-th element of M, ∀j = 1, · · · , L. The initial j-th
element mj of M can be computed as:

mj =
1

N∑
n=1

lnj

N∑
n=1

enj∑
k=snj

xn
k , (2)

where Pn = [pn
1 , · · · ,pn

L] is the alignment path that aligns
Xn to M, pn

j = [snj , e
n
j ]

T records the start and end indexes
of elements in Xn that are aligned to mj . We then align
each training sequence Xn to the initial M using Eq. (1)
to update the alignment path Pn, for n = 1, · · · , N . We

Algorithm 1 Abstract template learning
Input: {X1, · · · ,XN}; L; a;
Output: M; Pn, n = 1, · · · , N ;

1: Initialize the uniform alignment path Pn for the train-
ing sequence Xn, for n = 1, · · · , N ;

2: Compute the initial abstract template M using Eq. (2);
3: while M has not converged do
4: Update the alignment paths Pn by aligning Xn to

M, n = 1, · · · , N using Eq. (1);
5: Update the abstract template M with the alignment

paths Pn, n = 1, · · · , N using Eq. (2);
6: end while

finally recompute the elements in M using Eq. (2) with the
updated Pn again. This process can be repeated until the
difference of M in the current iteration and M in the previ-
ous iteration is below a threshold or a maximum number of
iterations is reached. We summarize the abstract template
learning algorithm in Alg. 1.

Alg. 1 extends DBA to multi-dimensional sequences with
a uniform initialization, and imposes stricter constraints on
the warping path. As a result, any vector in any sequence
can only be aligned to one element of M, which facilitates
the invariant property of the separability in Sec. 3.2.

Convergence. Alg. 1 actually minimizes the following ob-
jective function:

min
Pn,n=1,··· ,N

L∑
j=1

N∑
n=1

enj∑
k=snj

∥xn
k −mj∥22. (3)

The value of the objective function in Eq.(3) decreases by
both alternative procedures in Alg.1. The objective func-
tion also has a lower bound 0. Thus Alg.1 is guaranteed to
converge to a local minimum.

3.2. Separability Construction

We measure the separability among sequence classes based
on their abstract templates in two aspects: the within-class
scatter and the inter-class distance. We define the intra-
class scatter of a sequence class as the sum of variances of
all component temporal structures in the abstract template:

S =
L∑

j=1

(
N∑

n=1

lnj /
N∑

n=1

Tn)Sj . (4)

lnj is the number of features in the n-th sequence aligned
to the j-th temporal structure in the abstract template. Sj

is the variance of the j-th temporal structure, which can be
estimated as the variance matrix of all feature vectors in all
training sequences aligned to the j-th element of M.
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For sequence class i, we denote its intra-class scatter by
Si. Assuming there are C sequence classes, we define the
within-class scatter as the sum of intra-class scatters of all
classes weighted by the prior probability pi of class i:

Sw =
C∑
i=1

piSi, (5)

where pi can be estimated as the number of sequences from
class i divided by the number of sequences from all classes.

The learned abstract template M of a sequence class repre-
sents the temporal structures and their general evolution of
the class. The separability between two sequence classes
can be reflected by the difference between the two corre-
sponding abstract templates. For two sequence classes i
and j, we define the separability between them as:

Sb =
∑

1≤i<j≤C

∑
1≤u,v≤L

piup
j
v(m

i
u −mj

v)(m
i
u −mj

v)
T
.

(6)
mi

u and mj
v denote the u-th element of Mi and the v-th

element of Mj , respectively. piu and pjv denote the prior
probabilities of mi

u and mj
v , respectively. piu is estimated

as the number of vectors in sequences from class i that are
aligned to mi

u divided by the number of all vectors in all
sequences from all classes.

Constructing the inter-class scatter by Eq. (6) is equivalen-
t to viewing each temporal structure as a subclass. Since
each sequence class is abstracted by several ordered tempo-
ral structures, if all temporal structures from all classes are
maximally separated, the separability of different sequence
classes increases accordingly. Thus Eq. (6) can indeed re-
flect the separability between sequence classes.

Note that both Sw (5) and Sb (6) rely on the alignments of
sequence samples to the corresponding abstract templates:
P = {Pi

n, n = 1, 2, · · · , N i, i = 1, 2, · · · , C}. We denote
them by Sw(P) and Sb(P)1, respectively, to emphasize the
dependencies on alignments.

Compared with HMM-based separability (Su & Ding,
2013; Su et al., 2018), our separability construction has sev-
eral advantages. (1). It does not require a large amount
of training data. Even when each class has only one se-
quence sample, Alg. 1 can still be performed and mean-
ingful scatters can thereby be constructed. In this case, Al-
g. 1 degrades to the temporal clustering algorithm (Su et al.,
2016). (2). It does not need to estimate any parameter, thus
has better scalability. (3). Owing to the constraints on the
warping path, calculating Sw by Eq. (5) is also equivalent
to viewing all temporal structures in all classes as subclass-
es. Thus Sb(P) + Sw(P) = St, where St is the total s-

1Strictly speaking, they also depend on M, but M and P are
closely associated, so we omit M for brevity.

catter of all features in all sequences and is independent of
P. This invariant property ensures the joint optimization in
Sec. 3.3.

3.3. Joint Learning of the Transformation and the
Latent Alignments

Our goal is to learn a linear transformation matrix W ∈
Rd×d′

to project feature vectors in sequences from the o-
riginal d-dimensional space to the most discriminative d′-
dimensional subspace, in which the separability among d-
ifferent sequence classes are maximized. The separability
depends on the alignments between the sequences and the
abstract templates, which are inferred based on the pairwise
distances between feature vectors in the space. When the
features are projected to a subspace, the distances among
the transformed features may change. The alignments may
change accordingly, which should be re-calculated using
Alg. 1 in the subspace. The updates of the alignments in
turn affect the determination of the transformation. Exist-
ing methods (Su & Ding, 2013; Su et al., 2018) tackle such
entanglement by fixing the alignments obtained in the orig-
inal space, which may lead to sub-optimal solutions.

We consider the joint learning of the transformation and the
abstract templates together with the corresponding tempo-
ral alignments in the latent subspace simultaneously. We
optimize the Fisher criterion that maximizes the inter-class
separability and minimizes the within-class scatter. Due to
the invariant property: Sb(P) + Sw(P) = St, the optimal
projections of maximizing the ratio of Sb and Sw and max-
imizing the ration of Sb and St are the same (Fukunaga,
1990). Therefore, we formulate our objective function as
follows:

max
W,P

tr((WTStW)−1WTSb(P)W). (7)

We solve Eq. (7) by alternatively updating W and P to
obtain a local optimal solution. We call this method Latent
Temporal Linear Discriminant Analysis or LT-LDA, which
is summarized in Alg. 2.

In the first stage, LT-LDA optimizes over P by fixing W.
The first inverse matrix item (WTStW)−1 in Eq. (7) does
not depend on P. We omit this item for the moment to
derive an intuitive solution and will explain its effect later.
The objective then becomes

max
P

tr(WTSb(P)W). (8)

Since Sb(P) = St − Sw(P), Eq. (8) is equivalent to:

min
P

tr(WTSw(P)W). (9)

Substituting Eq. (5) to Eq. (9) and expanding, Eq. (9) is
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Algorithm 2 LT-LDA
Input: the training sequences of each class c = 1, · · · , C,
the length of the abstract template L, the control factor a;
Output: the projection W;

1: Initialize the abstract template Mc and the associated
alignments Pc in the original space using Alg. 1, for
c = 1, · · · , C; Calculate Sw (5) and Sb (6) according
to Pc and Mc;

2: Initialize W by solving Eq.(11)
3: while W has not converged do
4: Project the training sequences into a subspace by W;

Update Mc and Pc in this subspace using Alg. 1, for
c = 1, · · · , C;

5: Re-calculate Sw and Sb with the updated alignments
P by Eq. (5) and Eq. (6), respectively;

6: Update W by solving Eq. (11);
7: end while

transformed to:

C∑
i=1

pi min
Pin,n=1,··· ,N

L∑
j=1

Ni∑
n=1

einj∑
k=sinj

∥∥x̂in
k − m̂i

j

∥∥2
2
, (10)

where x̂in
k = WTxin

k and m̂i
j are the projected feature

and the element of the abstract template in the subspace,
respectively. The superscript i is to indicate that the vari-
able belongs to class i. To ensure the convergence and
compensate the omitted item when deriving Eq. (8) which
will be more clear in Section 3.4, the features should first
be centered before the start of the iterations, and a whiten-
ing preprocessing should be applied to all features in all
sequences in this stage. That is, the mean of all xin

k is zero,

and x̂in
k = WwW

Txin
k , where Ww = Γ

− 1
2

w is whitening
transformation and Γw is the total scatter of all projected
features in all sequences. In our experiments, we found that
the two procedures can be neglected, and the LT-LDA still
converges while the computational complexity is reduced.

Each of the C components of minimization is exactly the
same with Eq. (3) in the subspace associated with W in-
stead of the original space. These minimizations are inde-
pendent from each other, and hence we can learn the ab-
stract template and the corresponding alignments of train-
ing sequences for each of the C classes using Alg. 1 indi-
vidually. The learned alignments for all the sequences in
all the classes are used to update Sw and Sb using Eq. (5)
and Eq. (6), respectively.

In the second stage, LT-LDA optimizes over W for given
P. In this case, both Sw and Sb are fixed, and the objective
function becomes a standard LDA problem:

max
W

tr((WTStW)−1WTSbW)

⇔ max
W

tr((WTSwW)−1WTSbW).
(11)

The columns of the updated W are given by the eigenvec-
tors of S−1

w Sb with respect to the d′ largest eigenvalues.

3.4. Theoretical Analysis

We theoretically provide more insights by proving 1) that
the abstract template learning algorithm (Alg. 1) can be
linked to a trace maximization formulation; 2) that the LT-
LDA algorithm (Alg. 2) is guaranteed the converge; 3) that
it is possible to simplify the joint optimization of Eq. (13)
under certain conditions. All proofs are given in the supple-
mentary material.

Let Z be the matrix consisting of all frame-wise feature
vectors in all training sequences. Let T be the align-
ment indicator matrix, which is defined as follows: T =
{πi,k}Nt×CL, where πi,k = 1 if the frame-wide feature
vector zi in the i-th column of Z is in the sequence from
the c =

⌈
(k − 1

2 )/L
⌉
-th class and is aligned to the l =

k − (c − 1)L-th stage of class c, and πi,l = 0 otherwise.
Nt is the total number of vectors in all the training se-
quences from all the samples. Following (Dhillon et al.,
2005; Ye et al., 2007), the weighted indicator matrix is de-
fined as F = T(TTT)−

1
2 .

It can be shown that

Fi,k =

{
1/
√
nk, if zi ∈ (c, l)

0, otherwise
,

where nk is the number of 1 in the k-th column of F, i.e.,
the number of vectors that are aligned to stage l of class c.
Lemma 1. Objective function (3) is equivalent to the trace
maximization problem

max
F

tr(FTZTZF). (12)

Lemma 2. Objective function (7) is equivalent to the trace
maximization problem

max
W,F

tr(FTZTW(WTZZTW)−1WTZF). (13)

Theorem 1. The LT-LDA algorithm (Alg. 2) is guaranteed
the converge.

Similar to (Ye et al., 2007), in some specific cases, the join-
t optimization of Eq. (13) can be simplified by factoring
out the projection matrix W. The result is summarized as
follows:
Theorem 2. Let G = ZTZ be the Gram matrix. When
the dimensionality is reduced to a specific value d′ =
min(CL, d,Nt) and a regularization term δINt is added
to the total scatter St, where INt is the Nt-order identity
matrix, if W∗ and F∗ are the optimal solutions of the trace
maximization problem (13):

max
W,F

tr(FTZTW(WT (ZZT + δINt)W)−1WTZF)

(14)
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then F∗ is also the optimal solution of the problem

max
F

tr(FT (INt − (INt +
1

δ
G)−1)F) (15)

This theorem provides an upper bound of the objective
for the stage of learning the partitions, which provides
additional insights on the subspace selection of LT-LDA.
From Lemma 1, in the original space, the objective func-
tion (12) of the abstract template leaning actually max-
imizes tr(FTZTZF) = tr(FTGF). While in the d′-
dimensional subspace, the objective (15) of LT-LDA actual-
ly maximizes a kernel version of Eq. (12), where the kernel
Gram matrix Gk = INt

− (INt
+ 1

δG)−1 is used instead
of the original Gram matrix G in Eq. (12). Gk → G/δ
when δ → ∞, and hence objective (15) is equivalent to s-
tandard objective (12). Gk → UrU

T
r when δ → 0, Ur

is the set of the largest r principal components of all the
features in all the sequences w.r.t. the non-zero eigenval-
ues of G. Thus objective (15) is equivalent to learning the
abstract templates in the subspace determined by PCA.

Gk can be further expressed as

Gk = Udiag(λ1/(λ1 + δ), · · · , λNt/(λNt + δ))UT .

This means that, the iterative procedures of LT-LDA es-
sentially construct a kernel matrix for learning the laten-
t alignments w.r.t. the abstract templates. The construc-
tion is achieved by performing a transformation to G, such
that each eigenvalue λ of G is transformed to λ/(λ + δ),
while the eigenvectors of G remain unchanged. The sub-
space can be determined easily given the alignments with-
out the need of the iterative procedures. The nature of
the subspace selection by LT-LDA indicates that it may be
possible to accelerate the LT-LDA algorithm by fixing the
partitions learned by optimizing (15) and hence getting rid
of the time-consuming iterative procedures, without signif-
icant degradation in performance.

3.5. Computational Complexity

The complexity of updating P using Alg. 1 for all the C
classes is O(ICNLTd), I is the number of iterations in
Alg. 1.. The complexity of re-calculating Sw, Sb and W is
O(CNTd2 + C2L2d2 + d3). Thus the overall complexity
of Alg. 2 is O(I ′(ICNLTd+ CNTd2 + C2L2d2 + d3)),
I ′ is the number of iterations in Alg. 2.

4. Experimental Results
In this section we evaluate the proposed LT-LDA in com-
parison with several supervised DR methods for sequences
on three real-world datasets. Evaluations on another dataset
are presented in the supplementary material.

4.1. Experimental Setup

Datasets. ChaLearn Gesture dataset (Escalera et al.,
2013b;a) contains Kinect videos from 20 Italian gestures.
The dataset has been split into training, validation and test
sets. MSR Sports Action3D dataset (Li et al., 2010) con-
sists of depth sequences from 20 sports actions. We fol-
low the same experimental setup as in (Wang et al., 2012;
Wang & Wu, 2013) to split the dataset into training and test
set. Olympic Sports dataset (Niebles et al., 2010) consist-
s of 783 video sequences from 16 actions. The dataset has
been split into training and test sets, where 649 videos are
used for training and 134 videos are used for testing.

Frame-wise features. We extract a feature vector from
each frame, and hence every action video is represented
by a sequence of frame-wise features. For the Chalearn
dataset, we employ the frame-wise features provided by the
authors of (Fernando et al., 2015), which are body-joints-
based features with a dimensionality of 100. For the M-
SR Action3D dataset, we employ the frame-wise features
provided by the authors of (Wang & Wu, 2013), which are
the relative positions of all the 3D joints with a dimension-
ality of 192. For the Olympic Sports dataset, we employ
the improved dense trajectories (Wang & Schmid, 2013)
based frame-wise features. MBH descriptors are extracted
at densely sampled points from each frame and then encod-
ed by Bag-of-Words with a codebook of 4, 000 visual word-
s. The frame-wise feature is the histogram of the quantized
descriptors with a dimensionality of 4, 000.

Classification and evaluation measures. We adopt three
classifiers in the learned subspace, including the HMM
classifier, the DTW classifier, and the SVM classifier. For
the HMM classifier, a left-to-right HMM with 4 states and
self-loops is trained for each sequence class, and a test se-
quence is classified to the class whose HMM has the high-
est probability to generate it. For the DTW classifier, the
training sequence that has the smallest sum of DTW dis-
tances with all other sequences from the same class is s-
elected as the template of this class. A test sequence is
classified to the class whose temple has the smallest DTW
distance to it. The two classifiers directly take sequences
as input, and we use the accuracy as the performance mea-
sure. For the SVM classifier, we encode each sequence
into a vector by rank pooling (Fernando et al., 2015). Lin-
ear SVMs are trained on these encoded vectors, and the
parameter C of SVM is selected by cross-validation. We
use the accuracy and the Mean Average Precision (MAP)
as the evaluation measures for the SVM classifier.

4.2. Influence of Parameters

The proposed LT-LDA has two preset parameters: the
length of each abstract template L and the factor a control-
ling the allowed degree of warping. In this section we eval-
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Figure 1. Different performances with the SVM classifier as func-
tions of (a) the length L of the abstract template and (b) the control
factor a on the MSR Action3D dataset.

uate the influence of them on the MSR Action3D dataset.
Evaluations on other datasets are presented in the supple-
mentary material. Different performance measures includ-
ing accuracy, MAP, precision and recall with the SVM clas-
sifier are evaluated by increasing L from 3 to 21 with an in-
terval of 3 while fixing a to 2, and increasing a from 1 to 5
with an interval of 0.5 while fixing L to 8, respectively. The
reduced dimension is fixed to 20. The results are shown in
Fig. 1. The optimal parameters are generally the same for
multi-class indicators including accuracy, precision, recall
and F-score, but are different for MAP.

LT-LDA achieves the highest multi-class performances
when L = 9 on this dataset. The larger the L, the longer
the template, the finer the captured temporal structures, but
the less accurate the estimated statistics of structures, and
the more likely to cause overfitting. Therefore, the perfor-
mances decrease if the length L is too long or too short.
Generally, setting L within the range of 6 to 9 leads to sat-
isfactory results. A too large a easily leads to unbalanced
alignments. If a is too small, the flexibility of alignments
may be restricted. Allowing appropriate warping leads to
satisfactory results. We fix a to 2 in the following ex-
periments, and fix L to 8 except on the Olympic Sports
dataset, where we set L to 20 such that LT-LDA can pre-
serve 20× C − 1 = 319 dimensions at most.

4.3. Effects of the Joint Learning

In LT-LDA, the latent alignments are jointly learned with
the underlying subspace. If instead we use the alignments
in the original space calculated by Alg. 1 directly, LT-LDA
degenerates to the initialization of W in LT-LDA. We de-
note this algorithm by ini-LT-LDA and compare it with
LT-LDA on the large-scale Olympic Sports dataset. The
comparisons by using different classifiers and evaluation
measures are shown in Fig. 2. We can observe that LT-
LDA significantly outperforms ini-LT-LDA by a large mar-
gin. Learning the latent alignments associated with the sub-
space jointly does help to improve the classification per-
formance in the subspace. This is because the temporal
structures and the alignments may change from those in the
original space. In the learned subspace of ini-LT-LDA, al-
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Figure 2. Comparisons of the proposed LT-LDA without and with
the joint learning of the latent alignments. (a) Accuracies and (b)
MAPs with the SVM classifier as functions of the dimensionality
of the subspace on the Olympic Sports dataset.

though different classes get better separated under the align-
ments in the original space, additional confusions may be
introduced due to the changes of alignments. While for LT-
LDA, since the separability is maximized in the subspace
under the corresponding alignments, the learned subspace
gets joint optimality among all possible subspaces. More
complete evaluations and analysis on more datasets are p-
resented in the supplementary material.

4.4. Comparison with Different DR Methods

We compare the proposed LT-LDA with LDA and kernel
LDA (kLDA) by viewing the features in sequences as in-
dependent samples, as well as LSDA. The performances of
the original feature sequences are also presented as base-
lines. We use the drtoolbox (van der Maaten & Hinton,
2008) to perform LDA and kLDA. For kLDA, it is im-
practicable to use all features in all training sequences, be-
cause this will lead to a huge size of the kernel matrix and
very large space and computational overhead. Following
(Su et al., 2018), we sample 1 to 5 features randomly from
each sequence for training. We use the same parameters of
LSDA as in (Su & Ding, 2013).

Fig. 3 and Fig. 4 depict the performances as functions of
the dimensionality of the learned subspace on the ChaLearn
dataset and the Action3D dataset, respectively. We can ob-
serve that the proposed LT-LDA achieves the best perfor-
mances among all these DR methods by all the three clas-
sifiers with different evaluation measures on both datasets.
Especially by the DTW classier, LT-LDA outperforms the
second LSDA by a margin of more than 10%. By the HM-
M classifier and the DTW classifier, the accuracies of LT-
LDA are consistently better on all the reduced dimensions,
and LT-LDA with less than 15 dimensions achieves much
better results than the original features with hundreds of di-
mensions. For the SVM classifier with the rank pooling,
LT-LDA achieves comparable MAPs with original features
using only 15 or 25 dimensions. The worse performances
of LDA and kLDA are caused by the dependency of fea-
tures in sequences, which violates the basic assumption of
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Figure 3. (a) Accuracies with the HMM classifier (b) accuracies with the DTW classifier and (c) MAPs with the rank pooling and the
SVM classifier as functions of the dimensionality of the subspace on the Chalearn Gesture dataset.

5 10 15 20 25 30 35

Reduced dimension

10

20

30

40

50

60

%
A

cc
ur

ac
y

Ori + HMM
LDA + HMM
kLDA + HMM
LSDA + HMM
LT-LDA + HMM

(a)

5 10 15 20 25 30 35

Reduced dimension

10

20

30

40

50

60

70

80

%
A

cc
ur

ac
y

Ori + DTW
LDA + DTW
kLDA + DTW
LSDA + DTW
LT-LDA + DTW

(b)

5 10 15 20 25 30 35

Reduced dimension

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
A

P

Ori + SVM
LDA + SVM
kLDA + SVM
LSDA + SVM
LT-LDA + SVM

(c)

Figure 4. (a) Accuracies with the HMM classifier (b) accuracies with the DTW classifier and (c) MAPs with the rank pooling and the
SVM classifier as functions of the dimensionality of the subspace on the Action3D dataset.

the two methods, while LT-LDA well exploits such tempo-
ral dependencies by learning the latent alignments.

For the Olympic Sports dataset, there are only less than 35
training videos per class. Each video generally has hun-
dreds of frames, and the dimensionality of the feature for
each frame is 4, 000. Therefore, it is impracticable to train a
HMM for each class and hence LSDA cannot be employed.
kLDA is also computational prohibited. We compare LT-
LDA with PCA and LDA on this dataset, as shown in Fig. 5.
LDA can only preserve C−1 = 19 dimensions at most. LT-
LDA consistently outperforms PCA, and further improves
the performances when more than 19 dimensions are pre-
served. With only 250 dimensions, LT-LDA achieves com-
parable accuracy and MAP with the original BoW-based
distributed features with 4, 000 dimensions. This implies
that the BoW features can be greatly compressed by LT-
LDA while the discriminative information is maintained.

To compare with the state-of-the-art gesture recognition
methods, we also evaluate the multi-class precision, recall,
and F-score by LT-LDA with fine-tuned a via the rank pool-
ing and the SVM classifier on the ChaLearn dataset. The
comparisons are shown in Tab. 1. LT-LDA outperforms the
state-of-the-art results using only 45 dimensions.

5. Conclusion
In this paper, we have presented a DR method for sequence
data, called LT-LDA, which learns the subspace and infers
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Figure 5. (a) Accuracies and (b) MAPs with the rank pooling and
the SVM classifier as functions of the dimensionality of the sub-
space on the Olympic Sports dataset.

Table 1. Comparison with state-of-the-art results on the ChaLearn
dataset.

Method Precision Recall F-score
(Wu et al., 2013) 0.599 0.593 0.596
(Pfister et al., 2014) 0.612 0.623 0.617
(Fernando et al., 2017) 0.753 0.751 0.752
(Su et al., 2018) 0.768 0.767 0.767
LT-LDA+SVM 0.784 0.783 0.783

the latent alignments within it simultaneously. We formu-
late the learning of the subspace, the latent alignments, and
the temporal structures into a joint objective function, and
solve it by iteratively repeating the two alternative proce-
dures of applying LDA and learning the abstract templates.
The effectiveness of the proposed method is demonstrated
on three action datasets with various evaluation measures
and classifiers.
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