
Supplementary Material to “Graphical Nonconvex Optimization via
an Adaptive Convex Relaxation”

Abstract

This supplementary material collects proofs for the main theoretical results in the main text and additional techni-
cal lemmas. The proofs of Proposition 3.4, Theorems 3.5 and 3.6 are collected in Section A. Section B provides
the proof for Theorem 3.8. Proofs related to semiparametric graphical models are given in Section C. Various
concentration inequalities and preliminary lemmas are postponed to Sections D and E, respectively.

A. Rate of Convergence in Frobenius Norm

This section presents an upper bound for the adaptive estimator Ψ̂(`) in Frobenius norm, which in turn establishes the
scaling conditions needed to achieve the optimal spectral norm convergence rate.

A.1. Proofs of Proposition 3.4, Theorems 3.5 and 3.6

In this section, we collect the proofs for Proposition 3.4, Theorems 3.5 and 3.6.

In order to suppress the noise at the `th step, it is necessary to control min(i,j)∈S
∣∣Ψ̂(`−1)

ij

∣∣ in high dimensions. For this,

we construct an entropy set, E`, of S and analyze the magnitude of
∥∥λ(`−1)
Ec`

∥∥
min

. The entropy set at the `-th stage, E`, is
defined as

E` =
{

(i, j) : (i, j) ∈ S or λ(`−1)ij < λw(u), for u = 2
(
32‖Ψ∗‖22 + ‖Σ∗‖2∞ ∨ 1

)
λ
}
. (A.1)

Thus the constant in Assumption 3.3 is c = 2(32‖Ψ∗‖22 + ‖Σ∗‖2∞ ∨ 1). Then it can be seen that S ⊆ E`, and thus E` is an
entropy set of S for any ` ≥ 1. Proposition 3.4 follows from a slightly more general result below, which establishes rate of
convergence for the one-step estimator of sparse inverse correlation matrix Ψ̂(1).

Proposition A.1 (One-step Estimator). Assume that assumption 3.1 holds. Suppose 8‖Ψ∗‖22λ
√
s < 1. Take λ such that

λ �
√

(log d)/n and suppose n & log d. Then with probability at least 1− 8/d, Ψ̂(1) must satisfy

∥∥Ψ̂(1) −Ψ∗
∥∥

F ≤ C‖Ψ
∗‖22

√
s log d

n
.

Proof of Proposition A.1. Define the event J =
{
‖Ĉ −C∗‖max ≤ λ/2

}
. Then in the event J , by applying Lemma A.4

and taking E = S, we obtain ‖Ψ̂(1) −Ψ∗‖F ≤ 4‖Ψ∗‖22 · λ
√
s. If we further take λ =

√
3c−12

√
(log d)/n �

√
(log d)/n,

then by Lemma D.5, we have event J hold with probability at least 1 − 8d−1. The result follows by plugging the choice
of λ.

Theorems 3.5 and 3.6 follow from a slightly more general result below, which characterizes the rate of convergence of
Ψ̂(`) in Frobenius norm and that of Θ̃(T ) in spectral norm.
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Theorem A.2. Suppose that 8‖Ψ∗‖22λ
√
s < 1. Take λ such that λ �

√
log d/n. Under Assumptions 3.1, 3.2 and 3.3,

with probability at least 1− 8d−1, Ψ̂(`) satisfies∥∥Ψ̂(`)−Ψ∗
∥∥

F ≤ 8‖Ψ∗‖22‖∇L(Ψ∗)S‖F︸ ︷︷ ︸
Optimal Rate

+
1

2

∥∥Ψ̂(`−1)−Ψ∗
∥∥

F︸ ︷︷ ︸
Contraction

, 1 ≤ ` ≤ T.

Moreover, if that T & log(λ
√
n), we have

∥∥Ψ̂(T )−Ψ∗
∥∥

F = OP
(
‖Ψ∗‖22

√
s/n
)
, and

∥∥Θ̃(T ) −Θ∗
∥∥
2

= OP

(
σ3
max‖Ψ∗‖2
σ3
min

√
log d

n

∨ ‖Ψ∗‖22
σ2
min

√
s

n

)
.

Proof of Theorem A.2. Under the conditions of the theorem, combining Proposition A.7 and Lemma D.5, we obtain the
following contraction property of the solutions, {Ψ̂(`)}T`=1,∥∥Ψ̂(`)−Ψ∗

∥∥
F≤4‖Ψ∗‖22‖∇L(Ψ∗)S‖F +

1

2

∥∥Ψ̂(`−1)−Ψ∗
∥∥

F.

Next, we introduce an inequality by induction analysis. Specifically, if an ≤ a0 + αan−1, ∀ n ≥ 2 and 0 ≤ α < 1, then

an ≤ a0
1− αn−1

1− α
+ αn−1a1.

Taking a0 = 4‖Ψ∗‖22‖∇L(Ψ∗)S‖F, we obtain that
∥∥Ψ̂(`)−Ψ∗

∥∥
F ≤ 8‖Ψ∗‖22‖∇L(Ψ∗)S‖F +

(
1/2
)`−1∥∥Ψ̂(1)−Ψ∗

∥∥
F.

In the sequel, we bound ‖∇L(Ψ∗)S‖F and ‖Ψ̂(1) −Ψ∗‖F, respectively. By Proposition A.1, we have ‖Ψ̂(1) −Ψ∗‖F .
8‖Ψ∗‖22λ

√
s. Moreover, if we let T ≥ log(λ

√
n)
/

log 2 & log(λ
√
n), then (1/2)T−1‖Ψ̂(1) −Ψ∗‖F ≤ 16‖Ψ∗‖22 ·

√
s/n.

On the other side, we have ‖∇L(Ψ∗)S‖F = OP(‖Ψ∗‖22 ·
√
s/n), which follows from Lemma D.4. Therefore, combining

the above results, we have
‖Ψ̂(T ) −Ψ∗‖F = OP

(
‖Ψ∗‖22

√
s/n
)
.

To achieve the statistical rate for ‖Θ̃(T ) −Θ∗‖2, we apply Lemma E.3 and obtain that

‖Θ̃(T ) −Θ∗‖2 =
∥∥(Ŵ−1−W−1)(Ψ̂(T )−Ψ∗

)(
Ŵ−1−W−1)∥∥

2
+
∥∥(Ŵ−1−W−1)Ψ̂(T )W−1∥∥

2

+
∥∥(Ŵ−1−W−1)Ψ∗Ŵ−1∥∥

2
+
∥∥Ŵ−1(Ψ̂(T ) −Ψ∗

)
W−1∥∥

2

≤ ‖Ŵ−1 −W−1‖22‖Ψ̂(T ) −Ψ∗‖2︸ ︷︷ ︸
(R1)

+‖Ŵ−1−W−1‖2‖Ψ̂(T )‖2‖W−1‖2︸ ︷︷ ︸
(R2)

+‖Ŵ−1−W−1‖2‖Ψ∗‖2‖Ŵ−1‖2︸ ︷︷ ︸
(R3)

+‖Ŵ−1‖2‖W−1‖2‖Ψ̂(T ) −Ψ∗‖2︸ ︷︷ ︸
(R4)

.

We now bound terms (R1) to (R4) respectively. Before we proceed, we apply Lemma D.2 and the union sum bound to
obtain that, for any ε ≥ 0,

P
(
‖Ŵ2 −W2‖2 > εmax

i
Σ∗ii

)
≤ d · exp

{
−n · C(ε)

}
= exp

{
−n · C(ε)+log d

}
,

where C(ε) = 2−1(ε − log(1 + ε)). Suppose that 0 ≤ ε ≤ 1/2, then we have −n · C(ε) ≤ −n · ε2/3. Further suppose
that n ≥ 36 log d and take ε = 3

√
(log d)/n, we obtain that−n · C(ε)+log d ≤ 2 log d and

P
(
‖Ŵ2 −W2‖2 > 3σ2

max ·
√

log d

n

)
≤ 1

d2
,

where we use the assumption that maxi Σ
∗
ii ≤ σ2

max. Therefore, we have
∥∥Ŵ2−W2

∥∥
2

= OP

(
σ2
max ·

√
log d/n

)
. Since

Ŵ2 and W2 are diagonal and thus commutative. We note that, for any two eventA and B, P(A) = P(A∩B)+P(A∩Bc)



holds. Therefore, for any M > 0, we have

P
(∥∥Ŵ−1 −W−1∥∥

2
> Mσ2

max

√
log d

n

)
≤ P

(∥∥Ŵ−1−W−1∥∥
2
>Mσ2

max

√
log d

n
,

∥∥Ŵ−1−W−1∥∥
2
≤2(
√

2+1)
∥∥W∥∥

2
λ−2min

(
W2

)∥∥Ŵ2−W2
∥∥
2

)
+ P

(∥∥Ŵ−1−W−1∥∥
2
>2(
√

2+1)
∥∥W∥∥

2
λ−2min

(
W2

)∥∥Ŵ2−W2
∥∥
2

)
.

Further using Lemma E.7 yields that

P
(∥∥Ŵ−1−W−1∥∥

2
> Mσ2

max

√
log d

n

)
≤ P

(
2(
√

2+1)
∥∥W∥∥

2
λ−2min

(
W2

)∥∥Ŵ2−W2
∥∥
2
>Mσ2

max

√
log d

n

)
︸ ︷︷ ︸

(T1)

+ P
(∥∥Ŵ2 −W2

∥∥
2
> 2−1λmin

(
W2

))
︸ ︷︷ ︸

(T2)

.

By taking M = M1 · ‖W‖2λ−2min(W2) = M1 · σmax/σ
4
min and letting M1 → 0, we get (T1)→ 0. Under the assumption

that σ2
max/σ

2
min = O

(
(n/ log d)1/3

)
, we have σ2

max/σ
2
min = o

(√
n/ log d

)
, and thus (T2)→ 0. Therefore we obtain that∥∥Ŵ−1 −W−1

∥∥
2

= OP
(
σ−4minσ

3
max

√
(log d)/n

)
. Similarly, we have the following facts:∥∥Ψ̂(T )

∥∥
2

= OP
(
‖Ψ∗‖2

)
,
∥∥Ŵ−1∥∥

2
= λ−1min

(
Ŵ
)

= OP(σ−1min), and
∥∥W−1∥∥

2
= σ−1min.

Applying the above results to the terms (R1)-(R4). we obtain that

(R1) = OP

(
σ−2min‖Ψ

∗‖22

√
s

n
· σ

6
max

σ6
min

log d

n

)
= OP

(
σ−2min‖Ψ

∗‖22

√
s

n

)
,

(R2) = (R3) = OP

(
σ3
max

σ3
min

‖Ψ∗‖2

√
log d

n

)
, (R4) = OP

(
σ−2min‖Ψ

∗‖22

√
s

n

)
.

Therefore, by combining the rate for terms (R1)-(R4), we obtain the final result.

A.2. Technical Lemmas

Define the symmetrized Bregman divergence for the loss function L(·) asDs
L(Θ,Θ∗) =

〈
∇L(Θ)−L(Θ∗),Θ−Θ∗

〉
. For

any matrix A ∈ Rd×d, let A− ∈ Rd×d be the off diagonal matrix of A with diagonal entries equal to 0, and A+ = A−A−
be the diagonal mtrix.

Lemma A.3. For the symmetrized Bregman divergence defined above, we have

Ds
L(Θ,Θ∗) =

〈
∇L(Θ)−∇L(Θ∗),Θ−Θ∗

〉
≥
(
‖Θ∗‖2 + ‖Θ−Θ∗‖2

)−2‖Θ−Θ∗‖2F.

Proof of Lemma A.3. We use vec(A) to denote the vectorized form of any matrix A. Then by the mean value theorem,
there exists a γ ∈ [0, 1] such that,

Ds
L(Θ,Θ∗) =

〈
∇L(Θ)−∇L(Θ∗),Θ−Θ∗

〉
= vec(Θ−Θ∗)T

(
∇2L(Θ∗ + γ∆)

)
vec(Θ−Θ∗)

≥ λmin(∇2L(Θ∗ + γ∆)
)
‖∆‖2F,



where ∆ = Θ − Θ∗. By standard properties of the Kronecker product and the Weyl’s inequality (Horn and Johnson,
2012), we obtain that

λmin

(
∇2L(Θ∗ + γ∆)

)
= λmin

((
(Θ∗ + γ∆)⊗ (Θ∗ + γ∆)

)−1)
= ‖Θ∗ + γ∆‖−22 ≥

(
‖Θ∗‖2 + γ‖∆‖2

)−2
.

Finally, observing that γ ≤ 1, we obtain

Ds
L(Θ,Θ∗) =

〈
∇L(Θ)−∇L(Θ∗),∆

〉
≥
(
‖Θ∗‖2 + ‖∆‖2

)−2‖Θ−Θ∗‖2F.

Plugging the definition of ∆ obtains us the final bound.

The following lemma characterizes an upper bound of ‖Ψ̂−Ψ∗‖F by using localized analysis.

Lemma A.4. Suppose 8‖Ψ∗‖2λ
√
s < 1. Take E such that S ⊆ E and |E| ≤ 2s. Further assume ‖λEc‖min ≥ λ/2 ≥

‖∇L(Ψ∗)‖max. Let Ψ̂ be the solution to (B.4). Then Ψ̂ must satisfy

‖Ψ̂−Ψ∗‖F ≤ 4‖Ψ∗‖22
(
‖λS‖F+‖∇L(Ψ∗)E‖F

)
≤ 8‖Ψ∗‖22λ

√
s.

Proof of Lemma A.4. We start by introducing an extra local parameter r which satisfies 8‖Ψ∗‖22λ
√
s < r ≤ ‖Ψ∗‖2.

This is possible since λ
√
|E| ≤

√
2λ
√
s → 0 and 8‖Ψ∗‖2λ

√
s < 1 by assumption. Based on this local parameter r,

we construct an intermediate estimator: Ψ̃ = Ψ∗ + t · (Ψ̂ − Ψ∗), where t is taken such that ‖(Ψ̃ − Ψ∗‖F = r, if
‖(Ψ̃−Ψ∗‖F > r; t = 1 otherwise. Applying Lemma A.3 with Θ1 = Ψ̃ and Θ2 = Ψ∗ obtains us(∥∥Ψ∗∥∥

2
+ r
)−2∥∥Ψ̃−Ψ∗

∥∥2
F ≤

〈
∇L(Ψ̃)−∇L(Ψ∗), Ψ̃−Ψ∗

〉
. (A.2)

To bound the right hand side of the above inequality, we use Lemma E.2 to obtain

Ds
L(Ψ̃,Ψ∗) ≤ tDs

L(Ψ̂,Ψ∗) = t
〈
∇L(Ψ̂)−∇L(Ψ∗), Ψ̂−Ψ∗

〉
. (A.3)

We note that the sub-differential of the norm ‖ · ‖1,off evaluated at Ψ consists the set of all symmetric matrices Γ ∈ Rd×d
such that Γij = 0 if i = j; Γij = sign(Γij) if i 6= j and Ψij 6= 0; Γij ∈ [−1,+1] if i 6= j and Ψij = 0, where
Ψij is the (i, j)-th entry of Ψ. Then by the Karush-Kuhn-Tucker conditions, there exists a Γ̂ ∈ ∂‖Ψ̂‖1,off such that
∇L(Ψ̂)+λ� Γ̂= Ĉ−Ψ̂−1+λ� Γ̂ = 0. Plugging (A.3) into (A.2) and adding the term 〈λ� Γ̂, Ψ̂−Ψ∗〉 on both sides
of (A.3), we obtain

(‖Ψ∗‖2+r)−2‖Ψ̃−Ψ∗‖2F +t 〈∇L(Ψ∗), Ψ̂−Ψ∗〉︸ ︷︷ ︸
I

+t 〈λ�Γ̂, Ψ̂−Ψ∗〉︸ ︷︷ ︸
II

≤ t 〈∇L(Ψ̂)+λ�Γ̂, Ψ̂−Ψ∗〉︸ ︷︷ ︸
III

. (A.4)

Next, we bound terms I, II and III respectively. For a set E , let Ec denote its complement with respect to (w.r.t.) the full
index set {(i, j) : 1 ≤ i, j ≤ d}. For term I, separating the support of∇L(Ψ) and Ψ̂−Ψ∗ to E ∪D and Ec \ D, in which
D is the set consisting of all diagonal elements, and then using the matrix Hölder inequality, we obtain〈

∇L(Ψ∗), Ψ̂−Ψ∗
〉

=
〈(
∇L(Ψ∗)

)
E∪D,

(
Ψ̂−Ψ∗

)
E∪D

〉
+
〈(
∇L(Ψ∗)

)
Ec\D,

(
Ψ̂−Ψ∗

)
Ec\D

〉
≥−

∥∥(∇L(Ψ∗)
)
E∪D

∥∥
F

∥∥(Ψ̂−Ψ∗
)
E∪D

∥∥
F

−
∥∥(∇L(Ψ∗)

)
Ec\D

∥∥
F

∥∥(Ψ̂−Ψ∗
)
Ec\D

∥∥
F.

For term II, separating the support of (λ� Γ̂) and (Ψ̂−Ψ∗) to S ∪ D and Sc \ D, we obtain

〈(λ�Γ̂), (Ψ̂−Ψ∗)〉 = 〈(λ�Γ̂)S∪D, (Ψ̂−Ψ∗)S∪D〉+〈(λ�Γ̂)Sc\D, (Ψ̂−Ψ∗)Sc\D〉. (A.5)



For the last term in the above equality, we have

〈(λ� Γ̂)Sc\D, (Ψ̂−Ψ∗)Sc\D〉 = 〈λSc\D, |Ψ̂Sc\D|〉 = 〈λSc\D, |(Ψ̂−Ψ∗)Sc\D|〉. (A.6)

Plugging (A.6) into (A.5) and applying matrix Hölder inequality yields

〈(λ� Γ̂, Ψ̂−Ψ∗〉 = 〈(λ� Γ̂)S∪D, (Ψ̂−Ψ∗)S∪D〉+ 〈λSc\D, |(Ψ̂−Ψ∗)Sc\D|〉

= 〈(λ� Γ̂)S , (Ψ̂−Ψ)S〉+ ‖λSc\D‖F‖(Ψ̂−Ψ∗)Sc\D‖F

≥ −‖λS‖F‖(Ψ̂−Ψ∗)S‖F + ‖λEc\D‖F‖(Ψ̂−Ψ∗)Ec\D‖F,

where we use λD = 0 in the second equality and Ec\D ⊆ Sc\D in the last inequality. For term III, using the optimality
condition, we have III=

〈
∇L(Ψ̂)+λ�Γ̂, Ψ̂−Ψ

〉
=0. Plugging the bounds for term I, II and III back into (A.4), we find

that (
‖Ψ∗‖2 + r

)−2∥∥Ψ̃−Ψ∗
∥∥2

F+t
(
‖λEc\D‖F − ‖(∇L(Ψ∗))Ec\D‖F

)
·
∥∥(Ψ̂−Ψ∗)Ec\D

∥∥
F

≤ t
(∥∥(∇L(Ψ∗)

)
E∪D

∥∥
F +

∥∥λS∥∥F

)
·
∥∥Ψ̂−Ψ∗

∥∥
F.

Further observing the facts that ‖λEc\D‖F ≥
√
|Ec\D|

∥∥λEc\D∥∥min
≥
√
|Ec\D|

∥∥∇L(Ψ∗)
∥∥
max
≥
∥∥(∇L(Ψ∗)

)
Ec\D

∥∥
F and

t‖Ψ̂−Ψ∗‖F = ‖Ψ̃−Ψ∗‖F, dividing both sides by ‖Ψ̃−Ψ∗‖F, we can simplify the above inequality to

(‖Ψ∗‖2+r)−2‖Ψ̃−Ψ∗‖F≤‖λS‖F+‖∇L(Ψ∗)E∪D‖F =‖λS‖F+‖∇L(Ψ∗)E‖F≤2λ
√
s,

where we use ‖∇L(Ψ∗)E∪D‖F = ‖(Ĉ − C∗)E∪D‖F = ‖(Ĉ − C∗)E‖F = ‖∇L(Ψ∗)E‖F in the equality, and the last in-
equality follows from the Cauchy-Schwarz inequality, the fact ‖λ‖max ≤ λ and the assumption that λ ≥ 2‖∇L(Ψ∗)‖max.
Therefore, by the definition of r, we obtain ‖Ψ̃−Ψ∗‖F ≤ 2(‖Ψ∗‖2+r)2λ

√
s ≤ 8‖Ψ∗‖22λ

√
s < r, which implies Ψ̃ = Ψ̂

from the construction of Ψ̃. Thus Ψ̂ satisfies the desired `2 error bound.

Recall the definition of E`, 1 ≤ ` ≤ T . We can bound ‖Ψ̂(`) −Ψ∗‖F in terms of ‖λ(`−1)
S ‖F.

Lemma A.5 (Sequential Bound). Under the same assumptions and conditions in Lemma A.4, for ` ≥ 1, Ψ̂(`) must
satisfy

‖Ψ̂(`) −Ψ∗‖F ≤ 4
∥∥Ψ∗∥∥2

2

(∥∥λ(`−1)
S

∥∥
F +

∥∥∇L(Ψ∗)E`
∥∥

F

)
.

Proof of Lemma A.5. Now if we assume that for all ` ≥ 1, we have the following

|E`| ≤ 2s, where E` is defined in (A.1) , and (A.7)∥∥λ(`−1)
Ec` \D

∥∥
min
≥ λ/2 ≥ ‖∇L(Ψ∗)‖max. (A.8)

Using the matrix Hölder inequality, we obtain∥∥λ(`−1)
S

∥∥
F ≤

√
|S|
∥∥λS∥∥max

≤ λ
√
s and ‖∇L(Ψ∗)E`‖F ≤

√
|E`|‖∇L(Ψ∗)E`‖max.

Therefore, we have ∥∥λ(`−1)
S

∥∥
F+
∥∥∇L(Ψ∗)E`

∥∥
F≤λ

√
s+‖∇L(Ψ∗)E`‖max

√
|E`|≤2λ

√
s, (A.9)

where the second inequality is due to the assumption that ‖∇L(Ψ∗)‖max ≤ λ/2. The `2 error bound is given by Lemma
A.4 by taking λ = λ(`−1) and E = E`, i.e.∥∥Ψ̂(`) −Ψ∗

∥∥
F ≤ 4

∥∥Ψ∗∥∥2
2
·
(∥∥λ(`−1)

S

∥∥
F +

∥∥∇L(Ψ∗)E`
∥∥

F

)
≤ 8‖Ψ∗‖22 · λ

√
s, (A.10)

where last inequality is due to (A.9). Therefore, we only need to prove that (A.7) and (A.8) hold by induction. For ` = 1,
we have λ ≥ λw(u) for any u and thus E1 = S, which implies that (A.7) and (A.8) hold for ` = 1. Now assume that (A.7)
and (A.8) hold at `−1 for some ` ≥ 2. Since (i, j) ∈ E \̀S implies that (i, j) /∈ S and λw

(
Ψ̂

(`−1)
ij

)
= λ

(`)
j < λw(u) = λ/2.



By assumption, and since w(x) is non-increasing, we must have
∣∣Ψ̂(`−1)

ij

∣∣ ≥ u. Therefore by induction hypothesis, we
obtain that

√
|E`\S| ≤

∥∥Ψ̂(`−1)
E \̀S

∥∥
F

u
≤
∥∥Ψ̂(`−1)−Ψ∗

∥∥
F

u
≤ 8‖Ψ∗‖22λ

u
·
√
s ≤
√
s,

where the second last inequality follows from Lemma A.4, the fact that (A.7) and (A.8) hold at ` − 1. This implies that
|E`| ≤ 2|S| = 2s. Now for such Ec` , we have ‖λEc` ‖min ≥ λw(u) ≥ λ/2 ≥ ‖∇L(Ψ)‖∞, which completes the induction
step.

Our next lemma establishes the relationship between the adaptive regularization parameter λ and the estimator from the
previous step.

Lemma A.6. Assume w(·) ∈ T . Let λij = λw
(
|Θij |

)
for some Θ = (Θij) and w(ΘS) =

(
w(Θij)

)
(i,j)∈S , then for the

Frobenius norm ‖ · ‖F, we have ∥∥λS∥∥F ≤ λ
∥∥w
(
|Θ∗S | − u

)∥∥
F + λu−1

∥∥Θ∗S −ΘS

∥∥
F.

Proof of Lemma A.6. By assumption, if |Θ∗ij − Θij | ≥ u, then w
(
|Θij |

)
≤ 1 ≤ u−1|Θij − Θ∗ij |; otherwise, w

(
|Θij |

)
≤

w
(
|Θ∗ij | − u

)
. Therefore,the following inequality always hold:

w
(
|Θij |

)
≤ w

(
|Θ∗ij | − u

)
+ u−1|Θ∗ij −Θij |.

Then by applying the ‖ · ‖∗-norm triangle inequality, we obtain that∥∥λS∥∥F ≤ λ
∥∥w
(
|Θ∗S | − u

)∥∥
F + λu−1

∥∥Θ∗S −ΘS

∥∥
?F .

Our last technical result concerns a contraction property, namely, how the sequential approach improves the rate of conver-
gence adaptively.

Proposition A.7 (Contraction Property). Assume that assumptions 3.1, 3.2 and 3.3 hold. Assume that λ ≥
2‖∇L(Ψ∗)‖max and 8‖Ψ∗‖22λ

√
s < 1. Then Ψ̂(`) satisfies the following contraction property∥∥Ψ̂(`)−Ψ∗

∥∥
F≤4‖Ψ∗‖22‖∇L(Ψ∗)S‖F+

1

2

∥∥Ψ̂(`−1)−Ψ∗
∥∥

F.

Proof of Proposition A.7. Under the conditions of the theorem, the proof of Lemma A.5 yields that

|E`| ≤ 2s, where E` is defined in (A.1), and ‖λ(`−1)
Ec` \D

‖min ≥ ‖∇L(Ψ∗)‖max.

Thus, applying Lemma A.5 with Ψ̂ = Ψ̂(`),λ = λ(`−1) and E = E`, we obtain∥∥Ψ̂(`) −Ψ∗
∥∥

F ≤ 4
∥∥Ψ∗∥∥2

2
·
(∥∥λ(`−1)

S ‖F +
∥∥∇L(Ψ∗)E`

∥∥
F

)
. (A.11)

On the other side, by Lemma A.6, we can bound ‖λ(`−1)
S ‖ in terms of ‖Ψ̂(`−1) −Ψ∗‖F:∥∥λ(`−1)

S

∥∥
F ≤ λ

∥∥w(|Ψ∗S | − u)
∥∥

F + λu−1
∥∥Ψ̂(`−1) −Ψ∗

∥∥
F. (A.12)

Plugging the bound (A.12) into (A.11) yields that∥∥Ψ̂(`)−Ψ∗
∥∥

F≤4
∥∥Ψ∗∥∥2

2

(∥∥∇L(Ψ∗)E`
∥∥

F︸ ︷︷ ︸
I

+λ
∥∥w(|Ψ∗S |−u)

∥∥
F

)
+4‖Ψ∗‖22λu−1

∥∥Ψ̂(`−1)−Ψ∗
∥∥

F. (A.13)



In the next, we bound term I. Separating the support of
(
∇L(Ψ∗)

)
E`

to S and E`\S and then using triangle inequality, we
obtain

I =
∥∥∇L(Ψ∗)E`

∥∥
F ≤

∥∥∇L(Ψ∗)S
∥∥

F +
∥∥∇L(Ψ∗)E`\S

∥∥
F. (A.14)

Moreover, we have the following facts. First, we have
∥∥∇L(Ψ∗)E`\S

∥∥
2
≤
√
|E`\S|

∥∥∇L(Ψ∗)
∥∥
max

by the Hölder
inequality. From the assumption, we know ‖∇L(Ψ∗)‖max ≤ λ/2. Plugging these bounds into (A.14) results that
‖∇L(Ψ∗)E`‖F ≤ ‖∇L(Ψ∗)S‖F + λ

√
|E`\S|. Now, by following a similar argument in Lemma A.5, we can bound√

|E`\S| by
∥∥Ψ̂(`−1)
E`\S

∥∥
F

/
u ≤

∥∥Ψ̂(`−1)−Ψ∗
∥∥

F

/
u. Therefore, term I can be bounded by ‖∇L(Ψ∗)S‖F +λu−1

∥∥Ψ̂(`−1)−
Ψ∗
∥∥

F. Plugging the upper bound for I into (A.13), we obtain∥∥Ψ̂(`) −Ψ∗
∥∥

F ≤ 4‖Ψ∗‖22
(
‖∇L(Ψ∗)S‖2 + λ‖w(|Ψ∗S | − u)‖2

)
+ (4‖Ψ∗‖22 + 1)λu−1

∥∥Ψ̂(`−1)−Ψ∗
∥∥

F.

Now observing that ‖Ψ∗S‖min ≥ u + αλ � λ, thus w(|Θ∗S | − u) ≤ w(αλ · 1S) = 0S , where 1S is
a matrix with each entry equals to 1 and 0S is defined similarly. Further notice that (4‖Ψ∗‖22 + 1)λu−1 ≤ 1/2, we
complete the proof.

B. Improved Convergence Rate
We develop an improved spectral norm convergence rate in this section. We collect the proof for Theorem 3.8 first and
then give technical lemmas that are needed for the proof.

B.1. Proof of Theorem 3.8

Proof of Theorem 3.8. Let us define S(`) =
{

(i, j) :
∣∣Ψ(`)

ij − Ψ∗ij
∣∣ ≥ u

}
, where u is introduced in (A.1). Let S(0) =

{(i, j) : |Ψ∗ij | ≥ u} = S. Then Lemma B.5 implies∥∥λ(`−1)
E`

∥∥
F ≤ λ

∥∥w(|Ψ∗S | − u)
∥∥

F + λ
√
|S(`−1) ∩ S|+ λ

√∣∣E`/S∣∣
For any (i, j) ∈ E`/S, we must have

∣∣Ψ̂ij

∣∣ =
∣∣Ψ̂ij − Ψ∗ij

∣∣ > u and thus (i, j) ∈ S(`−1)/S. Therefore, applying Lemma
B.5 and using the fact that ‖Ψ∗S‖max ≥ u+ αλ, we obtain∥∥Ψ̂(`) − Ψ̂◦

∥∥
F ≤ 32

∥∥Ψ∗∥∥2
2
λ

{√∣∣S(`−1) ∩ S
∣∣+
√∣∣S(`−1)/S

∣∣} ≤ 32
√

2
∥∥Ψ∗∥∥2

2
λ
√
S(`−1).

On the other side, (i, j) ∈ S(`) implies that

|Ψ̂(`)
ij − Ψ̂◦ij | ≥ |Ψ̂

(`)
ij −Ψ∗ij | − |Ψ̂◦ij −Ψ∗ij | ≥ u− 2κ2λ ≥ 64‖Ψ∗‖22λ,

Exploiting the above fact, we can bound
√
|S(`)| in terms of ‖Ψ̂(`) − Ψ̂◦‖F:√
|S(`)| ≤

∥∥Ψ̂(`) − Ψ̂◦
∥∥

F

64‖Ψ∗‖22λ
≤
√∣∣S(`−1)

∣∣/2.
By induction on `, we obtain √

|S(`)| ≤
(1

2

)`/2√
|S(0)| =

(1

2

)`/2√
s.

Since ` > log s/ log 2, we must have that the right hand side of the above inequality is smaller than 1, which implies that

S(`) = ∅ and Ψ̂(`) = Ψ̂◦.

Therefore, the estimator enjoys the strong oracle property. Using Lemma B.4 obtains us that∥∥Ψ̂(`) −Ψ∗
∥∥
2
≤
∥∥Ψ̂◦ −Ψ∗

∥∥
2
.
∥∥M∗∥∥

2

∥∥(Ĉ−C∗
)
S

∥∥
max

.

Applying Lemma D.6 finishes the proof of theorem.



B.2. Technical Lemmas

We start with the definitions of some constants. For notational simplicity, let κ1 = ‖Σ∗‖∞ and D= {(i, i) : 1 ≤ i ≤ d}.
Define the oracle estimator as

Ψ̂◦ = argmin
supp(Ψ)=S,Ψ∈Sd

+

{〈
Ψ, Ĉ

〉
− log det(Ψ)

}
.

Recall that smax = maxj
∑
i 1(Θ∗ij) is the maximum degree.

Lemma B.1. Suppose that the weight function satisfies that w(u) ≥ 1/2 for u defined in (A.1). Assume that 2λsmax ≤
κ−21 ‖Ψ∗‖2, 8‖Ψ∗‖22λ

√
s<1. If λ≥2‖∇L(Ψ̂◦)‖max, we must have

|E`| ≤ 2s and
∥∥Ψ̂(`) − Ψ̂◦

∥∥
F ≤ 32

∥∥Ψ∗∥∥2
2

∥∥λ(`−1)
E`

∥∥
F.

Proof of Lemma B.1. If we assume that for all ` ≥ 1, we have the following

|E`| ≤ 2s, where E` is defined in (A.1), and (B.1)

‖λ(`−1)
Ec`

‖min ≥ ‖∇L(Ψ̂◦)‖max. (B.2)

Using lemma B.4, we obtain that ‖Ψ̂◦‖2 ≤ ‖Ψ∗‖2 + ‖Ψ̂◦ −Ψ∗‖∞ ≤ ‖Ψ∗‖2 + 2κ2λsmax. Therefore, the assumption of
the lemma implies 4‖Ψ̂◦‖2λ

√
s < 1. Replacing S by E` in Lemma B.3 and using Hölder inequality, we have∥∥Ψ̂(`) − Ψ̂◦
∥∥

F ≤ 4
∥∥Ψ̂◦∥∥2

2

∥∥λ(`−1)
E`

∥∥
F ≤ 16

∥∥Ψ∗∥∥2
2

∥∥λ(`−1)
E`

∥∥
F ≤ 32

∥∥Ψ∗∥∥2
2
λ
√
s, (B.3)

For ` = 1, we have λ ≥ λw(u) and thus E1 = S, which implies that (B.1) and (B.2) hold for ` = 1. Now assume that
(B.1) and (B.2) hold at ` − 1 for some ` ≥ 2. Since j ∈ E` \ S implies that j /∈ S and λw(β

(`−1)
j ) = λ

(`)
j < λw(u) by

assumption, and since w(x) is decreasing, we must have |β(`−1)
j | ≥ u. Therefore by induction hypothesis, we obtain that

√
|E` \ S| ≤

∥∥Ψ̂(`−1)
E`\S

∥∥
F

u
≤
∥∥Ψ̂(`−1) − Ψ̂◦

∥∥
F

u
≤

32
∥∥Ψ∗∥∥2

2
λ

u

√
s ≤
√
s,

where the last inequality follows from the definition of u hold at `− 1. This inequality implies that |E`| ≤ 2|S| = 2s. Now
for such Ec` , we have

‖λEc` ‖min ≥ λw(u) ≥ λ/2 ≥ ‖∇L(Ψ̂◦)‖max,

which completes the induction step. This completes the proof.

With some abuse of notation, we let |Ψ∗S | = (|Ψ∗ij |)(i,j)∈S and |Ψ∗S | − u = (Ψ∗ij − u)(i,j)∈S . The following inequality
bounds the regularization parameter λE = λw(|Ψ∗E |) =

(
λw(Ψ∗ij)

)
(i,j)∈E in terms of functionals of Ψ∗ and Ψ.

Lemma B.2. Let λ = λw
(
|Ψ|
)
. For any set E ⊇ S, λE must satisfy∥∥λE∥∥F ≤ λ
∥∥w(|Ψ∗S | − u)

∥∥
F + λ

√∣∣E/S∣∣+ λ
∣∣{j ∈ S : |Ψij −Ψ∗ij | ≥ u}

∣∣1/2
Proof. By triangle inequality, we have ‖λE‖F ≤ ‖λS‖F + λ

√
|E/S|. We further bound ‖λS‖F. If |Ψij − Ψ∗ij | ≥ u, then

we have w
(
|Ψij |

)
≤ 1 ≤ I

(
|Ψij −Ψ∗ij | ≥ u

)
, otherwise, since because w(·) is non-increasing and thus |Ψij −Ψ∗ij | < u

implies w
(
|Ψij |

)
≤ w

(
|Ψ∗ij | − u

)
. Therefore, using the Cauchy Schwartz inequality completes our proof.

Define the following optimization problem

Ψ̂ = argmin
Ψ∈Sd

+

{〈
Ψ, Ĉ

〉
− log det(Ψ) +

∥∥λ�Ψ
∥∥
1,off

}
. (B.4)



Lemma B.3. Let ‖λSc/D‖min ≥ ‖∇L(Ψ̂◦)‖max and 4‖Ψ̂◦‖2λ
√
s < 1. Then Ψ̂ must satisfy∥∥Ψ̂− Ψ̂◦

∥∥
F ≤ 4

∥∥Ψ̂◦∥∥2
2

∥∥λS∥∥F.

Proof. We construct an intermediate solution Θ̃ = Θ∗ + t(Θ̂ −Θ∗), where t is chosen such that ‖(Θ̃ −Θ∗‖F = r, if
‖(Θ̃−Θ∗‖F > r; t = 1 otherwise. Here r satisfies 4‖Ψ̂◦‖22λ

√
s < r ≤ ‖Ψ̂◦‖2. Lemma A.3 implies that(∥∥Ψ̂◦∥∥

2
+ r
)−2∥∥Ψ̃− Ψ̂◦

∥∥
F ≤

〈
∇L(Ψ̃)−∇L(Ψ̂◦), Ψ̃− Ψ̂◦

〉
≡ Ds

L
(
Ψ̃, Ψ̂◦

)
. (B.5)

Then, we use Lemma E.2 to upper bound the right hand side of the above inequality

Ds
L(Ψ̃, Ψ̂◦) ≤ tDs

L(Ψ̂, Ψ̂◦) = t
〈
∇L
(
Ψ̂
)
−∇L

(
Ψ̂◦
)
, Ψ̂− Ψ̂◦

〉
.

Plugging the above inequality into (B.5), we obtain(∥∥Ψ̂◦∥∥
2

+ r
)−2∥∥Ψ̃− Ψ̂

∥∥2
F ≤

〈
∇L(Ψ̂)−∇L(Ψ̂◦), Ψ̃− Ψ̂◦

〉
. (B.6)

We further control the right hand side of the above inequality by exploiting the first order optimality condition, which is
∇L(Ψ̂) +λ� Γ̂ = 0 and∇L(Ψ̂◦)S∪D = 0. Therefore, adding and subtracting term λ� Γ̂ to the right hand side of (B.6)
and using the optimality condition obtains us that(∥∥Ψ̂◦∥∥

2
+ r
)−2∥∥Ψ̃− Ψ̂◦

∥∥2
F +

〈
λ� Γ̂, Ψ̃− Ψ̂◦

〉︸ ︷︷ ︸
I

+
〈
∇L(Ψ̂◦), Ψ̃− Ψ̂◦

〉︸ ︷︷ ︸
II

≤ 0. (B.7)

Therefore, to bound ‖Ψ̃− Ψ̂◦‖2F, it suffices to bound I and II separately. For term I, by decomposing the support to S and
Sc/D, then using matrix Hölder inequality, we have

I ≥ −
∥∥λS∥∥F

∥∥(Ψ̃− Ψ̂◦
)
S

∥∥
F +

∥∥λSc/D
∥∥
min

∥∥vec
(
Ψ̃− Ψ̂

)
Sc/D

∥∥
1
.

Again, by using the optimality condition, we has

II =
〈
∇L
(
Ψ̂◦
)
Sc/D,

(
Ψ̃− Ψ̂◦

)
Sc/D

〉
≥ −

∥∥∇L(Ψ̂◦)Sc/D
∥∥
max

∥∥vec
(
Ψ̃− Ψ̂◦

)
Sc/D

∥∥
1
.

By plugging the upper bound for I and II back into (B.7), we have(∥∥Ψ̂◦∥∥
2
+r
)−2∥∥Ψ̃−Ψ̂◦

∥∥2
F +
(∥∥λSc/D

∥∥
min
−
∥∥∇L(Ψ̂◦)Sc/D

∥∥
max

)∥∥vec
(
Ψ̃−Ψ̂

)∥∥
1

≤
∥∥λS∥∥F

∥∥(Ψ̃−Ψ̂◦)S
∥∥

F.

By assumption, we know that ‖λ‖min ≥ ‖∇L(Ψ̂◦)‖max, which implies that the second term in the right hand side of the
above inequality is positive. Thus, we have

(∥∥Ψ̂◦∥∥
2

+ r
)−2∥∥Ψ̃− Ψ̂◦

∥∥
F ≤

∥∥λS∥∥F. Now since 4‖Ψ̂‖22λ
√
s < r ≤ ‖Ψ̂◦‖2,

we obtain that
∥∥Ψ̃− Ψ̂◦

∥∥
F ≤ 4

∥∥Ψ̂∥∥2
2

∥∥λS∥∥F ≤ 4‖Ψ̂◦‖22λ
√
s < r. By the construction of Ψ̃, we must have t = 1, and thus

Ψ̃ = Ψ̂.

Recall that M∗ is the sparsity pattern matrix corresponding to Ψ∗.

Lemma B.4. If 4κ41cn + 1 <
√

1+4κ1/smax and ‖(Ĉ−C∗)S‖max ≤ cn/2 for a sequence cn, then we have∥∥Ψ̂◦ −Ψ∗
∥∥
max
≤ κ21cn and

∥∥Ψ̂◦ −Ψ∗
∥∥
2
≤ κ21cn‖M∗‖2.

Proof of Lemma B.4. Let ∆ = Ψ̂◦ − Ψ∗. It suffices to show that ‖∆‖max ≤ r, where r = κ21cn. To show this, we
construct an intermediate estimator, Ψ̃ = Ψ∗ + t(Ψ̂◦ −Ψ∗). We choose t such that ‖Ψ̃−Ψ∗‖max = r, if ‖∆‖max > r,
and Ψ̃ = Ψ̂, otherwise. For a matrix A, let AS be a matrix agreeing with A on S and having 0 elsewhere. Using the two
term Taylor expansion, we know that there exists a γ ∈ [0, 1] such that Ψ̃∗ = Ψ∗ + γ(Ψ̃−Ψ∗),

vec
{
∇L(Ψ̃)

}
= vec

{
∇L(Ψ∗)

}
+∇2L

(
Ψ̃∗
)
vec
(
Ψ̃−Ψ∗

)
,



which implies that

vec
{

C∗E −
(
Ψ̃
)−1
E

}
−
(
Ψ̃∗E ⊗ Ψ̃∗E

)−1
vec
(
Ψ̃E −Ψ∗E

)
= 0, (B.8)

where E = S ∪ D. Let ∆̃ = Ψ̃E −Ψ∗E = t∆. Define f
(
vec(∆̃)

)
to be∥∥∥vec

{
C∗E −

(
Ψ∗ + ∆̃

)−1
E

}
− Γ∗EEvec

(
∆̃E
)∥∥∥
∞
,

in which Γ∗EE = (Ψ∗E ⊗Ψ∗E)
−1. By the matrix expansion formula that (A + ∆)−1 −A−1 =

∑∞
m=1(−A−1∆)mA−1,

f{vec(∆̃)} reduces to ∥∥∥∥vec
[{ ∞∑

m=2

(−Σ∗∆̃)mΣ∗
}
E

]∥∥∥∥
∞
.

Using triangle inequality, we then obtain that

f
{

vec(∆̃)
}
≤ max

(j,k)∈E

∞∑
m=2

∣∣∣eTj (Σ∗∆̃)mΣ∗ek

∣∣∣.
Further applying Hölder inequality to each single term in the right hand side of the above displayed inequality, we have∣∣∣eTj (Σ∗∆̃)mΣ∗ek

∣∣∣ ≤ ∥∥Σ∗∥∥m+1

∞

∥∥∆̃∥∥m−1∞

∥∥∆̃∥∥
max
≤ sm−1max

∥∥Σ∗∥∥m+1

∞

∥∥∆̃∥∥m
max

,

where we use the fact ‖∆‖∞ ≤ smax‖∆‖max. Therefore, we obtain

f
{

vec(∆̃)
}
≤
∞∑
m=2

sm−1max ‖Σ∗‖m+1
∞ ‖∆̃‖mmax =

κ31smax‖∆̃‖2max

1− κ1smax‖∆̃‖max

,

which, by triangle inequality, implies that

‖∆̃‖max ≤ ‖Γ∗EE‖∞
(∥∥∥vec

{
C∗E −

(
Ψ∗ + ∆̃

)−1
E

}∥∥∥
∞

+
κ31smax‖∆̃‖2max

1− κ1smax‖∆̃‖max

)
.

Utilizing the KKT condition ĈE = Ψ̂◦E , the fact ‖Ĉ−C∗‖max ≤ cn/2 and 4κ41cn<−1+
√

1+κ1/smax, we obtain

‖∆̃‖max ≤ κ21cn
(1

2
+

κ31smaxr
2

1− κ1smaxr

)
< κ21cn ≡ r,

which is a contradiction. Thus, ∆̃ = ∆ and Ψ̂◦ satisfies the desired maximum norm bound. For the spectral norm bound,
we utilize Lemma E.6 and obtain that∥∥Ψ̂◦ −Ψ∗

∥∥
2
≤
∥∥M∗∥∥

2

∥∥Ψ̂◦ −Ψ∗
∥∥
max
≤ κ21cn‖M∗‖2.

The proof is finished.

C. Semiparametric Graphical Model
Proof of Theorem 4.3. We need the follows lemma, which are taken from (Liu et al., 2012). It provides a nonasymptotic
probability bound for estimating Σnpn using Ŝτ .

Lemma C.1. Let C be a constant. For any n & log d, with probability at least 1− 8/d, we have

sup
jk
|Ŝτjk − Σnpn

jk | ≤ C
√

log d

n
.

The rest of the proof is adapted from that of Theorem 4.3 and thus is omitted.



D. Concentration Inequality
In this section, we establish the concentration inequalities which are the key technical tools to the large probability bounds
in Section 3.

Lemma D.1 (Sub-Gaussian Tail Bound). Let X = (X1, X2, . . . , Xd)
T be a zero-mean random vector with covariance

Σ∗ such that each Xi/σ
∗
ii is sub-Gaussian with variance proxy 1. Then there exists constants c1 and t0 such that for all t

with 0 ≤ t ≤ t0 the associated sample covariance Σ̂ satisfies the following tail probability bound

P
(
|σ̂ij − σ∗ij | ≥ t

)
≤ 8 exp

{
− c1nt2

}
.

Proof of Lemma D.1. By the definition of the sample covariance matrix, we have σ̂ij = n−1
∑n
k=1(X

(k)
i − X̄i)(X

(k)
j −

X̄j) = n−1
∑n
k=1X

(k)
i X

(k)
j − X̄iX̄j . Therefore we can decompose σ̂ij − σ∗ij as n−1

∑n
k=1X

(k)
i X

(k)
j − σ∗ij − X̄iX̄j . By

applying the union sum bound, we obtain that

P
(∣∣∣σ̂ij − σ∗ij∣∣∣ ≥ t) ≤ P

(∣∣∣ 1
n

n∑
k=1

X
(k)
i X

(k)
j − σ∗ij

∣∣∣ ≥ t

2

)
︸ ︷︷ ︸

(R1)

+P
(∣∣∣X̄iX̄j

∣∣∣ ≥ t

2

)
︸ ︷︷ ︸

(R2)

In the sequel, we bound (R1) and (R2) separately. For term (R1), following the argument of Lemma A.3 in (Bickel and
Levina, 2008), there exists constant c′1 and t′0 not depending n, d such that

(R1) = P
(∣∣∣ 1
n

n∑
k=1

X
(k)
i X

(k)
j − σ∗ij

∣∣∣ ≥ t

2

)
≤ 4 exp

{
− c′1nt2

}
for all t satisfying 0 ≤ t ≤ t0. Next, we bound the term (R2). By the linear structure of sub-Gaussian random variables,
we obtain that

√
nX̄i ∼ sub-Gaussian(0, σ∗ii) for all 1 ≤ i ≤ d. Therefore, by applying Lemma E.1, we obtain that

|
√
nX̄i ·

√
nX̄j | is a sub-exponential random variable with ψ1 norm bounded by 2‖

√
nX̄i‖ψ2‖

√
nX̄j‖ψ2 . We give explicit

bounds for the ψ2-norm of
√
nX̄i and

√
nX̄j . By the Chernoff bound, the tail probability of

√
nX̄i can be bounded in the

following

P
(
|
√
nX̄i| ≥ t

)
≤ 2 exp

{
− t2

2σ∗ii

}
.

For every non-negative random variable Z, integration by parts yields the identity EZ =
∫∞
0

P(Z ≥ u)du. We apply this
for Z = |

√
nX̄i|p and obtain after change of variables u = tp that

E|
√
nX̄i|p =

∫ ∞
0

P(|
√
nX̄i| ≥ t) · ptp−1dt ≤

∫ ∞
0

2p · exp
{
− t2

2σ∗ii

}
tp−1dt

= p(2σ∗ii)
p/2 · Γ(

p

2
) ≤ p(2σ∗ii)p/2 ·

(p
2

)p/2
,

which indicates that ‖
√
nX̄i‖ψ1

≤
√

2σ∗ii. The Gamma function is defined as Γ(t) =
∫∞
0
e−txt−1dx. Similary, we

can bound ‖
√
n X̄j‖ψ2

by
√

2σ∗jj . Therefore we obtain ‖
√
nX̄i ·

√
nX̄j‖ψ1

≤ 2
√
σ∗iiσ

∗
jj ≤ 2σ2

max, where σ2
max =

max{σ∗11, . . . , σ∗dd}. Define Zij = |
√
nX̄i ·

√
nX̄j |. Let δ = (e − 1)(2σ2

maxe
2)−1 and write the Taylor expansion series

of the expoential function, we obtain

E exp{δZij} = 1 +

∞∑
k=1

δkE(Zkij)

k!
≤ 1 +

∞∑
k=1

δk(2σ2
maxk)k

k!
≤ 1 +

∞∑
k=1

(2σ2
maxδ · e)k ≤ e,

where we use k! ≥ (k/e)k in the last second inequality. Exponenting and using the Markov inequalty yields that

P
(
Zij ≥ t

)
= P

(
δZij ≥ δt

)
= P

(
eδZij ≥ eδt

)
≤ EeδZij

eδt
≤ exp{1− δt},



for all t ≥ 0. Using the above result, we can boudn (R2) as

(R2) ≤ P
(
Zij ≥

nt

2

)
≤ exp

{
1− δnt

2

}
≤ 4 exp

{
1− δnt

2

}
.

Combing the bounds for (R1) and (R2), taking c1 = min{c′1, δ} and t0 = min{1, t′0} obtain us that

P
(
|σ̂ij − σ∗ij | ≥ t

)
≤ 8 exp

{
− c1nt2

}
∀ t ≤ t0,

which completes the proof.

We then develop a large deviation bound for marginal variances.

Lemma D.2 (Large Deviation Bound for Marginal Variance). Let X = (X1, X2, . . . , Xd)
T be a zero-mean random

vector with covariance Σ∗ such that each Xi

/√
Σ∗ii is sub-Gaussian with variance proxy 1, and

{
X(k)

}n
k=1

be n i.i.d.
samples fromX . Let C(ε) = 2−1

(
ε− log(1 + ε)

)
> 0. Then, for any ε ≥ 0, we must have

P
(∣∣Σ̂ii − Σ∗ii

∣∣>ε · Σ∗ii) ≤ 2 · exp
{
−n · C(ε)

}
.

Proof. We write Z(k)
i =

(
Σ∗ii
)−1/2

X
(k)
i and Σ̃ii = n−1

∑n
k=1 Z

(k)
i · Z(k)

i , for 1 ≤ i ≤ d. Let ς(k)i = Z
(k)
i · Z(k)

i ∼ χ2
1,

for 1 ≤ k ≤ n. Therefore, the moment-generating function of ς(k)i is M
ς
(k)
i

(t) = (1− 2t)−1/2, for t ∈ (−∞, 1/2). Next,

we control the tail probability of Σ̃ii > 1 + ε and Σ̃ii < 1 − ε, respectively. For the tail probability of Σ̃ii > 1 + ε, by
applying Lemma E.8, we obtain

P

(
ς
(1)
i +. . .+ ς

(n)
i

n
>1+ε

)
≤ exp

{
−n ·A(ε)

}
,

where A(ε) = supt
{

(1 + ε)t + 2−1 log(1 − 2t)
}

= 2−1
(
ε − log(1 + ε)

)
. Similarly, for any ε > 0, we obtain the tail

probability of Σ̃ii < 1− ε as

P

(
ς
(1)
i +. . .+ ς

(n)
i

n
<1−ε

)
≤ exp

{
−n ·B(ε)

}
,

where B(ε) = supt
{

(1−ε)t+2−1 log(1−2t)
}

. After some algebra, we obtain B(ε) =−2−1
(
ε+log(1−ε)

)
, if ε < 1;

B(ε) = +∞, otherwise. Let C(ε) = min
{
A(ε), B(ε)

}
= 2−1

(
ε− log(1 + ε)

)
. Therefore, combing the above two

inequalities by union bound, we obtain P
(∣∣n−1(ς(1)i + . . . + ς

(n)
i

)
− 1
∣∣> ε

)
≤ 2 · exp

{
−n · C(ε)

}
. Note that we have

Σ̂ii = (Σ∗ii)
−1 ·Σ̃ii=n−1

(
ς
(1)
ii +. . .+ς

(n)
ii

)
. Thus, we obtain

P
(∣∣Σ̂ii − Σ∗ii

∣∣>ε · Σ∗ii) ≤ 2 · exp
{
−n · C(ε)

}
.

Our next results characterizes a large deviation bound for sample correlation matrix.

Lemma D.3 (Large Deviation Bound for Sample Correlation). Let X = (X1, X2, . . . , Xd)
T be a zero-mean random

vector with covariance matrix Σ∗ such that each Xi

/√
Σ∗ii is sub-Gaussian with variance proxy 1 and {X(k)}nk=1 be n

independent and identically distributed copies of X . Let Σ̂ = 1/n
∑n
k=1X

(k)X(k)T denote the sample covariance and
Ĉ = Ŵ−1Σ̂Ŵ−1 denote the sample correlation matrix, where Ŵ2 is the diagonal matrix with diagonal elements of Σ̂.
Further let ρ̂ij and ρij be the (i, j)th element of Ĉ and C∗ respectively. Define c2 = min{4−1c1 min(Σ∗ii)

2, 1/6}. Then,
for 0 ≤ ε ≤ min{1/2, t0 maxi Σ∗ii}, we have

P
(
|ρ̂ij − ρij | > ε

)
≤ 6 exp

{
− c2n·ε2

}
, where 1 ≤ i 6= j ≤ d.



Proof of Lemma D.3. We denote the sample correlation as ρ̂ij = (Σ̂ii · Σ̂jj)−1/2Σ̂ij . To prove the tail probability bound.
It suffices to prove the tail probability bound for ρ̂ij − ρij > ε and ρ̂ij − ρij < −ε, respectively. We start with the
tail probability bound for ρ̂ij − ρij > ε. Let us assume that ρij ≥ 0. Using the basic probability argument, we have
P(A) = P(A ∩B) + P(A ∩Bc) ≤ P(A) + P(Bc). Thus, for any 0 ≤ t ≤ 1 we obtain

P
(
ρ̂ij − ρij > ε

)
= P

(
Σ̂ij − (Σ̂iiΣ̂jj)

−1/2 ·ρij > (Σ̂iiΣ̂jj)
−1/2 ·ε

)
≤ P

(
Σ̂ij − (Σ∗iiΣ

∗
jj)
−1/2(1− t)−1 ·ρij > (Σ∗iiΣ

∗
jj)
−1/2(1− t)−1 ·ε

)
︸ ︷︷ ︸

(R1.1)

+ P
(

Σ̂ii − Σ∗ii > Σ∗ii ·t
)

+ P
(

Σ̂jj − Σ∗jj > Σ∗jj ·t
)
. (D.1)

Next, we bound the term (R1.1). After some simple algebra, (R1.1) can be bounded by

P
(

Σ̂ij − Σ∗ij>
(
ε+ ρij

)
·(Σ∗iiΣ∗jj)−1/2(1− t)−1 − Σ∗ij

)
≤ P

(
Σ̂ij − Σ∗ij>ε

(
Σ∗iiΣ

∗
jj

)−1/2
(1 + t) + t·Σ∗ij

)
Let c′2 = c1 mini(Σ

∗
ii)

2, where c1 is defined in Lemma D.1. If we apply Lemma D.1 with a better constant and Lemma
D.2, then for any 0 ≤ ε ≤ t0

√
Σ∗iiΣ

∗
jj , in which t0 is defined in Lemma D.1, we must have

P
(
ρ̂ij − ρij > ε

)
≤ P

(
Σ̂ij − Σ∗ij>ε

(
Σ∗iiΣ

∗
jj

)−1/2)
+ P

(
Σ̂ii − Σ∗ii > t·Σ∗ii

)
+ P

(
Σ̂jj − Σ∗jj > t·Σ∗jj

)
≤ 4 exp

{
−c′2n·ε2

}
+ 2 exp

{
− n· 1

2

(
t− log(1 + t)

)}
.

Let c′′2 = min
{
c′2, 1/6

}
. Further, for any 0 ≤ ε ≤ min{1/2, t0 maxi Σ∗ii}, by taking t = ε and using the inequality

t− log(1 + t) ≥ 1/3·t2 for all t such that 0 ≤ t ≤ 1/2, we obtain

P
(
ρ̂ij − ρij > ε

)
≤ 4 exp

{
−c′2ε2 · n

}
+ 2 exp

{
− 1

6
ε2 · n

}
≤ 6 exp

{
−c′′2n·ε2

}
.

If ρij < 0, in the a similar fashion as before, we can obtain the the following tail probability bound

P
(
ρ̂ij − ρij > ε

)
≤ P

(
Σ̂ij − Σ∗ij>ε

(
Σ∗iiΣ

∗
jj

)−1/2
+ Σ∗ij ·(t2 − t)− ε

√
Σ∗iiΣ

∗
jj ·t
)

︸ ︷︷ ︸
(R1.2)

+ P
(

Σ̂ii − Σ∗ii > t·Σ∗ii
)

+ P
(

Σ̂jj − Σ∗jj > t·Σ∗jj
)
.

To continue, we bound the term (R1.2) in the next. If take t = ε ≤ min
{

1/2, t0 maxi Σ∗ii
}
≤ 1/2 + 1/2|ρij |, we obtain

that Σ∗ij ·(t2 − t)− ε
√

Σ∗iiΣ
∗
jj ·t ≥ −1/2

√
Σ∗iiΣ

∗
jj ·t. Thus, we have

P
(
ρ̂ij − ρij > ε

)
≤ P

(
Σ̂ij − Σ∗ij>

1

2
ε
(
Σ∗iiΣ

∗
jj

)−1/2)
+ P

(
Σ̂ii − Σ∗ii > t·Σ∗ii

)
+ P

(
Σ̂jj − Σ∗jj > t·Σ∗jj

)
≤ 4 exp

{
− 1

4
c′2n·ε2

}
+ 2 exp

{
− 1

2
n·
(
ε− log(1 + ε)

)}
≤ 6 exp

{
− c2n·ε2

}
,

where c2 = min{4−1c′2, 1/6} = min{4−1c1 min(Σ∗ii)
2, 1/6} ≤ c′′2 . By combining above two cases, for 0 ≤ ε ≤

min{1/2, t0 maxi Σ∗ii}, we have P(ρ̂ij − ρij > ε) ≤ 6 exp{−c2n ·ε2}. In a similar fashion, we obtain the same tail
probability bound for ρ̂ij − ρij < ε, for 0 ≤ ε ≤ min{1/2, t0 maxi Σ∗ii}. Thus the proof is completed.



Lemma D.4. Under the same conditions in Lemma (D.3). We have the following result hold

lim
M→∞

lim sup
n

P
(∥∥∇L(Ψ∗)

S

∥∥
max

> M

√
1

n

)
= 0, and ‖∇L(Ψ∗)S‖F = OP

(√
s

n

)
.

Proof of Lemma D.4. It is easy to check that
∥∥∇L(Ψ∗)S

∥∥
F =

∥∥(Ĉ − C∗
)
S

∥∥
F. By applying Lemma D.3 and the union

sum bound, for any M such that 0 ≤M ≤ min
{

1/2, t0 maxi Σ∗ii
}
·
√
n, in which t0 is defined in Lemma D.3, we obtain

P
(∥∥∇L(Ψ∗)

S

∥∥
max

> M

√
1

n

)
≤ s · exp

{
−c2M2

}
≤ exp

{
−c2M2 + log s

}
.

Taking M such that
√

2c−12 log s ≤ M ≤ min
{

1/2, t0 maxi Σ∗ii
}
·
√
n and M → ∞ in the above inequality obtains us

that

lim
M→∞

lim sup
n

P
(∥∥∇L(Ψ∗)

S

∥∥
max

> M

√
1

n

)
= 0,

which implies that
∥∥∇L(Ψ∗)

S

∥∥
F = OP(

√
s/n).

Lemma D.5 (A Concentration Inequality for Sample Correlation Matrix). Let Ĉ, C∗, ρ̂ij and ρ∗ij be defined in Lemma

D.3. Suppose n ≥ 3
(
c2t

2
1

)−1·log d. Take λ =
√

3c−12 · (log d)/n �
√

log(d)/n, in which c2 is defined as in Lemma D.3.

Then Ĉ must satisfy

P
(∥∥Ĉ−C∗

∥∥
max
≤ λ

)
≤ 1− 8/d.

Proof. It is easy to check that∇L(C∗) = Ĉ−C∗. Therefore, applying Lemma D.3 and union sum bound, we obtain that,
for any λ ≤ t1 ≡ min

{
1/2, t0 maxi{Σ∗ii}

}
with t0 defined in Lemma D.1,

P
(∥∥Ĉ−C∗

∥∥
max

> λ
)
≤ 6d2 · exp{−c2nλ2}.

where c2 = min{4−1c1 min(Σ∗ii)
2, 1/6}, in which c1 is defined in Lemma D.1. , for n sufficiently large such that

n ≥ 3
(
c2t

2
1

)−1·log d, by taking λ =
√

3c−12 · (log d)/n ≤ t1, we obtain P
(
‖Ĉ−C∗‖max ≤ λ

)
= 1−P

(
‖Ĉ−C∗‖max >

λ
)
≥ 1− 6d2 · exp{−c2nλ2} ≥ 1− 8/d. The proof is completed.

Lemma D.6. Under the same conditions in Lemma D.5, we have

lim
M→∞

lim sup
n

P
(∥∥Ĉ−C∗

)
S

∥∥
max

> M

√
1

n

)
= 0, and

∥∥(Ĉ−C∗
)
S

∥∥
max

= OP

(√
1

n

)
.

Proof of Lemma D.6. The proof is similar to that of Lemma D.5 and thus is omitted.

E. Preliminary Lemmas
In this section we state and prove the technical lemmas used in previous sections. The following lemma establishes the tail
bound type of the product of two sub-Gaussian random variables. Let ‖ · ‖ψ1

and ‖ · ‖ψ2
be the ψ1- and ψ2-norm defined

in (Vershynin, 2010).

Lemma E.1. For X and Y being two sub-Gaussian random variables, then the absolute value of their product |X · Y | is a
sub-exponential random variable with

‖X · Y ‖ψ1
≤ 2 · ‖X‖ψ2

‖Y ‖ψ2
.



Proof of Lemma E.1. To show X · Y is sub-exponential, it suffices to prove that the ψ1-norm of X · Y is bounded. By the
definition of the ψ1-norm, we have

‖X · Y ‖ψ1
= sup

p≥1
p−1
[
E|X · Y |p

]1/p
. (E.1)

We need to use the Hölder inequality as follows

E
[
|〈f, g〉|

]
≤
[
E|f |r

]1/r[E|g|s]1/s, 1

r
+

1

s
= 1,

where f and g are two random functions. If we choose f = Xp, g = Y p and r = s = 2 in the Hölder inequality, then the
right hand side of (E.1) can be bounded by

sup
p≥1

{
p−1
[
E|X|2p

]1/(2p)[E|Y |2p]1/(2p)}
≤2 sup

p≥1

{
(2p)−1/2

[
E|X|2p

]1/(2p)} · sup
p≥1

{
(2p)−1/2

[
E|Y |2p

]1/(2p)}
.

Therefore we obtain that ‖X · Y ‖ψ1
≤ 2‖X‖ψ2

‖Y ‖ψ2
<∞. The proof is completed.

Lemma E.2. Let DL(Θ1,Θ2) = L(Θ1) − L(Θ2) −
〈
L(Θ2),Θ1 − Θ2

〉
and Ds

L(Θ1,Θ2) = DL(Θ1,Θ2) +
DL(Θ2,Θ1). For Θ(t) = Θ∗ + t(Θ−Θ∗) with t ∈ (0, 1], we have that

Ds
L(Θ(t),Θ∗) ≤ tDs

L(Θ,Θ∗).

Proof of Lemma E.2. Let Q(t) = DL(Θ(t),Θ∗) = L(Θ(t))−L(Θ∗)−
〈
∇L(Θ∗),Θ(t)−Θ∗

〉
. Since the derivative of

L(Θ(t)) with respect to t is 〈∇L(Θ(t)),Θ−Θ∗〉, then the derivative of Q(t) is

Q′(t) =
〈
∇L(Θ(t))−∇L(Θ∗),Θ−Θ∗

〉
.

Therefore the Bregman divergence Ds
L(Θ(t)−Θ∗) can written as

Ds
L(Θ̃(t)−Θ∗) =

〈
∇L(Θ̃(t))−∇L(Θ∗), t(Θ−Θ∗)

〉
= tQ′(t) for 0 < t ≤ 1.

By plugging t = 1 in the above function equation, we have Q′(1) = Ds
L(Θ,Θ∗) as a special case. If we assume that Q(t)

is convex, then Q′(t) is non-decreasing and thus

Ds
L(Θ(t),Θ∗) = tQ′(t) ≤ tQ′(1) = tDs

L(Θ,Θ∗).

Therefore the proof is completed. It remains to prove that Q(t) is a convex function, i.e.

Q(α1t1 + α2t2) ≤ α1Q(t1) + α2Q(t2),∀ t1, t2 ∈ (0, 1], α1, α2 ≥ 0 s.t. α1 + α2 = 1. (E.2)

For ∀α1, α2 ≥ 0 such that α1 + α2 = 1, and t1, t2 ∈ (0, 1), we have Θ(α1t1 + α2t2) = α1Θ(t1) + α2Θ(t2). By the
bi-linearity property of the inner product function 〈·, ·〉, and using the linearity property of Θ(·), we have the following
equality hold

−
〈
∇L(Θ∗),Θ(α1t1 + α2t2)−Θ∗

〉
=−α1

〈
∇L(Θ∗),Θ(t1)−Θ∗〉−α2

〈
∇L(Θ∗),Θ(t2)−Θ∗

〉
. (E.3)

On the other side, by the convexity of the loss function L(·), we obtain

L
(
Θ(α1t1 + α2t2)

)
= L

(
α1Θ(t1) + α2Θ(t2)

)
≤ α1L

(
Θ(t1)

)
+ α2L

(
Θ(t2)

)
. (E.4)

By adding (E.3) and (E.4) together and using the definition of function Q(·), we obtain

Q(α1t1 + α2t2) ≤ α1Q(t1) + α2Q(t2),

which indicates Q(t) is a convex function. Thus we complete our proof.



Lemma E.3. Let Ai,Bi ∈ Rd×d be square matrices for i = 1, 2. Then we have

A1B1A1 −A2B2A2 = (A1 −A2)(B1 −B2)(A1 −A2) + (A1 −A2)B2A2

+ (A1 −A2)B2A1 + A1(B1 −B2)A2.

The next lemma characterizes an upper bound of ‖A−1 −B−1‖∗ in terms of ‖A−B‖∗, where ‖ · ‖∗ is any matrix norm.

Lemma E.4. Let A,B ∈ Rd×d be invertible. For any matrix norm ‖ · ‖∗, we have

‖A−1 −B−1‖∗ ≤
‖A−1‖2∗‖A−B‖∗

1− ‖A−1‖∗‖A−B‖∗
.

We need the following lemma for bounding the difference with respect to the Kronecker product.

Lemma E.5. Let A and B be matrices of the same dimension. Then we have

‖A⊗B‖∞ = ‖A‖∞‖B‖∞, and

‖A⊗A−B⊗B‖∞ ≤ ‖A−B‖2∞ + 2 min
{
‖A‖∞, ‖B‖∞

}
‖A−B‖∞.

The proof of the above lemma can be carried out by using the definitions and thus is omitted here for simplicity.

For a matrix A =
(
aij
)
, we say Aad =

(
aad
ij

)
is the corresponding sparsity pattern matrix if aad

ij = 1 when aij 6= 0; and
aad
ij = 0, otherwise.

Lemma E.6. Let A ∈ Rd×d be a matrix such that ‖A‖max ≤ 1. Let Aad be the corresponding sparsity pattern matrix.
Then we have

‖A‖2 ≤ ‖Aad‖2.

Proof of Lemma E.6. Let aij be the (i, j)-th entry of matrix A and xj the j-th entry of x. Following the definition of the
spectral norm of a matrix, we obtain that

‖A‖2 = sup
‖x‖2=1

‖Ax‖2 = sup
‖x‖2=1

{ n∑
i=1

( n∑
j=1

aijxj

)2}

≤ sup
‖x‖2=1

{ n∑
i=1

( n∑
j=1

sgn(xj)1(aij 6= 0) · xj
)2}

= sup
x≥0,‖x‖2=1

{ n∑
i=1

( n∑
j=1

1(aij 6= 0) · xj
)2}

≤ ‖Aad‖2.

Thus the proof is completed.

Lemma E.7. Let Â ∈ Rd×d be a semi-positive definite random matrix, A ∈ Rd×d a positive definite deterministic matrix.
Then we have

P
(∥∥Â−1 −A−1

∥∥
2
> 2λ−2min

(
A
)
·
∥∥Â−A

∥∥
2

)
≤ P

(∥∥Â−A
∥∥
2
> 2−1λmin

(
A
))
.

If we further assume that Â and A are commutative, that is ÂA = AÂ, then we have

P
(∥∥Â−1/2 −A−1/2

∥∥
2
> 2(
√

2 + 1)
∥∥A∥∥1/2

2
λ−2min

(
A
)∥∥Â−A

∥∥
2

)
≤ P

(∥∥Â−A
∥∥
2
> 2−1λmin

(
A
))
.



Proof of Lemma E.7. We first write Â−1−A−1 as Â−1(A−Â)A−1, then it follows from the sub-multiplicative property
of the spectral norm that∥∥Â−1 −A−1

∥∥
2
≤
∥∥Â−1(Â−A)A−1

∥∥
2
≤
∥∥Â−1∥∥

2

∥∥A−1∥∥
2

∥∥Â−A
∥∥
2

≤ λ−1min

(
Â
)
λ−1min

(
A
)
·
∥∥Â−A

∥∥
2
. (E.5)

By Weyl’s inequality, we obtain that λmin(A) ≤ λmin(Â) +
∥∥Â −A

∥∥
2
, and thus λmin

(
Â
)
≥ λmin

(
A
)
−
∥∥Â −A

∥∥
2
.

Thus in the event of
{∥∥Â −A

∥∥
2
≤ 2−1λmin

(
A
)}

, we have λmin

(
Â
)
≥ 2−1λmin

(
A
)

hold. Thus it follows from (E.5)
that

P
(∥∥Â−1 −A−1

∥∥
2
≤ 2λ−2min

(
A
)
·
∥∥Â−A

∥∥
2

)
≥ P

(∥∥Â−A
∥∥
2
≤ 2−1λmin

(
A
))
.

This proves the first desired probability bound. If we further assume that Â and A are commutative, under the event{∥∥Â−A
∥∥
2
≤ 2−1λmin

(
A
)}

, we have∥∥Â−1/2 −A−1/2
∥∥
2

=
∥∥(Â−1/2 + A−1/2

)−1(
Â−1 −A−1

)∥∥
2

≤
(∥∥Â∥∥1/2

2
+
∥∥A∥∥1/2

2

)∥∥Â−1 −A−1
∥∥
2

≤ (
√

2 + 1)
∥∥A∥∥1/2

2

∥∥Â−1 −A−1
∥∥
2

≤ 2(
√

2 + 1)
∥∥A∥∥1/2

2
λ−2min

(
A
)∥∥Â−A

∥∥
2
.

Therefore we prove the third result.

The following lemma is taken from (Dembo and Zeitouni, 2009), which leads to a concentration bound of the empirical
means X̄ = n−1

∑n
i=1Xi, where Xi’s are i.i.d. random copies of X . Define the logarithmic moment generating function

associated with X to be

ΛX(λ) ≡ logMX(λ) = logE
[

exp{λX}
]
. (E.6)

Lemma E.8 (Large Deviation Inequality). Let the logarithmic moment generating function of X , ΛX(λ), be defined in
E.6. Define the Fenchel-Legendre dual of ΛX(x) to be Λ∗X(x) ≡ supλ∈R

{
λx− Λ(λ)

}
. Then, for any t ≥ 0, we have

P
(

1

n

n∑
i=1

Xi − EX ≥ t
)
≤ exp

{
−n(EX + inf

x∈F1

Λ∗(x))
}

and

P
(

1

n

n∑
i=1

Xi − EX ≤ −t
)
≤ exp

{
−n(EX + inf

x∈F2

Λ∗(x))
}
,

where F1 =
[
t,+∞

)
and F2 =

(
−∞,−t

]
.
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